用户名: 密码: 验证码:
低剂量辐射对成体神经干细胞增殖分化的刺激作用及其Wnt/β-catenin分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     帕金森病(Parkinson’s disease, PD)是以黑质多巴胺神经元选择性变性丢失、进行性发展为特征的严重中枢退行性疾病,目前尚缺乏针对神经元死亡的临床治疗手段。近年研究表明,胚胎和成体来源的神经干细胞可能提供新生神经元或神经营养因子,能够从根源上补充丢失的神经元,并保护神经元,为预防和治疗PD提供了新希望。
     本课题针对PD的干细胞治疗新方法和干预新靶点的探索研究,通过实验研究中脑和海马来源的成体神经干细胞增殖、细胞分化和神经营养因子特性,探索低剂量电离辐射刺激或激活成体神经干细胞增殖和细胞分化的新方法,分析Wnt/β-catenin信号途径的可能介导机制,以及PD疾病状态下黑质多巴胺神经元的神经营养信号作用等问题,为进一步探索建立PD的细胞治疗方法和靶向干预策略提供实验依据。
     研究方法:
     1.神经干细胞培养:中脑及海马来源的神经干细胞体外培养。
     2.低剂量辐射方法:采用直线加速器X-线电离辐射处理方法。
     3. PD动物模型制备:采用MPTP注射制备小鼠亚急性PD模型。
     4. BrdU掺入标记技术:BrdU注射标记细胞核显示细胞增殖。
     5.流式细胞术:检测中脑及海马神经干细胞生存、坏死和凋亡。
     6. Fluoro-Jade C染色方法:组织切片显示黑质神经元变性死亡。
     7. Western Blot:定量分析Wnts、BDNF、TrkB等蛋白的表达水平。
     8.免疫细胞化学:显示Wnts、BDNF、TrkB等分子表达与变化情况。
     9.激光共聚焦显微镜术:观察Wnts、BDNF、TrkB等细胞定位与变化。
     主要结果:
     第一部分:中脑和海马来源的神经干细胞增殖、细胞分化、神经营养因子产生特性的比较研究
     1)免疫细胞化学观察结果显示中脑神经干细胞BrdU/Nestin掺入标记率明显低于海马神经干细胞,说明中脑神经干细胞具有较低增殖率。
     2)流式细胞术检测分析表明中脑来源的神经干细胞的细胞存活数量较多、细胞凋亡较少。
     3)细胞分化检测发现中脑和海马神经干细胞均可向Tuj-1、Nurr1、TH、GFAP、CNPase阳性细胞分化,中脑神经干细胞分化为TH和Nurr1阳性细胞数量较高,而海马神经干细胞更易分化为GFAP阳性星形胶质细胞。
     4)神经营养因子检测证实中脑和海马神经干细胞在增殖和迁移分化中,均表达BDNF、GDNF、CDNF和DJ-1分子。中脑神经干细胞表达BDNF和DJ-1阳性细胞较多,GDNF阳性细胞数较少,而CDNF两者比较无差异。
     这些结果证明中脑神经干细胞具有较低的细胞增殖率、较高的多巴胺能神经细胞分化率、BDNF等营养因子合成的细胞特性,提示中脑来源的神经干细胞可能是适合于PD细胞治疗的重要干细胞材料。第二部分:低剂量辐射对神经干细胞增殖、细胞分化的刺激作用、及其
     Wnt/β-catennin信号分子机制
     1)通过干细胞对照、低剂量辐射(0.3Gy)、高剂量辐射(3.0Gy)组的流式细胞检测,发现低剂量辐射组细胞增殖活跃、细胞存活数目增加、细胞凋亡减少,与对照组、高剂量辐射组之间有显著性差异(P<0.05)。
     2)免疫细胞化学和Western blot实验发现低剂量辐射组的神经干细胞表达Tuj-1水平或阳性细胞增加,与对照组和高剂量辐射组比较有显著性差异(P<0.05),但GFAP的表达水平和GFAP阳性细胞数量三组之间无统计学差异。
     3)免疫细胞化学和Western blot实验发现低剂量辐射促进神经干细胞Wnt1、Wnt3a、Wnt5a和β-catenin表达水平和阳性细胞数目增加,与对照组、高剂量辐射组比较有显著性差异(P<0.01)。
     4) Wnt信号阻断实验发现Wnt信号阻断剂IWR1处理能够显著抑制低剂量辐射对干细胞Wnt1、Wnt3a、Wnt5a和β-catenin表达的刺激效应。Western blot条带灰度分析表明,两组之间有显著性差异(P<0.01)。
     5) Wnt信号阻断实验证实给予Wnt信号阻断剂处理能够显著抑制低剂量辐射对干细胞增殖、细胞迁移、细胞分化的刺激效应。相差显微镜下细胞增殖下降、细胞凋亡增加、克隆能力下降、迁移下降、分化能力明显降低,两组之间具有显著差异(P<0.01)。
     这些结果表明低剂量辐射能够刺激中脑和海马来源的成体神经干细胞增殖和细胞分化的作用,具有促进干细胞向神经细胞的分化作用。这种低剂量辐射刺激效应可能是通过Wnt/β-catenin信号途径的激活机制而实现的。
     第三部分: MPTP动物模型中脑黑质多巴胺神经元上神经营养因子受体Trks的细胞定位和变化特征
     1)免疫细胞化学和Western Blot实验证明黑质具有丰富神经营养因子受体TrkB、TrkC表达。其中黑质致密部多巴胺神经元具有TrkB、TrkC阳性免疫染色细胞定位,但缺乏TrkA的阳性表达。
     2)MPTP动物模型观察发现MPTP处理引起黑质多巴胺神经元凋亡和TrkB、TrkC阳性细胞的丢失。Western Blot实验以β-Actin作内参(42KD),进一步验证了黑质TrkB和TrkC(145KD大小)蛋白表达水平下降。
     3)通过比较MPTP模型黑质内TrkB和TrkC阳性细胞数目,发现TrkB和TrkC阳性神经元均发生丢失,但黑质致密部TrkB阳性神经元仍具有较多存活,其细胞丢失明显少于TrkC阳性细胞。
     这些结果表明黑质较多TrkB阳性神经元能够在MPTP注射损伤后存活,表明BDNF-TrkB信号对于PD状态下多巴胺神经元保护具有重要作用。
     初步结论与意义:
     本课题通过体外、体内实验研究,获得以下结果或初步结论:
     1)中脑来源的神经干细胞具有较低增殖率、向多巴胺神经元高分化能力、BDNF等营养因子产生特性,表明其在PD的细胞治疗中具有优良的应用潜力;
     2)低剂量电离辐射具有刺激中脑和海马来源神经干细胞增殖和细胞分化的作用,其生物刺激效应与Wnt/β-catenin信号途径激活明显相关;
     3)动物模型证实黑质内较多TrkB神经元能够在MPTP注射损伤后存活,表明BDNF-TrkB信号通路对于PD状态下多巴胺神经元保护具有重要意义。
     本研究结果初步提供了低剂量辐射刺激或激活成体神经干细胞增殖和细胞分化的新方法,发现Wnt/β-catenin信号途径介导其生物刺激效应的可能机制,为进一步探索帕金森病的干细胞治疗和靶向干预新策略提供了重要实验依据。
PURPOSE OF STUDY
     Parkinson’s disease (PD) is one common and severe neurological diseasethat characterizes with a selective degeneration of dopamine (DA) neurons inthe substantia nigra and disease progression, and at present it is still lack ofclinical cure method targeting on arresting neuronal progressive death.Growing evidences have shown that embryonic and adult neural stem cellswhich can potentially produce new neurons and neurotrophic factors in vivo andin vitro. Therefore, the cell replacement strategy by transplantation of neuralstem cells and inducement of dopaminergic neurons derived neural stem cells tosupply lost and decreased neurons is highly recommended for the preventionand treatment and of PD.
     In this project, by focusing on new intervention method or manipulatingmolecular target for cell therapy against PD, we have performed theseexperiments, i.e. comparison of midbrain and hippocampus-derived adult neuralstem cells in proliferation, cell survival, differentiation and neurotrophicproperties; stimulatory effects of low-dose radiation on proliferation anddifferentiation of adult neural stem cells and Wnt/β-catenin signalingmechanism, and dynamic changes of neurotrophic Trks signaling in the dopaminergic neurons of substance nigra in MPTP-induced PD model. Weexpect to find a new intervention method activating adult neural stem cells forcell therapy against PD in human beings.
     MATERIAL AND METHODS
     1.Cell culture of neural stem cells: The midbrain and hippocampus-derivedneural stem cells were prepared and cultured.
     2.Low dose ionizing radiation treatment: The midbrain and hippocampusNSCs were treated by X-ray ionizing radiation on which effected by linearaccelerator.
