用户名: 密码: 验证码:
弱激光照射对受张力的成骨样细胞的早期影响及信号转导机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔正畸治疗与牙齿所受的矫治力的大小方向密切相关,力施加并作用于牙齿后传递到其他相关结构,引起各部位的骨改建,包括牙槽骨、颌骨甚至颞下颌关节区域,从而促使牙齿移动,达到矫治目的。成骨细胞是骨的形成及重建过程的主要的效应细胞,同时成骨细胞在破骨细胞的分化和成熟的调控中起到重要作用,尤其是位于牵张侧的成骨细胞更是研究的关键点,因此有必要进一步深入研究成骨细胞在张力作用下的生物学应答及力学传导机制。目前,较多的研究是针对成骨细胞的后期生物力学应答,其中包括多种基因、第二信使系统以及各种因子在张力作用下发生的改变及规律,但各种结论并不完全一致,有的甚至完全相反,分析其中的原因有多种,可能是力学装置不同,也可能是力值大小的差异等等。究其根本原因,在于对牵张力的力学信号转导机制的具体过程研究仍不详尽,未能发现根本机制机理。
     低能量激光(Low Level Laser,LLL),通常也被称做弱激光或者软激光等,工作波长在600~950 nm之间,输出功率通常小于250 mW,其特点是单色性好。激光有多种效应,不仅有简单的热效应,还具有生物化学效应,照射后产生生物刺激效应,与超声波、针灸等物理因子所获得的效应有相似之处,现也被称为激光的光生物调节作用,将其应用到临床,称之为低能量激光治疗(Low-Level-Laser-Therapy,LLLT)。在医学领域,LLLT的光生物调节效应在很多学科占有重要的地位。
     LLLT对骨重建及形成有积极作用,这一观点已有大量体外和体内的研究支持和证实,但也有认为LLLT对成骨细胞及相应的骨组织修复没有作用的报道,不过这样的负面结果报道很少,LLLT还不被人们普遍接受,有待进一步的理论及实验支持。许多国外的研究报道低能量激光可活化成骨细胞,并促进骨组织愈合及重建。在口腔正畸领域,已将弱激光应用于临床来减少矫治中的疼痛,有文献报道LLLT有加速牙齿移动的作用,但LLLT加速牙齿移动的机制仍不清楚,LLLT加速牙齿移动,应该是通过促进张力侧的骨形成和压力侧的骨吸收来完成的,其中对成骨细胞的作用是关键之一,那LLLT对受张力的成骨细胞到底有什么作用,其机制又是什么呢?他们的叠加不应该是简单的‘1+1=2’的扩大效应,应该有更深层次的对力学作用机制的调节作用。
     本实验利用四点弯曲细胞加力装置,对成骨样细胞MG-63施加牵张力,同时再施加弱激光照射,观察与成骨细胞功能及力的传导密切相关的几个指标,进一步明确张力与骨重建之间的关系,以及LLLT促进受张力的成骨细胞加速骨重建的机制,为LLLT加速正畸牙齿移动的临床应用及机制研究提供依据和理论基础。
     1.低能量激光治疗对受张力的MG-63细胞生物学特性的影响
     目的:采用四点弯曲细胞加力装置,对成骨样细胞MG-63细胞施加牵张力,同时再施加弱激光照射(LLLT),评价LLLT对受力的MG-63细胞的生物学特性的影响。
     方法:人成骨样细胞MG-63细胞接种于特制的加力板上,置于含10%胎牛血清的高糖DMEM的培养皿中。随机设置3组:对照组(组Ⅰ)、加力组(组Ⅱ)、激光加力组(组Ⅲ)。加力组力值为3000μstrain,频率0.5 Hz,加力时间1h,激光加力组在加力1h后激光照射1min,波长808 nm,能量密度为3 J·cm- 2。3组细胞均在12h后收集,用流式细胞术检测细胞周期和细胞凋亡率,用分光光度计测量细胞内碱性磷酸酶(alkalinephosphatase, ALP)活性。
     结果:
     ①采用四点弯曲体外细胞力学加载装置,它可对成骨样细胞施加张应力和压应力,本实验主要研究了张应力。生理水平张应力(3000μstrain)加载前后细胞生长状态良好,但是加载过大的应力(8000μstrain)不利于细胞贴附生长,细胞易脱落甚至引起细胞死亡。
     ②MG-63细胞加载张应力( 3000μstrain,0.5Hz)后,细胞增殖指数及细胞周期的各期细胞所占百分比发生变化。张应力促使更多的MG-63细胞进入增殖的状态S期,细胞增殖指数有所增加,而LLLT使成骨细胞进入S期的同时,又使更多的细胞暂时停留在G2/M期,增殖指数进一步提高,促进成骨细胞增殖。
     ③张应力使成骨细胞凋亡率降低,同时施加LLLT后凋亡率进一步降低,细胞生长到一定阶段,或增殖或凋亡,牵张力以及LLLT都是使更多的细胞在“岔口”进入增殖的途径,使更少的细胞进入凋亡的途径,促进成骨细胞增殖上调,为骨形成准备了充足的细胞资源。
     ④2个实验组ALP活性值与对照组相比,显著增加(P<0.01),组Ⅲ与组Ⅱ之间相比,组Ⅲ的细胞ALP活性值增高,且有显著性差异(P<0.05),说明在受到牵张应力的成骨细胞受LLLT照射时,牵张力对细胞ALP活性的有促进作用,LLLT在此基础上进一步促进细胞ALP活性增高,从而促进骨基质钙化,达到促进成骨的目的。
     2.低能量激光治疗对受张应力的MG-63细胞外基质蛋白的影响
     目的:观察LLLT对受张应力的MG-63细胞分泌OPN、coll I的mRNA的表达量和蛋白表达量的变化规律的影响,探讨LLLT对受张应力的MG-63细胞的ECM基因和蛋白的影响。
     方法:人成骨样细胞MG-63细胞接种于加力板。实验随机分为2组:张力组和激光张力组,力值和激光参数同实验1。张力组细胞加力时间分别为0 h,l h,3 h,6 h,继续培养48 h后收取细胞。激光张力组细胞分别加力0 h,l h,3 h,6 h后,再LLLT照射1min,继续培养48h后收取细胞。分别用半定量逆转录聚合酶链式反应(reverse transcriptase polymerase chain reaction,RT-PCR)和Western Blot的方法检测骨桥蛋白(osteopontin,OPN)、I型胶原(collagen I,coll I)的mRNA的表达量和蛋白表达量,绘制表达量随加力时间的变化图。