     3.Preparation of PD animal model: PD mouse model was prepared bysystemic MPTP injection in C57/BL mice.
     4.BrdU incorporation experiment: BrdU was incorporated into nucleus toshow cell division or proliferation state.
     5.Flowcytometry: Cell survival, necrosis and apoptosis of cultured neural stemcells were examined by flowcytometry analysis.
     6.Fluoro-Jade C staining: The neuronal degeneration in the substantia nigra ofMPTP model was visualized by Fluoro-Jade C staining.
     7.Western blot analysis: Western blot analysis were used to confirm expressionlevels of Wnts、BDNF and TrkB proteins.
     8.Immunocytochemistry and double labeling: Cell expression and changes ofWnts、BDNF and TrkB were performed by immunocytochemistry.
     9.Laser scanning confocal microscopy: Cellular localization pattern andchanges of Wnts、BDNF and TrkB were observed by laser scanning confocalmicroscopy.
     MAJOR RESULTS
     1. Comparison study of midbrain and hippocampus-derived neural stemcells in proliferation, survival, differentiation and neurotrophicproperties
     ①Double immunofluorescence and laser scanning confocal microscopyconfirmed that nestin and BrdU was co-expressed in the cultured neuralstem cells. The midbrain-derived NSCs showed less or slowerproliferation than that of hippocampus-derived NSCs.
     ②The midbrain-derived NSCs showed higher rate of survival and lowerrate of apoptosis in comparison with that of hippocampus NSCs byflowcytometry.
     ③Differentiation into Tuj-1, TH, Nurr-1, and GFAP-positive cells weredetected in cell culture. Quantitative analysis indicated thatmidbrain-derived NSCs showed Tuj-1+commitment rate similar to thatof hippocampus NSCs, but higher rate of Nurr-1+and TH+cells thanthat of hippocampus NSCs. In contrast, however, hippocampus NSCsexhibited higher rate of GFAP+cell differentiation than that of midbrainNSCs.
     ④Immunocytochemistry and Western blot showed expression of BDNF,GDNF, CDNF and DJ-1both midbrain NSCs and hippocampus NSCs.The midbrain NSCs and migrating cells exhibited strong BDNF andDJ-1staining, similar CDNF staining, and weaker GFAP staining incomparison with that of hippocampus NSCs.
     This result has indicated that midbrain neural stem cells show uniqueproperties in low proliferation, high neuronal commitment, and generation ofneurotrophic factors such as BDNF with therapeutic potential for PD.
     2. Stimulatory effects of low-dose radiation on cell proliferation,differentiation of adult neural stem cells, and Wnt/β-catenin signalmediating mechanism
     ①Flowcytometry was used to examine stimulating effects on proliferationof neural stem cells. Increasing of cell survival, proliferation anddecreasing of cell apoptosis were detected in low-dose radiation(0.3Gy) group, by comparing to that of control and high-dose radiation(3.0Gy)group(P<0.05vs control or high-dose group)
     ②Immunocytochemistry showed that expression of Tuj-1or Tuj-1-positive cells was increased in low-dose radiation(0.3Gy) group, incomparison with that control and high-dose radiation(3.0Gy)group(P<0.05vs control or high-dose group).
     ③Western blot further indicated that expression of Wnt1,Wnt3a,Wnt5aand β-catenin were up-regulated in low-dose radiation (0.3Gy) group,in comparison with that of control and high dose radiation(3.0Gy)group(P<0.05vs control or high-dose group).
     ④Wnt signaling block experiment showed that IWR1significantly inhibitstimulating effect on expression of Wnt1,Wnt3a,Wnt5a and β-cateninproteins after low-dose radiation by Western blot analysis.
     ⑤Immunocytochemistry and confocal microscopy further confirmed thatIWR1could inhibit stimulating effect on proliferation, migration anddifferentiation of cultured neural stem cells after low-dose radiation.Under phase contrast microscopy, increasing of cell apoptosis,decreasing of proliferation of neural stem cells, and abilities ofneurospheres formations and migration and differentiation were clearly observed in0.3Gy+IWR1group.
     These results have indicated that low-dose radiation could stimulate cellproliferation, migration and differentiation of adult neural stem cells mostpossibly by triggering Wnt/β-catenin signaling pathway.
     3. Localization and changes of neurotrophic factor receptor TrkB and TrkCin dopaminergic neuron of substantia nigra in MPTP-mouse model
     ①Double immunofluorescence and Western Blot analysis confirmed thatexpression of TrkB or TrkC were abundant in the substantia nigra,especially TrkB and TrkC-positive neurons were numerously observedin the substantia nigra pars compacta except of TrkA.
     ②Western Blot analysis verified that down-regulation of TrkB and TrkCproteins expression were found in dopaminergic neurons of substancenigra of MPTP mouse model.
     ③Though TrkB and TrkC positive cells were decreased in nigral neuronsin MPTP model, TrkB-positive survival neurons remained more incontrast to TrkC positive cells after MPTP insult. It showed that lostof TrkB positive cells is less than that of TrkC positive cells afterMPTP-insulted C57/BL mice.
     This result indicated that TrkB-positive dopaminergic neurons might beless sensitive to MPTP insult in the substantia nigra, suggesting thatBDNF-TrkB may crucially function in protection of dopaminergic neuronsunder PD state.
     SUMMARY AND CONCLUSIONS
     In summary, we have obtained these important results in this study:
     1.Midbrain-derived neural stem cells showed unique biological propertiesin low proliferation, high dopaminergic neurons commitment, andneurotrophic factor such as BDNF generation with therapeutic potentialfor PD.
     2.Low-dose radiation could stimulate cell proliferation, cell differentiationof midbrain-and hippocampus-derived neural stem cells, and theseeffects were most possibly mediated by triggering Wnt/β-cateninsignaling pathway.
     3.PD animal study indicated that TrkB-positive dopaminergic neuronswere less sensitive to MPTP insult in the substantia nigra of adult mice,suggesting that BDNF-TrkB might crucially act in neuroprotection ofdopaminergic neurons under PD state.
     In this study, we have studied and found new method that low-doseradiation can effective stimulate proliferation and differentiation of adult neuralstem cells possibly by Wnt/β-catenin signaling activation mechanism. Data ofthis study has thus provided important evidence for further investigation ofpractical cell therapy and molecular targeting strategy in treatment of PD.
引文
1. Olanow, C.W.; Tattonm, W.G(1999)Etiology and pathogenesis of Parkinson’s disease.Annu. Rev. Neurosci.22,123-144.
    2. Fernandez-Espejo, E (2004) Pathogenesis of Parkinson’s disease: prospects ofneuroprotective and restorative therapies. Mol. Neurobiol29,15-30.
    3. J nsson, M.E.; Ono, Y.; Bj rklund, A. Thompson LH (2009)Identification of transplantabledopamine neuron precursors at different stages of midbrain neurogenesis. Exp. Neurol219,341-354.
    4. Hebsgaard, J.B.; Nelander, J.; Sabelstr m, H.; J nsson, M.E.; Stott, S.; Parmar, M (2009)Dopamine neuron precursors within the developing human mesencephalon show radialglial characteristics. Glia57,1648-1658.
    5. Bonilla, S.; Hall, A.C.; Pinto, L.; Attardo, A.; G tz, M.; Huttner, W.B.; Arenas, E (2008)Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors.Glia56,809-820.
    6. Papanikolaou, T.; Lennington, J.B.; Betz, A.; Figueiredo, C.; Salamone, J.D. Conover JC(2008) In vitro generation of dopaminergic neurons from adult subventricular zone neuralprogenitor cells. Stem Cells Dev17,157-172.
    7. Lie, D.C.; Song, H.; Colamarino, S.A.; Ming, G.L.; Gage, F.H (2004) Neurogenesis in theadult brain: new strategies for central nervous system diseases. Annu. Rev. Pharmacol.Toxicol44,399-421.
    8. Nishimura, F.; Toriumi, H.; Ishizaka, S.; Sakaki, T.; Yoshikawa, M (2006) Use ofdifferentiating embryonic stem cells in the Parkinsonian mouse model. Methods Mol. Biol329,485-493.
    9. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-PatonM, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblastsfunctionally integrate into the fetal brain and improve symptoms of rats with Parkinson'sdisease. Proc. Natl. Acad. Sci. USA105,5856-5861.
    10. Hargus, G.; Cooper, O.; Deleidi, M.; Levy, A.; Lee, K.; Marlow, E.; Yow, A.; Soldner, F.;Hockemeyer, D.; Hallett, P.J.; Osborn, T.; Jaenisch, R.; Isacson, O (2010) DifferentiatedParkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain andreduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. USA.107,15921-15926.
    11. Hwang, D.Y.; Kim, D.S.; Kim, D.W (2010) Human ES and iPS cells as cell sources for thetreatment of Parkinson's disease: current state and problems. J. Cell Biochem109,292-301.
    12. Isacson, O.; Kordower, J.H (2008) Future of cell and gene therapies for Parkinson’sdisease. Ann. Neurol64Suppl2, S122-138.
    13. Willert, K.; Brown, J.D.; Danenberg, E.; Duncan, A.W.; Weissman, I.L.; Reya, T.; Yates,J.R3rd; Nusse, R (2003) Wnt proteins are lipid-modified and can act as stem cell growthfactors. Nature423,448-452.
    14. Prakash, N.; Wurst, W. A (2007) Wnt signal regulates stem cell fate and differentiation invivo. Neurodegener. Dis4,333-338.
    15. Widelitz, R (2005) Wnt signaling through canonical and non-canonical pathways: recentprogress. Growth Factors23,111-116.
    16. Castelo-Branco, G.; Arenas, E (2006) Function of Wnts in dopaminergic neurondevelopment. Neurodegener. Dis3,5-11.
    17. Joksimovic M, Yun BA, Kittappa R, Anderegg AM, Chang WW, Taketo MM, McKay RD,(2009) Awatramani RB. Wnt antagonism of Shh facilitates midbrain floor plateneurogenesis. Nat Neurosci12,125-31.
    18. Sousa, K.M.; Villaescusa, J.C.; Cajanek, L.; Ondr, J.K.; Castelo-Branco, G.; Hofstra, W.;(2010) Wnt2regulates progenitor proliferation in the developing ventral midbrain. J. Biol.Chem285,7246-7253.
    19. Castelo-Branco, G.; Wagner, J.; Rodriguez, F.J.; Kele, J.; Sousa, K.; Rawal, N.; Pasolli,H.A.; Fuchs, E.; Kitajewski, J.; Arenas, E (2003) Differential regulation of midbraindopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl. Acad. Sci.USA100,12747-12752.
    20. Chung, S.; Leung, A.; Han, B.S.; Chang, M.Y.; Moon, J.I.; Kim, C.H.; Hong, S.; Pruszak, J.;Isacson, O.; Kim, K.S (2009) Wnt1-lmx1a forms a novel autoregulatory loop and controlsmidbrain dopaminergic differentiation synergistically with the SHH-FoxA2pathway. CellStem Cell5,646-658.
    21. Castelo-Branco, G.; Sousa, K.M.; Bryja, V.; Pinto, L.; Wagner, J.; Arenas, E.(2006) Ventralmidbrain glia express region-specific transcription factors and regulate dopaminergicneurogenesis through Wnt-5a secretion. Mol. Cell. Neurosc31,251-262.
    22. Andersson, E.R.; Prakash, N.; Cajanek, L.; Minina, E.; Bryja, V.; Bryjova, L.; Yamaguchi,T.P.; Hall, A.C.; Wurst, W.; Arenas, E (2008) Wnt5a regulates ventral midbrainmorphogenesis and the development of A9-A10dopaminergic cells in vivo. PLoS One3,e3517.
    23. Schulte, G.; Bryja, V.; Rawal, N.; Castelo-Branco, G.; Sousa, K.M.; Arenas, E (2005)Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelledphosphorylation. J. Neurochem92,1550-1553.
    24. Parish, C.L.; Castelo-Branco, G.; Rawal, N.; Tonnesen, J.; Sorensen, A.T.; Salto, C.; Kokaia,M.; Lindvall, O.; Arenas, E (2008) Wnt5a-treated midbrain neural stem cells improvedopamine cell replacement therapy in parkinsonian mice. J. Clin. Invest118,149-160.
    25. Castelo-Branco, G.; Andersson, E.R.; Minina, E.; Sousa, K.M.; Ribeiro, D.; Kokubu, C.;Imai, K.; Prakash, N.; Wurst, W.; Arenas, E (2010) Delayed dopaminergic neurondifferentiation in Lrp6mutant mice. Dev. Dyn239,211-221.
    26. Tang, M., Miyamoto, Y., Huang, E.J (2009) Multiple roles of beta-catenin in controlling theneurogenic niche for midbrain dopamine neurons. Development,136,2027-2038.
    27. Prakash, N.; Brodski, C.; Naserke, T.; Puelles, E.; Gogoi, R.; Hall, A.; Panhuysen, M.;Echevarria, D.; Sussel, L.; Weisenhorn, D.M.; Martinez, S.; Arenas, E.; Simeone, A.; Wurst,W. A (2006) Wnt1-regulated genetic network controls the identity and fate ofmidbrain-dopaminergic progenitors in vivo. Development133,89-98.
    28. Castelo-Branco, G.; Rawal, N.; Arenas, E (2004) GSK-3beta inhibition/beta-cateninstabilization in ventral midbrain precursors increases differentiation into dopamine neurons.J. Cell Sci117,5731-5737.
    29. Lie, D.C.; Colamarino, S.A.; Song, H.J.; Désiré, L.; Mira, H.; Consiglio, A.; Lein, E.S.;Jessberger, S.; Lansford, H.; Dearie, A.R.; Gage, F.H (2005) Wnt signalling regulates adulthippocampal neurogenesis. Nature437,1370-1375.
    30. De Ferrari, G.V.; Chacón, M.A.; Barría, M.I.; Garrido, J.L.; Godoy, J.A.; Olivares, G.;Reyes, A.E.; Alvarez, A.; Bronfman, M.; Inestrosa, N.C (2003) Activation of Wnt signalingrescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils.Mol. Psychiatry8,195-208.
    31. Duncan, A.W.; Rattis, F.M.; DiMascio, L.N.; Congdon, K.L.; Pazianos, G.; Zhao, C.; Yoon,K.; Cook, J.M.; Willert, K.; Gaiano, N.; Reya, T (2005) Integration of Notch and Wntsignaling in hematopoietic stem cell maintenance. Nat. Immunol6,314-322.
    32. Androutsellis-Theotokis, A.; Leker, R.R.; Soldner, F.; Hoeppner, D.J.; Ravin, R.; Poser,S.W.; Rueger, M.A.; Bae, S.K.; Kittappa, R.; McKay, R.D (2006) Notch signallingregulates stem cell numbers in vitro and in vivo. Nature442,823-826.
    33. Das, D.; Lanner, F.; Main, H.; Andersson, E.R.; Bergmann, O.; Sahlgren, C.; Heldring, N.;Hermanson, O.; Hansson, E.M.; Lendahl, U (2010) Notch induces cyclin-D1-dependentproliferation during a specific temporal window of neural differentiation in ES cells. Dev.Biol.,348,153-66. Epub2010Sep29.
    34. Ehm, O.; G ritz, C.; Covic, M.; Sch ffner, I.; Schwarz, T.J.; Karaca, E.; Kempkes, B.;Kremmer, E.; Pfrieger, F.W.; Espinosa, L.; Bigas, A.; Giachino, C.; Taylor, V.; Frisén, J.;Lie, D.C (2010) RBPJ kappa-dependent signaling is essential for long-term maintenance ofneural stem cells in the adult hippocampus. J. Neurosci30,13794-13807.
    35. Gao, F.; Zhang, Q.; Zheng, M.H.; Liu, H.L.; Hu, Y.Y.; Zhang, P.; Zhang, Z.P.; Qin, H.Y.;Feng, L.; Wang, L.; Han, H.; Ju, G (2009) Transcription factor RBP-J-mediated signalingrepresses the differentiation of neural stem cells into intermediate neural progenitors. Mol.Cell. Neurosci40,442-450.
    36. Kim, H.J.; Sugimori, M.; Nakafuku, M.; Svendsen, C.N (2007) Control of neurogenesisand tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins andNurr1. Exp. Neurol203,394-405.
    37. Lai, K.; Kaspar, B.K.; Gage, F.H.; Schaffer, D.V (2003) Sonic hedgehog regulates adultneural progenitor proliferation in vitro and in vivo. Nat. Neurosci6,21-27.
    38. Tang, M.; Villaescusa, J.C.; Luo, S.X.; Guitarte, C.; Lei, S.; Miyamoto, Y.; Taketo, M.M.;Arenas, E.; Huang, E.J (2010) Interactions of Wnt/beta-catenin signaling and sonichedgehog regulate the neurogenesis of ventral midbrain dopamine neurons. J. Neurosci30,9280-9291.
    39. Joksimovic, M.; Anderegg, A.; Roy, A.; Campochiaro, L.; Yun, B.; Kittappa, R.; McKay, R.;Awatramani, R (2009) Spatiotemporally separable Shh domains in the midbrain definedistinct dopaminergic progenitor pools. Proc. Natl. Acad. Sci. USA.106,19185-19190.
    40. Swistowska, A.M.; da Cruz, A.B.; Han, Y.; Swistowski, A.; Liu, Y.; Shin, S.; Zhan, M.; Rao,M.S.; Zeng, X (2010) Stage-specific role for shh in dopaminergic differentiation of humanembryonic stem cells induced by stromal cells. Stem Cells Dev19,71-82.