     结果:张力刺激早期可以引起MG-63细胞的I型胶原和OPN的基因和蛋白水平表达的变化,且随加力时间的增加,呈现不同的增加趋势,说明牵张力对成骨细胞基质分泌、成熟和钙化有促进作用。蛋白增加水平稍滞后基因水平,可能是因为蛋白需要翻译和修饰过程。激光张力组细胞的I型胶原和OPN基因和蛋白水平表达的变化趋势与单纯张力组类似,但整体的基因和蛋白水平要高于单纯张力组( P < 0.05),说明LLLT对受张力的成骨细胞基质分泌和成熟有进一步的促进作用。
     3.低能量激光治疗对受牵张力的MG-63细胞内Ca~(2+)浓度的影响
     目的:观察LLLT对受张力的MG-63细胞内Ca~(2+)浓度的变化规律和Ca~(2+)阳性细胞百分比的影响,探讨LLLT对受张力的MG-63细胞的影响机制。
     方法:人成骨样细胞MG-63细胞接种于加力板。实验随机分为2组:张力组和激光张力组,力值和激光参数同实验1。张力细胞分别加力0 min、5 min、15 min、30 min、60 min后,立即收取细胞。激光张力组细胞分别加力0 min、5 min、15 min、30 min、60 min后,再LLLT照射1 min,立即收取细胞。用流式细胞术进行活性成骨样细胞内Ca~(2+)浓度和Ca~(2+)阳性细胞百分比的检测。
     结果:①周期性拉伸应变短时间(5min)内可以引起成骨细胞内Ca~(2+)浓度增加,随时间加力时间变化规律呈‘波浪形’,此变化早于细胞增殖活性的变化,推测Ca~(2+)作为第二信使,可能是张应力早期促进成骨细胞增殖的的信号传导的枢纽。②激光加力组0min(即单纯激光组)与加力组0min(即空白对照组)相比,单纯激光组比对照组,细胞内Ca~(2+)浓度和Ca~(2+)阳性细胞百分比均有显著差异(P<0.05),说明成骨细胞对LLLT的响应,也是通过了第二信使Ca~(2+)来发挥作用。③张力可以引起成骨细胞内Ca~(2+)浓度增加,呈“波浪形”起伏较大,LLLT使此变化曲线变得相对平缓,且整体水平得到提高,同时Ca~(2+)阳性细胞百分比也有明显提高,由此推测LLLT极有可能是通过调节胞内Ca~(2+)浓度的变化节奏和提高Ca~(2+)阳性细胞百分比,这一“信号通路”来达到进一步促进成骨细胞增殖、基质合成及矿化的目的。
     综上所述,MG-63细胞受张力早期适合剂量的LLLT处理可以其产生正性的作用。如促进增殖和分化,减少凋亡等。周期性拉伸应变短时间(5min)内可以引起成骨细胞内Ca~(2+)浓度增加,随时间加力时间变化规律呈‘波浪形’,此变化早于细胞增殖活性的变化,推测Ca~(2+)作为第二信使,胞内Ca~(2+)浓度的变化可能是张应力早期促进成骨细胞增殖的的信号传导的枢纽。激光张力组胞内Ca~(2+)浓度的变化曲线比张力组变的相对平缓,且整体水平得到提高,由此推测LLLT极有可能是通过胞内Ca~(2+)浓度的变化这一“信号通路”来达到进一步促进成骨细胞增殖、基质合成及矿化的目的。本研究为临床LLLT应用于加速正畸牙齿移动提供理论支持。
Orthodontic treatment is related to the forces acting on the teeth and other structures. Within the dentoalveolar systems the principle changes resulting from the forces are seen,but the forces can also influence other structure,such as temporomnadibular and joint area sutures. Both modeling and remodeling are modulated by the interaction of metabolic and mechanical signals. It is important to study the biological response and mechanism of the osteoblast to the mechanical stretching strain because these changes in mechanical stimulus modulate bone mass and architecture mainly through the osteoblast. There are many studies about the late biological responses of osteoblast to stretching stress , but the results are different. In order to understand the initial responses involved in mechnao-transduction,it is necessary for us to examine the effect of stretching mechanical strain.