    41. Cooper, O.; Hargus, G.; Deleidi, M.; Blak, A.; Osborn, T.; Marlow, E.; Lee, K.; Levy, A.;Perez-Torres, E.; Yow, A.; Isacson, O (2010) Differentiation of human ES and Parkinson'sdisease iPS cells into ventral midbrain dopaminergic neurons requires a high activity formof SHH, FGF8a and specific regionalization by retinoic acid. Mol. Cell. Neurosci45,258-266.
    42. Park, C.H.; Kang, J.S.; Kim, J.S.; Chung, S.; Koh, J.Y.; Yoon, E.H.; Jo, A.Y.; Chang, M.Y.;Koh, H.C.; Hwang, S.; Suh-Kim, H.; Lee, Y.S.; Kim, K.S.; Lee, S.H (2006) Differentialactions of the proneural genes encoding Mash1and neurogenins in Nurr1-induceddopamine neuron differentiation. J. Cell. Sci119,2310-2320.
    43. Cai, J.; Donaldson, A.; Roybon, L.; Hjalt, T.; Christophersen, N.S.; Li, J.Y.; Brundin, P(2008) Neurosci28,3644-3656.
    44. Lee, H.S.; Bae, E.J.; Yi, S.H.; Shim, J.W.; Jo, A.Y.; Kang, J.S.; Yoon, E.H.; Rhee, Y.H.;Park, C.H.; Koh, H.C.; Kim, H.J.; Choi, H.S.; Han, J.W.; Lee, Y.S.; Kim, J.; Li, J.Y.;Brundin, P.; Lee, S.H (2010) Foxa2and Nurr1synergistically yield A9nigral dopamineneurons exhibiting improved differentiation, function, and cell survival. Stem Cells28,501-512.
    45. Roussa, E.; Wiehle, M.; Dünker, N.; Becker-Katins, S.; Oehlke, O.; Krieglstein, K (2006)Transforming growth factor beta is required for differentiation of mouse mesencephalicprogenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsalmesencephalon. Stem Cell24,2120-2129.
    46. Cai, J.; Donaldson, A.; Yang, M.; German, M.S.; Enikolopov, G.; Iacovitti, L (2009) Therole of Lmx1a in the differentiation of human embryonic stem cells into midbraindopamine neurons in culture and after transplantation into a Parkinson's disease model.Stem Cells27,220-229.
    47. Cui, Y.F.; Hargus, G.; Xu, J.C.; Schmid, J.S.; Shen, Y.Q.; Glatzel, M.; Schachner, M.;Bernreuther, C (2010) Embryonic stem cell-derived L1overexpressing neural aggregatesenhance recovery in Parkinsonian mice. Brain133,189-204.
    48. Hedlund, E.; Pruszak, J.; Lardaro, T.; Ludwig, W,; Vi uela, A.; Kim, K.S.; Isacson, O(2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbraindopamine neurons survive enrichment by fluorescence-activated cell sorting and functionin an animal model of Parkinson's disease. Stem Cells26,1526-1536.
    49. Song, H.; Stevens, C.F.; Gage, F.H (2002) Astroglia induce neurogenesis from adult neuralstem cells. Nature417,39-44.
    50. Roy, N.S.; Cleren, C.; Singh, S.K.; Yang, L.; Beal, M.F.; Goldman, S.A (2006) Functionalengraftment of human ES cell-derived dopaminergic neurons enriched by coculture withtelomerase-immortalized midbrain astrocytes. Nat. Med12,1259-1268.
    51. Jung, C.G.; Hida, H.; Nakahira, K.; Ikenaka, K.; Kim, H.J.; Nishino, H (2004) PleiotrophinmRNA is highly expressed in neural stem (progenitor) cells of mouse ventralmesencephalon and the product promotes production of dopaminergic neurons fromembryonic stem cell-derived nestin-positive cells. FASEB J18,1237-1239.
    52. Chen, L.W.; Hu, H.J.; Liu, H.L.; Yung, K.K.; Chan, Y.S (2004) Identification ofbrain-derived neurotrophic factor in nestin-expressing astroglial cells in the neostriatum of1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Neuroscience126,941-953.
    53. Chen, L.W.; Zhang, J.P.; Kwok-Yan Shum, D.; Chan, Y.S (2006) Localization of nervegrowth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor innestin-expressing reactive astrocytes in the caudate-putamen of MPTP-treated C57/Bl mice.J. Comp. Neurol497,898-909.
    54. Trzaska, K.A.; King, C.C.; Li, K.Y.; Kuzhikandathil, E.V.; Nowycky, M.C.; Ye, J.H.;Rameshwar, P (2009) Brain-derived neurotrophic factor facilitates maturation ofmesenchymal stem cell-derived dopamine progenitors to functional neurons. J. Neurochem110,1058-1069.
    55. Tatard, V.M.; Sindji, L.; Branton, J.G.; Aubert-Pou ssel, A.; Colleau, J.; Benoit, J.P.;Montero-Menei, C.N (2007) Pharmacologically active microcarriers releasing glial cellline–derived neurotrophic factor: Survival and differentiation of embryonic dopaminergicneurons after grafting in hemiparkinsonian rats. Biomaterials28,1978-1988.
    56. Young, A.; Assey, K.S.; Sturkie, C.D.; West, F.D.; Machacek, D.W.; Stice, S.L (2010) Glialcell line-derived neurotrophic factor enhances in vitro differentiation of mid-/hindbrainneural progenitor cells to dopaminergic-like neurons. J. Neurosci. Res88,3222-3232.
    57. Shimada, H.; Yoshimura, N.; Tsuji, A.; Kunisada, T (2009) Differentiation of dopaminergicneurons from human embryonic stem cells: modulation of differentiation by FGF-20. J.Biosci. Bioeng107,447-454.
    58. Lonardo, E.; Parish, C.L.; Ponticelli, S.; Marasco, D.; Ribeiro, D.; Ruvo, M.; De Falco, S.;Arenas, E.; Minchiotti, G (2010) A small synthetic cripto blocking Peptide improves neuralinduction, dopaminergic differentiation, and functional integration of mouse embryonicstem cells in a rat model of Parkinson's disease. Stem Cells28,1326-1337.
    59. Shukla, S.; Chaturvedi, R.K.; Seth, K.; Roy, N.S.; Agrawal, A.K (2009) Enhanced survivaland function of neural stem cells-derived dopaminergic neurons under influence ofolfactory ensheathing cells in parkinsonian rats. J. Neurochem109,436-451.
    60. Chen, L.W.; Yung, K.L.; Chan, Y.S (2005) Reactive astrocytes as potential manipulationtargets in novel cell replacement therapy of Parkinson’s disease. Current Drug Targets6,821-833.
    61. Evans, M.J.; Kaufman, M.H(1981) Establishment in culture of pluripotential cells frommouse embryos. Nature292,154-156.
    62. Martin, G.R (1981)Isolation of a pluripotent cell line from early mouse embryos cultured inmedium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78,7634-7638.
    63. Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall,V.S.; Jones, J.M (1998) Embryonic stem cell lines derived from human blastocysts. Science282,1145-1147.
    64. Amariglio, N.; Hirshberg, A.; Scheithauer, B.W.; Cohen, Y.; Loewenthal, R.; Trakhtenbrot,L.; Paz, N.; Koren-Michowitz, M.; Waldman, D.; Leider-Trejo, L.; Toren, A.; Constantini,S.; Rechavi, G (2009) Donor-derived brain tumor following neural stem cell transplantationin an ataxia telangiectasia patient. PLoS Med6,221-230.
    65. Knoepfler, P.S (2009) Deconstructing stem cell tumorigenicity: a roadmap to saferegenerative medicine. Stem Cells27,1050-1056.
    66. Fang, F.; Barbacioru, C.; Bao, S.; Lee, C.; Nordman, E.; Wang, X.; Lao, K.; Surani, M.A(2010) Tracing the derivation of embryonic stem cells from the inner cell mass bysingle-cell RNA-Seq analysis. Cell Stem Cell6,468-478.
    67. Kleinsmith, L.J.; Pierce, G.B (1964) Multipotentiality of single embryonal carcinoma cells.Cancer Res24,1544-1551.
    68. Mintz, B.; Illimensee, K (1975) Normal genetically mosaic mice produced from malignantteratocarcinoma cells. Proc. Natl. Acad. Sci. USA72,3585-3589.
    69. Illmensee, K.; Mintz, B (1976) Totipotency and normal differentiation of singleteratocarcinoma cells cloned by injection into blastocysts. Proc. Natl. Acad. Sci. USA73,549-553.