     Low level laser(LLL) is a kind of visible light with the wavelength between 600~950 nm,sometimes it is also called weak laser,soft laser,cold laser, and so on. LLL can offer the output power below 250 mW and is characterized by its monochromatism.Furthermore it not only has heat effect,but also biochemical effects, which could not result in irreversible damage to bio-tissue. It just likes the effect obtained by physical factors such as a puncture and moxibustion,so that is called“biostimulation”, or“photo-biomodulation”. The corresponding therapy is called low-level-laser-therapy (LLLT). There are many areas where LLLT could play an important role on our medical workers. There are many study about the positive effects of LLLT on bone fomation and rebuilding,but there are still several studies confirmed that LLLT has no effect on osteoblast and bone rebuilding.Now, LLLT is still not a widely acceptable therapy, therefore,it is necessary to verify the efficacy to osteoblast of LLLT more experiments.
     Osteoblastic cells MG-63 were subjected to the mechanical strain by a four-point bending system(ZL01256849.X) at 0.5 Hz. The cells were loaded with tension stress at 3000μstrain and then subjected to LLLT.
     ①The cell cycle, apoptosis of MG-63 were measured by flow cytometry (FCM)and the ALP of MG-63 were measured by spectro photometer.
     ②To investigate the effect of LLLT on mRNA and protein expression of col I and OPN of MG-63 undering tension stimulus in vitro and to detect the effect of LLLT on ECMP and the mechanism of LLLT.
     ③To investigate the changes of intracelluler calcium concentration when osteoblasts undering stretching responded to LLLT.
     Result:
     1. The Four-point Bending System can exert a physiologic magnitude tension strain on osteoblastic cells MG-63 in vitro. Before and after physiological stresses,the osteoblast adhesion and growth status are very well, But after loading over physiological level,the cells fell off and even go to death.
     2. Compared to a control group, stretching strain groups present less G1-stage cells ,more S-stage cells and higher proliferation index (PI,PI=S+G2/ G1+S+G2) (P<0.05). Laser-strain groups present more G2-stage cells than the other two groups(P<0.05). Compared to stretching strain group, the apoptosis rates in laser-strain groups are lower (P<0.05). The expression of ALP in laser-strain groups and stretching strain group are higher than that in control group(P<0.01).and the The expression of ALP in laser-strain groups is higer than that in stretching strain group (P< 0.05).
     3. With RT-PCR method and western blot ,the expression of collagen I and OPN in laser-strain group and stretching strain group are higher than that in control group(P<0.05).And the expression of collagen I and OPN in laser-strain group are higher than that in stretching strain group(P<0.05).