    70. Gutierrez-Aranda, I.; Ramos-Mejia, V.; Bueno, C.; Munoz-Lopez, M.; Real, P.J.; Mácia, A.;Sanchez, L.; Ligero, G.; Garcia-Parez, J.L.; Menendez, P (2010) Human inducedpluripotent stem cells develop teratoma more efficiently and faster than human embryonicstem cells regardless the site of injection. Stem Cells28,1568-1570.
    71. Takahashi, K.; Yamanaka, S (2006) Induction of pluripotent stem cells from mouseembryonic and adult fibroblast cultures by defined factors. Cell126,663-676.
    72. Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie,J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; Slukvin, II.; Thomson, J.A (2007) Inducedpluripotent stem cell lines derived from human somatic cells. Science318,1917-1920.
    73. Takahashi, K.; Mitsui, K.; Yamanaka, S (2003) Role of ERas in promoting tumour-likeproperties in mouse embryonic stem cells. Nature423,541-545.
    74. Tanaka, Y.; Ikeda, T.; Kishi, Y.; Masuda, S.; Shibata, H.; Takeuchi, K.; Komura, M.;Iwanaka, T.; Muramatsu, S.; Kondo, Y.; Takahashi, K.; Yamanaka, S.; Hanazono Y (2009)ERas is expressed in primate embryonic stem cells but not related to tumorigenesis. CellTransplant18,381-389.
    75. Nakagawa, M.; Takizawa, N.; Narita, M.; Ichisaka, T.; Yamanaka, S (2010) Promotion ofdirect reprogramming by transformation-deficient Myc. Proc. Natl. Acad. Sci. USA107,14152-14157.
    76. Dressel, R.; Schindehütte, J.; Kuhlmann, T.; Elsner, L.; Novota, P.; Baier, P.C.; Schillert, A.;Bickeb ller, H.; Herrmann, T.; Trenkwalder, C.; Paulus, W.; Mansouri, A (2008) TheTumorigenicity of Mouse Embryonic Stem Cells and In Vitro Differentiated Neuronal CellsIs Controlled by the Recipients’ Immune Response. PLoS One3, e2622.
    77. Kiuru, M.; Boyer, J.L.; O'Connor, T.P.; Crystal, R.G (2009) Genetic control of waywardpluripotent stem cells and their progeny after transplantation. Cell Stem Cell,4,289-300.
    78. Jung, J.; Hackett, N.R.; Pergolizzi, R.G.; Pierre-Destine, L.; Krause, A.; Crystal, R.G.(2007)Ablation of tumor-derived stem cells transplanted to the central nervous system bygenetic modification of embryonic stem cells with a suicide gene. Hum. Gene Ther18,1182-1192.
    79. Choo, A.B.; Tan, H.L.; Ang, S.N.; Fong, W.J.; Chin, A.; Lo J.; Zheng, L.; Hentze, H.; Philp,R.J.; Oh, S.K.; Yap, M (2008) Selection against undifferentiated human embryonic stemcells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells26,1454-463.
    80. Hayakawa, Y.; Smyth, M.J (2006) NKG2D and cytotoxic effector function in tumorimmune surveillance. Semin Immunol18,176-185.
    81. Burbach, J.P.; Smidt, M.P (2006) Molecular programming of stem cells intomesodiencephalic dopaminergic neurons. Trends Neurosci29,601-603.
    82. Pruszak, J.; Isacson, O (2009) Molecular and cellular determinants for generating ES-cellderived dopamine neurons for cell therapy. Adv. Exp. Med. Biol651,112-123.
    83. Cho, M.S.; Hwang, D.Y.; Kim, D.W (2008) Efficient derivation of functional dopaminergicneurons from human embryonic stem cells on a large scale. Nat. Protoc3,1888-1894.
    84. Feinendegen, L.E (2005) Evidence for beneficial low level radiation effects and radiationhormesis. Br. J. Radiol78,3-7.
    85. Kang, J.O.; Kim, S.K.; Hong, S.E.; Lee, T.H.; Kim, C.J (2006) Low dose radiationovercomes diabetes-induced suppression of hippocampal neuronal cell proliferation in rats.J. Korean Med. Sci21,500-505.
    86. Wei LC, Ding YX, Liu YH, Duan L, Bai Y, Shi M, Chen LW (2012) Low-dose RadiationStimulates Wnt/β-catenin Signaling, Neural Stem Cell Proliferation and Neurogenesis ofthe Mouse Hippocampus in vitro and in vivo. Curr Alzheimer Res.2012Jan23.[Epubahead of print]
    87. Swistowski, A.; Peng, J.; Liu, Q.; Mali, P.; Rao, M.S.; Cheng, L.; Zeng, X (2010) Efficientgeneration of functional dopaminergic neurons from human induced pluripotent stem cellsunder defined conditions. Stem Cells28,1893-904.
    88. Cho, M.S.; Lee, Y.E.; Kim, J.Y.; Chung, S.; Cho, Y.H.; Kim, D.S.; Kang, S.M.; Lee, H.;Kim, M.H.; Kim, J.H.; Leem, J.W.; Oh, S.K.; Choi, Y.M.; Hwang, D.Y.; Chang, J.W.; Kim,D.W (2008) Highly efficient and large-scale generation of functional dopamine neuronsfrom human embryonic stem cells. Proc. Natl. Acad. Sci, USA105,3392-3397.
    89. Kim, T.S.; Misumi, S.; Jung, C.G.; Masuda, T.; Isobe, Y.; Furuyama, F.; Nishino, H.; Hida,H (2008) Increase in dopaminergic neurons from mouse embryonic stem cell-derivedneural progenitor/stem cells is mediated by hypoxia inducible factor-1alpha. J. Neurosci.Res86,2353-2362.
    90. Chambers, S.M.; Fasano, C.A.; Papapetrou, E.P.; Tomishima, M.; Sadelain, M.; Studer, L(2009)Highly efficient neural conversion of human ES and iPS cells by dual inhibitionof SMAD signaling.. Nat. Biotechnol27,275-80.
    91. Krabbe, C.; Courtois, E.; Jensen, P.; J rgensen, J.R.; Zimmer, J.; Martínez-Serrano, A.;Meyer, M(2009)Enhanced dopaminergic differentiation of human neural stem cells bysynergistic effect of Bcl-xL and reduced oxygen tension. J. Neurochem110,1908-1920.
    92. Azizi, H.; Mehrjardi, N,Z,; Shahbazi, E.; Hemmesi, K.; Bahmani, M.K.; Baharvand, H(2010)Dehydroepiandrosterone stimulates neurogenesis in mouse embryonal carcinomacell-and human embryonic stem cell-derived neural progenitors and induces dopaminergicneurons. Stem Cells Dev19,809-818.
    93. Misiuta, I.E.; Saporta, S.; Sanberg, P.R.; Zigova, T.; Willing, A.E(2006)Influence ofretinoic acid and lithium on proliferation and dopaminergic potential of human NT2cells. J.Neurosci. Res83,668-679.
    94. Chen, L.W.; Yung, K.K.; Chan, Y.S.; Shum, D.K.; Bolam, J.P (2008) TheproNGF-p75NTR-sortilin signalling complex as new target for the therapeutic treatment ofParkinson’s disease. CNS Neurol. Disord. Drug Targets7,512-523.
    95. Chen, L.W.; Wang, Y.Q.; Wei, L.C.; Shi, M.; Chan, Y.S(2007)Chinese herbs and herbalextracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment ofParkinson's disease. CNS Neurol. Disord. Drug Targets6,273-281.
    96. O'Keeffe, F.E.; Scott, S.A.; Tyers, P.; O'Keeffe, G.W.; Dalley, J.W.; Zufferey, R,; Caldwell,M.A(2008)Induction of A9dopaminergic neurons from neural stem cells improves motorfunction in an animal model of Parkinson’s disease. Brain131,630-641.
    97. Sanchez-Pernaute, R.; Lee, H.; Patterson, M.; Reske-Nielsen, C.; Yoshizaki, T.; Sonntag,K.C.; Studer, L.; Isacson, O(2008)Parthenogenetic dopamine neurons from primateembryonic stem cells restore function in experimental Parkinson's disease. Brain131,2127-2139.
    98. Park, C.H.; Lee, S.H(2007)Efficient generation of dopamine neurons from humanembryonic stem cells. Methods Mol. Biol407,311-22.
    99. Meyer, A.K.; Maisel, M.; Hermann, A.; Stirl, K.; Storch, A(2010)Restorative approachesin Parkinson's Disease: which cell type wins the race? J. Neurol. Sci289,93-103.
    [1] Hagg T (1998) Neurotrophins prevent death and differentially affect tyrosine hydroxylaseof adult rat nigrostriatal neurons in vivo. Exp Neurol149:83-192.
    [2] Rangasamy SB, Soderstrom K, Bakay RA, Kordower JH (2010) Neurotrophic factortherapy for Parkinson’s disease. Prog Brain Res184:237-64.
    [3] Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, et al (1991) BDNF is aneurotrophic factor for dopaminergic neurons of the substantia nigra. Nature350:230-232.
    [4] Pascual A, Hidalgo-Figueroa M, Gómez-Díaz R, López-Barneo J (2011) GDNF andprotection of adult central catecholaminergic neurons. J Mol Endocrinol46: R83-92.
    [5] Lindholm P, Voutilainen MH, Laurén J, Per nen J, Lepp nen VM, et al (2007) Novelneurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature448:73-77.
    [6] Kahle PJ, Waak J, Gasser T (2009) DJ-1and prevention of oxidative stress in Parkinson’sdisease and other age-related disorders. Free Radic Biol Med47:1354-1361.
    [7] Isacson O, Kordower JH (2008) Future of cell and gene therapies for Parkinson’s disease.Ann Neurol64Suppl2: S122-138.
    [8] Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson’s disease.Biochim Biophys Acta1792:676-687.
    [9] Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophinsin Parkinson’s disease. J. Neural. Transm. Suppl60:277-290.
    [10] Lie DC, Song H, Colamarino SA, Ming GL, Gage FH (2004) Neurogenesis in the adultbrain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol44:399-421.
    [11] Ding YX, Wei LC, Wang YZ, Cao R, Wang X, et al.(2011) Molecular ManipulationTargeting Regulation of Dopaminergic Differentiation and Proliferation of Neural StemCells or Pluripotent Stem Cells. CNS Neurol Disord Drug Targets.10:517-528.
    [12] Chen LW (2011) Advances and Perspectives on Stem Cell Therapy for HumanNeurodegenerative Diseases. CNS Neurol Disord Drug Targets10:417-418.
    [13] Zhou J, Bradford HF, Stern GM (1997) Influence of BDNF on the expression of thedopaminergic phenotype of tissue used for brain transplants. Brain Res Dev Brain Res100:43-51.
    [14] Volpicelli F, Caiazzo M, Greco D, Consales C, Leone L, et al.(2007) Bdnf gene is adownstream target of Nurr1transcription factor in rat midbrain neurons in vitro. JNeurochem102:441-453.
    [15] Voutilainen MH, B ck S, P rsti E, Toppinen L, Lindgren L, et al.(2009) Mesencephalicastrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’sdisease. J Neurosci29:9651-9659.
    [16] Sandhu JK, Gardaneh M, Iwasiow R, Lanthier P, Gangaraju S, et al.(2009)Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against6-OHDA cytotoxicity. Neurobiol Dis33:405-414.
    [17] Laganiere J, Kells AP, Lai JT, Guschin D, Paschon DE, et al.(2010) An engineered zincfinger protein activator of the endogenous glial cell line-derived neurotrophic factor geneprovides functional neuroprotection in a rat model of Parkinson’s disease. J Neurosci30:16469-16474.
    [18] Lei Z, Jiang Y, Li T, Zhu J, Zeng S (2011) Signaling of glial cell line-derived neurotrophicfactor and its receptor GFRα1induce Nurr1and Pitx3to promote survival of graftedmidbrain-derived neural stem cells in a rat model of Parkinson disease. J Neuropathol ExpNeurol70:736-747.
    [19] Pertusa M, García-Matas S, Mammeri H, Adell A, Rodrigo T, et al.(2008) Expression ofGDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging29:1366-1379.
    [20] Lindholm P, Saarma M (2010) Novel CDNF/MANF family of neurotrophic factors. DevNeurobiol70:360-371.
    [21] Gyárfás T, Knuuttila J, Lindholm P, Rantam ki T, Castrén E (2010) Regulation ofbrain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor(CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol30:361-368.
    [22] Voutilainen MH, B ck S, Per nen J, Lindholm P, Raasmaja A, et al.(2011) Chronicinfusion of CDNF prevents6-OHDA-induced deficits in a rat model of Parkinson’s disease.Exp Neurol228:99-108.
    [23] Hauser DN, Cookson MR (2011) Astrocytes in Parkinson’s disease and DJ-1. J Neurochem117:357-358.
    [24] Yanagida T, Tsushima J, Kitamura Y, Yanagisawa D, Takata K, et al.(2009) Oxidativestress induction of DJ-1protein in reactive astrocytes scavenges free radicals and reducescell injury. Oxid Med Cell Longev2:36-42.
    [25] Waak J, Weber SS, Waldenmaier A, G rner K, Alunni-Fabbroni M, et al.(2009) Regulationof astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1.FASEB J23:2478-2489.
    [26] Baulac S, Lu H, Strahle J, Yang T, Goldberg MS, et al.(2009) Increased DJ-1expressionunder oxidative stress and in Alzheimer’s disease brains. Mol Neurodegener4:12.
    [27] Miyazaki S, Yanagida T, Nunome K, Ishikawa S, Inden M, et al.(2008) DJ-1-bindingcompounds prevent oxidative stress-induced cell death and movement defect in Parkinson’sdisease model rats. J Neurochem105:2418-2434.
    [28] Mullett SJ, Hinkle DA (2011) DJ-1deficiency in astrocytes selectively enhancesmitochondrial Complex I inhibitor-induced neurotoxicity. J Neurochem117:375-387.
    [29] Mullett SJ, Hinkle DA (2009) DJ-1knock-down in astrocytes impairs astrocyte-mediatedneuroprotection against rotenone. Neurobiol Dis33:28-36.
    [30] Somoza R, Juri C, Baes M, Wyneken U, Rubio FJ (2010) Intranigral transplantation ofepigenetically-induced BDNF-secreting human mesenchymal stem cells: implications forcell-based therapies in Parkinson s disease. Biol. Blood Marrow Transplant16:1530-1540
    [31] Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, et al.(2009) Protectiveeffects of neurotrophic factor-secreting cells in a6-OHDA rat model of Parkinson disease.Stem Cells Dev18:1179-1190.
    [32] Giralt A, Friedman HC, Caneda-Ferrón B, Urbán N, Moreno E, et al.(2010) BDNFregulation under GFAP promoter provides engineered astrocytes as a new approach forlong-term protection in Huntington’s disease. Gene Ther17:1294-308.
    [33] Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, et al.(2009)Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease.Proc Natl Acad Sci USA106:13594-13599.
    [34] Chen LW, Hu HJ, Liu HL, Yung KK, Chan YS (2004) Identification of brain-derivedneurotrophic factor in nestin-expressing astroglial cells in the neostriatum of1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Neuroscience126:941-953.
    [35] Chen LW, Zhang JP, Kwok-Yan Shum D, Chan YS (2006) Localization of nerve growthfactor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressingreactive astrocytes in the caudate-putamen of1-methyl-4-phenyl-1,2,3,6-Tetrahydropy–ridine(MPTP)-treated C57/Bl mice. J Comp Neurol497:898-909.
    [36] Wei R, Lin CM, Tu YY (2010) Strain-specific BDNF expression of rat primary astrocytes. JNeuroimmunol220:90-98.
    [37] Sato Y, Chin Y, Kato T, Tanaka Y, Tozuka Y, et al.(2009) White matter activated glial cellsproduce BDNF in a stroke model of monkeys. Neurosci Res65:71-78.
    [38] Ohta K, Kuno S, Inoue S, Ikeda E, Fujinami A, et al.(2010) The effect of dopamineagonists: the expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J NeurolSci291:12-16.
    [39] Juric DM, Miklic S, Carman-Krzan M (2006) Monoaminergic neuronal activityup-regulates BDNF synthesis in cultured neonatal rat astrocytes. Brain Res1108:54-62.
    [40] Toyomoto M, Ohta M, Okumura K, Yano H, Matsumoto K, et al.(2004) Prostaglandins arepowerful inducers of NGF and BDNF production in mouse astrocyte cultures. FEBS Lett562:211-215.
    [41] Hutchinson AJ, Chou CL, Israel DD, Xu W, Regan JW (2009) Activation of EP2prostanoid receptors in human glial cell lines stimulates the secretion of BDNF. NeurochemInt54:439-446.
    [42] Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, et al (2009) Retinoic acidreceptor stimulation protects midbrain dopaminergic neurons from inflammatorydegeneration via BDNF-mediated signaling. J Neurochem110:707-718.
    [43] Wang ZH, Ji Y, Shan W, Zeng B, Raksadawan N, et al (2002) Therapeutic effects ofastrocytes expressing both tyrosine hydroxylase and brain-derived neurotrophic factor on arat model of Parkinson’s disease. Neuroscience113:629-640.
    [44] Hebsgaard JB, Nelander J, Sabelstr m H, J nsson ME, Stott S, et al (2009) Dopamineneuron precursors within the developing human mesencephalon show radial glialcharacteristics. Glia57:1648-1658.