     4. Concentration of the intracellular calcium ion in laser-strain groups are higher than that in strain group(P < 0.05) . Concentration of the intracellular calcium ion in laser-strain groups increase gently in stead of‘jump’in stretching strain group.
     In conclusion,LLLT may have a positive effect on MG-63 undering stretching strain in vitro, for instance, promoting proliferation and differentiation and expressing col I and OPN. The intracelluler calcium plays an important role in cell mechaotransduction and responses to LLLT . LLLT could regulate the rhythm of increasing concentration of the intracellular calcium ion and make it gently.These results obtained by this paper can provide a theory supporting for clinical applications of LLLT.
引文
[1]章萍.《激光医学》[M].郑州:郑州大学出版社.2007.
    [2]刘建勋,王玉魁《实用临床激光医学》[M].延边:延边大学出版社.1994.5
    [3]Arisu HD, Türkoz E, Bala O. Effects of Nd:Yag laser irradiation on osteoblast cell cultures[J].Lasers Med Sci,2006,21(3):175-180.
    [4]Pires Oliveira DA, de Oliveira RF, Zangaro RA,et al. Evaluation of low-level laser therapy of osteoblastic cells[J].Photomed Laser Surg,2008,26(4):401-404.
    [5]Xu M, Deng T, Mo F, et al..Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells[J].Photomed Laser Surg, 2009, 27(2):309-315.
    [6]Stein E, Koehn J, Sutter W, et al.. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells[J].Wien Klin Wochenschr, 2008, 120(3-4):112-117.
    [7]Stein A, Benayahu D, Maltz L, et al..Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro[J].Photomed Laser Surg,2005,23(2):161-166.
    [8]Feng YZ. Biomechanics[M]. Chongqing: Chongqing University Press, 1993∶655-670[冯元桢.生物力学[M].重庆:重庆大学出版社, 1993: 655-670 .
    [9]Jones DB, No lte H, Scho lubbers JG, et al. Biochem ical signal transduction of mechanical strain in osteoblast-like cells[J]. Biomaterials, 1991; 12 (2) :101.
    [10]Frost HM.The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents[J].Bone Miner,1987, Apr;2(2):73-85.
    [11]lozupone E,Favia A,Grimaldi A. Effect of intermittent mechanical force on bone tissue in vitro: preliminary results[J]. J Bone Miner Res,1992,(12):7 Suppl 2:s407-s409.
    [12]Buckley MJ, Banes AJ, Jordan RD. The effects of mechanical strain on osteoblasts in vitro[J]. J Oral Maxillofac Surg,1990,48(4):276-282.
    [13]Vico L,Lafage PMH,Alexandre C. Effects of gravitational changes on the bone system in vitro and in vivo[J]. Bone,1998,22(5 Suppl):95s-100s.
    [14]Owan I , David B B , Turner C H. Mechanotransduction in bone :osteoblasts are more responsive to fluid forces than mechanicalstrain[J]. Am J Physiol , 1997 , 273 (3pt1) : c810-c815.
    [15]Tang LL , W ang YL , Pan J , et al. Effect of step increased stretch ing on o steoblasts co llagen synthesis[J]. Progress inBiochem istry and Biophysics, 2002,29 (5) :750.
    [16]Tang LL , W ang YL , Gu L , et al. The physiological response of osteoblasts to a gradiently increased stretching[J]. Acta Biophysica Sinica, 2003,19(1):88
    [17]Rubin C T , McLeod K J . Promotion of bony ingrowth by Frequency-specific low amplitude mechanic strains[J]. Clinical Orthopaedics and Related Research , 1994 ,(298):165-174
    [18]Brighton C T , Stanfford B , Gross S B , et al . The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain[J]. J Bone Joint Surg, 1997 , 732A ( 3) : 320-331.
    [19]Femor B , Gundle R , Evans M , et al . Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain i n vitro[J]. Bone, 1998 ,22(6):637-643.
    [20]Sarraf CE, Otto WR, Eastwood M. In vitro mesenchymal stem cell differentiation after mechanical stimulation[J]. Cell Prolif. 2011 Feb;44(1):99-108.
    [21]Waldorff EI, Christenson KB, Cooney LA, et al.. Microdamage repair and remodeling requires mechanical loading.J Bone Miner Res[J]. 2010 Apr;25(4):734-45.
    [22]Roelofsen J,Klein NJ,Burger EH,et al. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. [J].J Biomech, 1995,28(12):1493-1503.
    [23]Miyajima K,Suzuk S,Iwata T, et al.. Mechanical stress as a stimulant to the production of osteocalcin in osteoblast-like cells[J].Arch Cakuin Dent sci,1991,4(1):1-5.
    [24]Sodek J,Chen J,Nagata T, et al. Regulation of osteopontin expression in osteoblasts[J].Ann N Y Acad sci,1995,760(4):223-241.
    [25]Meazzini MC,Toma CD,Schaffer JL, et al. Osteoblast cytoskeletal modulation in response to mechanical strain in vitro[J].J 0rthopb Res,1998,16(2):170-180.
    [26]Luo W, Xiong W, Zhou J, et al.Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells[J]. Acta Biochim Biophys Sin (Shanghai). 2011 Mar;43(3):210-216.
    [27]Yourek G, McCormick SM, Mao JJ, et al. Shear stress induces osteogenic differentiation of human mesenchymal stem cells[J]. Regen Med. 2010 Sep;5(5):713-24.
    [28]米晓晖.张、压应力刺激下成骨细胞早期应答及力学信号转导机制的初步研究[D].成都:四川大学博士学位论文,2006.
    [29]Inoue H,Nakamua O,Duan Y, et al. Effect of centrifugal force on growth of mouse osteoblastic MC3T3-E1 cells in vitro[J].J Dent Res,1993,72 (9):B5l-B55.
    [30]朱赴东成骨细胞中NO-C-FOS通路对流体剪切力的响应[D].杭州:浙江大学博士学位论文,2005.
    [31]Smalt R,Mitchell FT,Howard,RL, et al. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain[J].AM J Physiol, l997, 273(4Ptl):E751-E758
    [32]Bakker AD, Silva VC, Krishnan R, et al. Tumor necrosis factor alpha and interleukin-1beta modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes[J]. Arthritis Rheum. 2009 Nov;60(11):3336-3345.
    [33]Shiotani A, Shibasaki Y, Sasaki T. Localization of receptor activator of NFkappaB ligand, RANKL, in periodontal tissues during experimental movement of rat molars[J]. J Electron Microsc (Tokyo) 2001,50(4):365-9
    [34]Kawamoto S, Ejiri S, Hoshi K, et al. Immunolocalization of osteoclast differentiation factor in rat periodontium[J]. Arch Oral Biol 2002 Jan;47(1):55-8
    [35]Duncan RL , Turner CT. Mechanotrasduction and the functional response of bone to mechanical strain[J]. Calcif Tissue Int, 1995; 57 (5)∶344
    [36]Kaspar D, SeidlW , N eidlinger2w ilke C, et al. Dynam ic cell stretching increases human osteoblast proliferation and C ICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity[J]. J Biomech, 2000; 33 (1)∶45
    [37]Ushida T, U emura T, Tateish i T. Changes in cell proliferation, alkaline phosphatase activity and cAMP production by mechanical strain in o steoblast-like cells differentitated fromrat bone marrow[J]. Mater Sci Eng C, 2001; 17 (4)∶51
    [38] Tang LL , W ang YL , Pan J , et al. Effect of step increased stretch ing on o steoblasts co llagen synthesis[J]. Progress inBiochem istry and Biophysics, 2002;29 (5):750.
    [39]Zhang YG, Yang Z, Zhang H, et al .Effect of negative pressure on human bone marrow mesenchymal stem cells in vitro.Connect Tissue Res. 2010;51(1):14-21.
    [40]Stanford CM,Morcuende JA,Bran RA, et al. Proliferative and phenotypic responses of bone-like cells to mechanical deformation[J].J Othop Res,1995,13(5):664-670
    [41]Walker LM, Publicover SJ, Preston MR et al.Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain[J]. J Cell Biochem. 2000 Sep 14;79(4):648-661.
    [42]el Haj AJ, Walker LM, Preston MR, et,al. Mechanotransduction pathways in bone: calcium fluxes and the role of voltage-operated calcium channels[J]. Med Biol Eng Comput. 1999 ,37(3):403-409.
    [43]Song YM , He ZY, Huang L. Catheter-dilivered high intensity, low frequency ultrasound thrombolysis in acute myocardial infarctions[J]. Acta Academiae Medicinae Militaris Tertiae, 2003; 25 (14) :1294
    [44]Hung CT, Pollack SR, Reilly TM, et al. Real-time calcium response of cultured bone cells to fluid flow[J].Clin Orthop Relat Res. 1995 Apr;(313):256-69.