    [45] Bonilla S, Hall AC, Pinto L, Attardo A, G tz M, et al (2008) Identification of midbrainfloor plate radial glia-like cells as dopaminergic progenitors. Glia56:809-820.
    [46] Hwang DY, Kim DS, Kim DW (2010) Human ES and iPS cells as cell sources for thetreatment of Parkinson's disease: current state and problems. J Cell Biochem109:292-301.
    [47] Meyer AK, Maisel M, Hermann A, Stirl K, Storch A (2010) Restorative approaches inParkinson's Disease: which cell type wins the race? J Neurol Sci289:93-103.
    [48] Cameron HA and McKay R (1999) Restoring production of hippocampal neurons in oldage. Nat Neurosci2:894-897.
    [49] Cameron HA and McKay RD (2001) Adult neurogenesis produces a large pool of newgranule cells in the dentate gyrus. J Comp Neurol435:406-417.
    [50] Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of theadult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci16:2027-2033.
    [51] Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, et al (2008) Neuronsborn in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci11:901-907.
    [52] Brook GA, Perez-Bouza A, Noth J, Nacimiento W (1999) Astrocytes re-express nestin indeafferented target territories of the adult rat hippocampus. Neuroreport10:1007-1011.
    [53] Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, et al (2003)Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampusshows electrophysiological and morphological characteristics of astrocytes. Mol CellNeurosci23:373-382.
    [54] Shi M, Wei LC, Cao R, Chen LW (2002) Enhancement of nestin protein-immunoreactivityinduced by ionizing radiation in the forebrain ependymal regions of rats. Neurosci Res44:475-481.
    [55] Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS (2002) Nestin protein-containingcells express astrocytic glial fibrillary acidic protein in the proliferative regions of centralnervous system of postnatal developing and adult mice. Brain Res Dev Brain Res139:9-17.
    [56] Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, et al (2003)Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a,and Wnt-5a. Proc Natl Acad Sci USA100:12747-12752.
    [57] Castelo-Branco G, Sousa KM, Bryja V, Pinto L, Wagner J, Arenas E (2006) Ventralmidbrain glia express region-specific transcription factors and regulate dopaminergicneurogenesis through Wnt-5a secretion. Mol Cell Neurosci31:251-262.
    [58] Castelo-Branco G and Arenas E (2006) Function of Wnts in dopaminergic neurondevelopment. Neurodegener Dis3:5-11.
    [59] Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, et al (2005) Wntsignalling regulates adult hippocampal neurogenesis. Nature437:1370-1375.
    [60] Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, et al (2004) TheWnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells.Development131:2791-2801.
    [61] Machon O, Backman M, Machonova O, Kozmik Z, Vacik T, Andersen L, et al (2007) Adynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammaliancortex and cellular specification in the hippocampus. Dev Biol311:223-237.
    [62] Prakash N, Wurst WA (2007) Wnt signal regulates stem cell fate and differentiation in vivo.Neurodegener Dis4:333-338.
    [63] Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al (2003) Wntproteins are lipid-modified and can act as stem cell growth factors. Nature423:448-452.
    [64] De Ferrari GV, Chacón MA, Barría MI, Garrido JL, Godoy JA, Olivares G, et al (2003)Activation of Wnt signaling rescues neurodegeneration and behavioral impairmentsinduced by beta-amyloid fibrils. Mol Psychiatry8:195-208.
    [65] Andres-Mach M, Rola R, Fike JR (2008) Radiation effects on neural precursor cells in thedentate gyrus. Cell Tissue Res331:251-262.
    [66] Ben Abdallah NM, Slomianka L, Lipp HP (2007) Reversible effect of X-irradiation onproliferation, neurogenesis, and cell death in the dentate gyrus of adult mice. Hippocampus17:1230-1240.
    [67] Fike JR, Rola R, Limoli C (2007) Radiation response of neural precursor cells. NeurosurgClin N Am18:115-127.
    [68] Hellstr m NA, Bj rk-Eriksson T, Blomgren K, Kuhn HG (2009) Differential recovery ofneural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. StemCells27:634-641.
    [69] Monje ML and Palmer T (2003) Radiation injury and neurogenesis. Curr Opin Neurol16:129-134.
    [70] Maekawa M, Namba T, Suzuki E, Yuasa S, Kohsaka S, Uchino S (2009) NMDA receptorantagonist memantine promotes cell proliferation and production of mature granuleneurons in the adult hippocampus. Neurosci Res63:259-266.
    [71] Namba T, Maekawa M, Yuasa S, Kohsaka S, Uchino S (2009) The Alzheimer’s diseasedrug memantine increases the number of radial glia-like progenitor cells in adulthippocampus. Glia57:1082-1090.
    [72] Naylor AS, Bull C, Nilsson MK, Zhu C, Bj rk-Eriksson T, Eriksson PS, et al (2008)Voluntary running rescues adult hippocampal neurogenesis after irradiation of the youngmouse brain. Proc Natl Acad Sci USA105:14632-14637.
    [73] Feinendegen LE (2005) Evidence for beneficial low level radiation effects and radiationhormesis. Br J Radiol78:3-7.
    [74] Kang JO, Kim SK, Hong SE, Lee TH, Kim CJ (2006) Low dose radiation overcomesdiabetes-induced suppression of hippocampal neuronal cell proliferation in rats. J KoreanMed Sci21:500-505.
    [75] Kim JS, Lee HJ, Kim JC, Kang SS, Bae CS, Shin T, et al (2008) Transient impairment ofhippocampus-dependent learning and memory in relatively low-dose of acute radiationsyndrome is associated with inhibition of hippocampal neurogenesis. J Radiat Res49:517-526.
    [76] Limoli CL, Giedzinski E, Rola R, Otsuka S, Palmer TD, Fike JR (2004) Radiationresponse of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints,apoptosis and oxidative stress. Radiat Res161:17-27.
    [77] Manda K, Ueno M, Anzai K (2008) Space radiation-induced inhibition of neurogenesis inthe hippocampal dentate gyrus and memory impairment in mice: ameliorative potential ofthe melatonin metabolite AFMK. J Pineal Res45:430-438.
    [78] Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR (2003) Extremesensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res63:4021-4027.
    [79] Monje M (2008) Cranial radiation therapy and damage to hippocampal neurogenesis. DevDisabil Res Rev14:238-242.
    [80] Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neuralprecursor-cell dysfunction. Nat Med8:955-962.
    [81] Peissner W, Kocher M, Treuer H, Gillardon F (1999) Ionizing radiation-induced apoptosisof proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Mol Brain Res71:61-68.
    [82] Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, et al.(2004) Irradiationattenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol55:381-389.
    [83] Madsen TM, Newton SS, Eaton ME, Russell DS, Duman RS (2003) Chronicelectroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus: role inadult neurogenesis. Biol Psychiatry54:1006-1014.
    [84] Mostany R, Valdizán EM, Pazos A (2008) A role for nuclear beta-catenin in SNRIantidepressant-induced hippocampal cell proliferation. Neuropharmacology55:18-26.
    [85] Wojtowicz JM (2006) Irradiation as an experimental tool in studies of adult neurogenesis.Hippocampus16:261-266.
    [86] Wexler EM, Geschwind DH, Palmer TD (2008) Lithium regulates adult hippocampalprogenitor development through canonical Wnt pathway activation. Mol Psychiatry13:285-292.
    [87] Widelitz R (2005) Wnt signaling through canonical and non-canonical pathways: recentprogress. Growth Factors23:111-116.
    [88] Tang M, Miyamoto Y, Huang EJ (2009) Multiple roles of beta-catenin in controlling theneurogenic niche for midbrain dopamine neurons. Development136:2027-2038.
    [89] Parish CL, Castelo-Branco G, Rawal N, Tonnesen J, Sorensen AT, Salto C, et al (2008)Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy inparkinsonian mice. J Clin Invest118:149-160.
    [90] Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, et al (2009) Exposure tolow-dose ionizing radiation from medical imaging procedures. N Engl J Med361:849-857.
    [91] Hagg, T (1998) Neurotrophins prevent death and differentially affect tyrosine hydroxylaseof adult rat nigrostriatal neurons in vivo. Exp Neurol149:183-192.
    [92] Hyman, C., Hofer, M., Barde, Y.A., Juhasz, M., Yancopoulos, G.D., Squinto, S.P., Lindsay,R.M (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantianigra. Nature350:230-232.
    [93] Longo FM, Massa SM (2004) Neurotrophin-based strategies for neuroprotection. JAlzheimers Dis6(Suppl):S13-17.
    [94] Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM (1994) Overlapping anddistinct actions of the neurotrophins BDNF, NT-3, and NT-4/5on cultured dopaminergicand GABAergic neurons of the ventral mesencephalon. J Neurosci14:335-347.
    [95] Studer L, Spenger C, Seiler RW, Altar CA, Lindsay RM, Hyman C (1995) Comparison ofthe effects of the neurotrophins on the morphological structure of dopaminergic neurons incultures of rat substantia nigra. Eur J Neurosci7:223-233.