    [45]唐丽灵;王远亮;谷俐;成骨细胞对周期性拉伸刺激的生理响应和胞内Ca~(2+)浓度变化[J].科学通报, 2003;48(2):149-153.
    [46]Zhong Z, Zeng XL, Ni JH, et al. Comparison of the biological response of osteoblasts after tension and compression. Eur J Orthod. 2011 Mar 14. [Epub ahead of print]
    [47]郑翼.机械力作用下成骨细胞的早期应答反应及力学信号转导机制的初步研究[D].成都:四川大学博士学位论文,2004.
    [48]Weinbaun S ,Cowin SC,Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses[J].J Biomech,1994,27(3):339-360
    [49] Mester E . The biomedical effect of laser application [ J ] . Lasers Surg Med, 1985, 5: 31239.
    [50]Vinck EM, Cagnie BJ. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation[J] . L on don :Springer London, 2003: 95- 99.
    [51]Hamajima S, Hiratsuka K. Effect of low level laser irradiation on osteoglycin gene expression in osteoblasts [ J ] . Springer-Verlag London Limited, 2003: 78- 82.
    [52]Koutna M, Janisch R. Effects of low power laser irradiation on cell locomotion in protozoa[ J] . Photochemistry Photobiology, 2004, 80( 3) : 531- 535.
    [53]da Silva Sousa MV, Scanavini MA, Sannomiya EK, et al. Influence of low-level laser on the speed of orthodontic movement.[J].Photomed Laser Surg. 2011 Mar;29(3):191-196.
    [54]Graber TM. Orthodontics,Current priciples and techniques[M].2nd ed. Mosby Co.St Louis.1993.
    [55]Nakamura,Hiroaki. Morphological study on cell-cell interaction between osteoclasts and osteoblasts[J]. KAIBOGAKU ZASSHI,2000,75(5):427-432.
    [56]Yellowley CE,LI Z, Zhou Z, et al . Functional gap junctions between osteocytic and osteoblastic cells[J]. J Bone Miner Res,2000,15(2):209-17.
    [57]Kamioka H,Honjo T ,Takano-YamamotoT. A three-dimensional distribution of osteocyte proeesses revealed by the combination of conofocal laser scanning microscopy and differential interference contrast microscopy[J]. Bone,2001,28(2):145-149.
    [58]Saunders MM: You J: Trosko JE et al. Gap junctions and fluid flow response in MC3T3-E1cells[J]. Am J Physiol Cell Physiol,2001,281(6):C1917-1925.
    [59]Lundberg P; Lie A: Bjurholm A et al. Vasoactive intestinal peptide Regulates osteoclast activity via specific binding sites on both osteoclasts And osteoblasts[J]. Bone2000,27(6):803-810.
    [60]罗湘杭,廖二元,周后德,等.人成骨肉瘤MG263细胞分化特性及分化过程中的基因表达[J].湖南医科大学学报,2001,26(2):701-011.
    [61]Frigo L, Fávero GM, Campos Lima HJ, et al. Low-Level Laser Irradiation (InGaAlP-660nm) Increases Fibroblast Cell Proliferation and Reduces Cell Death in a Dose-Dependent Manner[J]. Photomed Laser Surg,2009 Sep 21.
    [62] Kim SJ, Moon SU, Kang SG, et al. Effects of low-level laser therapy after Corticision on tooth movement and paradental remodeling [J].Lasers Surg Med, 2009,41(7):524-533.
    [63]Tuby H, Maltz L, Oron U. Implantation of low-level laser irradiated mesenchymal stem cells into the infarcted rat heart is associated with reduction in infarct size and enhanced angiogenesis[J]. Photomed Laser Surg,2009,27(2):227-233.
    [64]付俊铬离子对人成骨样细胞株MG63的毒性与其氧化应激关系的实验研究[D].成都:四川大学博士学位论文.2007
    [65] Lieleg O, Kayser J, Brambilla G, et al.Slow dynamics and internal stress relaxation in bundled cytoskeletal networks[J].Nat Mater. 2011 Mar;10(3):236-42. Epub 2011 Jan 9.
    [66] Hsu HJ, Lee CF, Locke A, et al. Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK[J].PLoS One. 2010 Aug 30;5(8):e12470.
    [67] Owan I,Burr DB,Turner CH, et al. Mechanotransduction in bone:Osteoblasts are more responsive to fluid forces than mechanical strain[J].Am Physiol Soc,1997,c810-c815
    [68]Horikawa A.Reuglar Conrtibutions Morphological changes in osteoblastic cells(MC3T3-E1) due to fluid stress:Cellular damagae by Prolonged application of fluid shear stress[J].J Exp Med,2000;191(3):127-138.
    [69] IchiroO,Dvaia B,Charles HT, et al. Mechanotransduction in bone : osteoblasts are more responsive to fluid forces than mechanical strain[J]. Am Physiol Soc,1997:c810-c815.
    [70]Burr DB,Milgrom C. In vivo measurement of human tibial strains during vigorous activity[J].Bone,1996;18:401-410.
    [71] Fermor B,Gundle R,Evans M, et al. Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro[J].Bone,1998;22:637-643.
    [72] Fukuhara E, Goto T, Matayoshi T, et al. Optimal low-energy laser irradiation causes temporal G2/M arrest on rat calvarial osteoblasts[J]. Calcif Tissue Int. ,2006 , 79(6):443-50.
    [73] Carnevalli CM,Soares CP,Zangaro RA, et al.Laser light prevents apoptosis in Cho K-1cell line[J].J Clin Laser Med Surg, 2003, 21(4):193-196.
    [74] Shefer G,Partridge TA,Heslop L, et al.Low-energy laser irradiation promotes the survivaland cell cycle entry of skeletal muscle satellite cells[J].J Cell Sci,2002, 115:1461-1469.
    [75] Zhang L, Xing D, Zhu D, et al. Low-power laser irradiation inhibiting Abeta25-35-induced PC12 cell apoptosis via PKC activation[J].Cell Physiol Biochem,2008,22(1-4):215-222.
    [76]Wu S, Xing D, Wang F, et al. Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques[J].J Biomed Opt, 2007,12(6):064015.
    [77]Encina NR,Billotte WG, Hofmann MC. Immunomagnetic isolation of osteopro genitors from human bone marrow stroma[J].Lab Invest,1999:79(4):449-457.
    [78]Wuthier RE,Register TC. The role of alkaline PhosPhatase as a Polyufnctional enzyme in mineralizing tissues.In The chemistry and biology of mineraslised tssiues,(ButlerWTed.) [J]. Birmingham Alabama:Ebsco Media Inc,1985:113-124
    [79]JaneE.Aubin.Regulation of Osetoblast Formation and Function Reviews in Endocrine&Metabolie Disodrers,2001;2:81-94.
    [80]Buckley MJ , Banes AJ , Jordan RD. The effects of mechanical strain on osteoblasts in vitro [J ] . J Oral Maxillofac Surg , 1990 , 48 (2) : 276.
    [81]李小彤,张丁,傅民魁.比较间歇性和持续性牵张力对成骨样细胞AL P活性的影响[J ] .口腔正畸学杂志,2000 ,7 (2) :55.
    [82]Haxsen V,Schikora D,Sommer U, et al.Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures[J].Lasers Med Sci,2008, 23(4):381-384.
    [83] Karu T. The science of low-power laser therapy[M]. Amsterdam: Gord Brea SciPub,1998,53-94.
    [84]Pinheiro AL,Cavalcanti ET,Pinheiro TI, et al. Low-Level Laser Therapy in management of disorders of the maxillofacial region[J].J Clin Laser Med Surg,1997, 15:181–183.
    [85]Powell K, Low P, McDonnell PA, et al. The Effect of Laser irradiation on Proliferation ofHuman Breast Carcinoma, Melanoma, and Immortalized Mammary Epithelial Cells [J]. Photomed Laser Surg, 2010,28(1):115-123.
    [86]李秋实,张天夫,周延民.不同剂量低能量激光照射对体外人成骨样细胞增殖和分化的影响[J].吉林大学学报(医学版),2009,,6:1123-1126.
    [87]Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts[J]. Photomed Laser Surg,2006,24(6):705-714.
    [88] McGarryJG,Klein-Nulend J,Mullender MG, et al. A Comparison of strain and fluid shear stress in stimulating bone cell responses-a computational and experimental study[J]. FASEB J. 2005,19(3):482-484.
    [89] da Silva Sousa MV, Scanavini MA, Sannomiya EK,Influence of low-level laser on the speed of orthodontic movement[J]. Photomed Laser Surg. 2011 Mar;29(3):191-6.
    [90]Saygun I,Karacay S,Serdar M, et al.Effects of laser irradiation on the release of basic fibroblast growth factor(bFGF),insulin like growth factor-1(IGF-1),and receptor of IGF-1(IGFBP3) from gingival fibroblasts[J].Lasers Med Sci,2008,23(2):211-215.