    [96] Deierborg T, Soulet D, Roybon L, Hall V, Brundin P (2008) Emerging restorativetreatments for Parkinson’s disease. Prog Neurobiol85:407-432.
    [97] Hirata Y, Meguro T, Kiuchi K (2006) Differential effect of nerve growth factor ondopaminergic neurotoxin-induced apoptosis. J Neurochem99:416-425.
    [98] Melchior B, Nerrière-Daguin V, Laplaud DA, Rémy S, Wiertlewski S, Neveu I, NaveilhanP, Meakin SO, Brachet P (2003) Ectopic expression of the TrkA receptor in adultdopaminergic mesencephalic neurons promotes retrograde axonal NGF transport andNGF-dependent neuroprotection. Exp Neurol183:367-378.
    [99] Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophinsin Parkinson’s disease. J Neural Transm Suppl60:277-290.
    [100] Yurek DM, Fletcher-Turner A (2001) Differential expression of GDNF, BDNF, andNT-3in the aging nigrostriatal system following a neurotoxic lesion. Brain Res891:228-235.
    [101] Nagatsu T (2002) Parkinson’s disease: changes in apoptosis-related factors suggestingpossible gene therapy. J Neural Transm109:731-745.
    [102] Numan S, Seroogy KB (1999) Expression of trkB and trkC mRNAs by adult midbraindopamine neurons: a double-label in situ hybridization study. J Comp Neurol403:295-308.
    [103] Yurek DM, Seroogy KB (2000) Differential expression of neurotrophin andneurotrophin receptor mRNAs in and adjacent to fetal midbrain grafts implanted into thedopamine-denervated striatum. J Comp Neurol423:462-473.
    [104] Conti G, Gale K, Kondratyev A (2009) Immunohistochemical evaluation of theprotein expression of nerve growth factor and its TrkA receptor in rat limbic regionsfollowing electroshock seizures. Neurosci Res65:201-209.
    [105] Granholm AC, Sanders LA, Crnic LS (2000) Loss of cholinergic phenotype inbasalforebrain coincides with cognitive decline in a mouse model of Down's syndrome.Exp Neurol161:647-663.
    [106] Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST (2003) Human cholinergicbasal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat26:233-242.
    [107] Chaisuksunt V, Campbell G, Zhang Y, Schachner M, Lieberman AR, Anderson PN(2003) Expression of regeneration-related molecules in injured and regenerating striataland nigral neurons. J Neurocytol32:161-183.
    [108] Nishio T, Furukawa S, Akiguchi I, Sunohara N (1998) Medial nigral dopamineneurons have rich neurotrophin support in humans. Neuroreport.9:2847-851.
    [109] Sobreviela T, Clary DO, Reichardt LF, Brandabur MM, Kordower JH, Mufson EJ(1994) TrkA-immunoreactive profiles in the central nervous system: colocalization withneurons containing p75nerve growth factor receptor, choline acetyltransferase, andserotonin. J Comp Neurol350:587-611.
    [110] Bian GL, Wei LC, Shi M, Wang YQ, Cao R, Chen LW (2007) Fluoro-Jade C canspecifically stain the degenerative neurons in the substantia nigra of the MPTP-treatedC57BL/6mice. Brain Res1150:55-61.
    [111] Deierborg T, Soulet D, Roybon L, Hall V, Brundin P (2008) Emerging restorativetreatments for Parkinson’s disease. Prog Neurobiol85:407-432.
    [112] Somoza R, Juri C, Baes M, Wyneken U, Rubio FJ (2010) Intranigral transplantationof epigenetically-induced BDNF-secreting human mesenchymal stem cells: implicationsfor cell-based therapies in Parkinson s disease. Biol. Blood Marrow Transplant.16:1530-40.
    [113] Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson’sdisease. Biochim Biophys Acta1792:676-687.
    [114] Amino S, Itakura M, Ohnishi H, Tsujimura J, Koizumi S, Takei N, Takahashi M (2002)Nerve growth factor enhances neurotransmitter release from PC12cells by increasingCa(2+)-responsible secretory vesicles through the activation of mitogen-activated proteinkinase and phosphatidylinositol3-kinase. J Biochem131:887-894.
    [115] Bl chl A, Sirrenberg C (1996) Neurotrophins stimulate the release of dopamine fromrat mesencephalic neurons via Trk and p75Lntr receptors. J Biol Chem271:21100-21107.
    [116] Paredes D, Granholm AC, Bickford PC (2007) Effects of NGF and BDNF on baselineglutamate and dopamine release in the hippocampal formation of the adult rat. Brain Res1141:56-64.
    [117] Sauer H, Wong V, Bj rklund A (1995) Brain-derived neurotrophic factor andneurotrophin-4/5modify neurotransmitter-related gene expression in the6-hydroxydopamine-lesioned rat striatum. Neuroscience65:927-933.
    [118] Cass WA, Peters LE, Harned ME, Seroogy KB (2006) Protection by GDNF and othertrophic factors against the dopamine-depleting effects of neurotoxic doses ofmethamphetamine. Ann N Y Acad Sci1074:272-281.
    [119] Wu J, Yu W, Chen Y, Su Y, Ding Z, Ren H, Jiang Y, Wang J (2010) Intrastriataltransplantation of GDNF-engineered BMSCs and its neuroprotection in lactacystin-inducedParkinsonian rat model. Neurochem Res35:495-502.
    [120] Zhou J, Bradford HF, Stern GM (1997) Influence of BDNF on the expression of thedopaminergic phenotype of tissue used for brain transplants. Brain Res Dev Brain Res100:43-51.
    [121] Volpicelli F, Caiazzo M, Greco D, Consales C, Leone L, Perrone-Capano C, ColucciD’Amato L, di Porzio U (2007) Bdnf gene is a downstream target of Nurr1transcriptionfactor in rat midbrain neurons in vitro. J Neurochem102:441-453.
    [122] Canudas AM, Pezzi S, Canals JM, Pallàs M, Alberch J (2005) Endogenousbrain-derived neurotrophic factor protects dopaminergic nigral neurons againsttransneuronal degeneration induced by striatal excitotoxic injury. Brain Res Mol Brain Res134:147-154.
    [123] Gibrat C, Bousquet M, Saint-Pierre M, Lévesque D, Calon F, Rouillard C, Cicchetti F(2010) Cystamine prevents MPTP-induced toxicity in young adult mice via theup-regulation of the brain-derived neurotrophic factor. Prog Neuropsychopharmacol BiolPsychiatry34:193-203.
    [124] Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, Isohama Y, Izumi Y,Kume T, Shudo K, Akaike A (2009) Retinoic acid receptor stimulation protects midbraindopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. JNeurochem110:707-718.
    [125] Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K, Son YS, Kim YJ,Kim CJ, Kim YS, Chung JH (2003) Acupuncture prevents6-hydroxydopamine-inducedneuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s diseasemodel. Exp Neurol180:93-98.
    [126] Saylor AJ, Meredith GE, Vercillo MS, Zahm DS, McGinty JF (2006) BDNFheterozygous mice demonstrate age-related changes in striatal and nigral gene expression.Exp Neurol199:362-372.
    [127] Porritt MJ, Batchelor PE, Howells DW (2005) Inhibiting BDNF expression byantisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol192:226-234.
    [128] Falk T, Zhang S, Sherman SJ (2009) Pigment epithelium derived factor (PEDF) isneuroprotective in two in vitro models of Parkinson’s disease. Neurosci Lett458:49-52.
    [129] Gyárfás T, Knuuttila J, Lindholm P, Rantam ki T, Castrén E (2010) Regulation ofbrain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor(CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol30:361-368.
    [130] Roussa E, von Bohlen und Halbach O, Krieglstein K (2009) TGF-beta in dopamineneuron development, maintenance and neuroprotection. Adv Exp Med Biol651:81-90.
    [131] Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB,Bulvik S, Shemesh N, Krepel D, Cohen Y, Melamed E, Offen D (2009) Protective effectsof neurotrophic factor-secreting cells in a6-OHDA rat model of Parkinson disease. StemCells Dev18:1179-1190.
    [132] Venero JL, Vizuete ML, Revuelta M, Vargas C, Cano J, Machado A (2000)Upregulation of BDNF mRNA and trkB mRNA in the nigrostriatal system and in the lesionsite following unilateral transection of the medial forebrain bundle. Exp Neurol161:38-48.
    [133] Sagi Y, Mandel S, Amit T, Youdim MB (2007) Activation of tyrosine kinase receptorsignaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriataldopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis25:35-44.
    [134] von Bohlen und Halbach O, Minichiello L, Unsicker K (2005) Haploinsufficiency fortrkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in thesubstantia nigra. FASEB J19:1740-1742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700