    [91]Safavi SM,Kazemi B,Esmaeili M, et al.Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta,bFGF,and PDGF in rat's gingiva[J].Lasers Med Sci,2008,23(3):331-335.
    [92]Gavish L,Perez LS,Reissman P, et al.Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages:Implications for the prevention of aneurysm progression[J].Lasers Surg Med, 2008,40(5):371-378.
    [93]Nissan J,Assif D,Gross MD, et al.Effect of low intensity laser irradiation on surgically created bony defects in rats[J].J Oral Rehabil,2006,33(8):619-924.
    [94]Miyata H,Genma T,Ohshima M, et al.Mitogen-activated protein kinase/ extracellul arsignal-regulated protein kinase activation of cultured human dental pulp cells by low-powergallium-aluminium-arsenic laser irradiation[J].Int Endod J,2006, 39(3):238-244.
    [95]Aimbire F,Bjordal JM,Iversen VV, et al.Low level laser therapy partially restorestracheamuscle relaxation response in rats with tumor necrosis factor alpha-mediated smooth airway muscle dysfunction[J]. Lasers Surg Med,2006,38(8):773-778.
    [96]Kipshidze N, Petersen JR, Vossoughi J, et al. Low-power laser irradiation increases cyclic GMP synthesis in penile smooth muscle cells in vitro[J].J Clin Laser Med Surg,2000,18(6):291-294.
    [97]Chen CH,Tsai JL,Wang YH, et al.Low-level laser irradiation promotes cell proliferation and mRNA expression of type I collagen and decorin in porcine Achilles tendon fibroblasts in vitro[J].J Orthop Res,2009,27(5):646-650.
    [98] Jing Y, Li L, Li Y, et al. The effect of mechanical strain on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells from rats[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006 Jun;23(3):542-5.
    [99] Stein E, Koehn J ,et al. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells[J]. Wien Klin Wochenschr. 2008;120 (3-4):112-7
    [100]Qi MC, Hu J et al. Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells[J]. Int J Oral Maxillofac Surg. 2008 May;37(5):453-8. Epub 2008 Feb 12.
    [101]胡静,邹淑娟.机械牵张对人成骨细胞ALP活性及I型胶原表达的影响[J].口腔颌面外科杂志,2003,13(1):11-13
    [102]Ozawa H, Imamura K, Abe E,et al. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro[J]. J Cell Physiol. 1990 Jan;142(1):177-85.
    [103]Frost HM. Perspectives : bone’s mechanical usage windows[J]. J Bone Miner Res , 1992 , 19 : 257-271.
    [104]孙大业.兼有胞内胞外功能的信号分子的普遍性及生物学意义[J].科学通报.1999,44(15):1576-1581.
    [105]Barry M A, Eastman A. Endonuclease activation in the regulation of apoptosis[J].J Leukoc Biol.1996.59(4):775-783.
    [106]刘忠厚,主编.骨质疏松学[M].北京:科学出版社, 1998: 19-21.
    [107]Huo B, Dossings AR, Dimuzio MT, et al . Generat ion and characterization of a human osteosarcoma cells line stably transfected with the human estrogen recept or gene[J]. J Bone Miner Res, 1995, 10: 769-774.
    [108]廖二元,谭利华,主编.代谢性骨病学[M].北京:人民卫生出版社,2003: 82-85.
    [109]华坤,赵红,黄民,等.氟对成骨细胞样细胞胞内钙和钙通道电流的影响[J].中国应用生理学杂志, 2003, 19: 179-181.
    [110]Barry EL. Expression of mRNAs for the alpha 1 subunit of voltagegated calcium channels in human osteoblast-like cell lines and innormal human osteoblasts[J]. Calcif Tissue Int, 2000, 66: 145-150.
    [111]Allen F D, Hung C T, Pollack S R, et al. Comparison of the[Ca~(2+)]i response to fluid of MC3T3-E1,ROS17/2.8 and cultured primary osteoblast-like cells[J]. Cell Eng.1996.1(1).117-124.
    [112]黄春明,叶晖,徐建华等.极低频弱磁场对PC-12瘤细胞胞内游离钙离子浓度的影响[J].生物医学工程学杂志.2000:79(1).63-65.
    [113]Brighton C T, Wang W, Seldes R, et al. Signal transduction in electrically stimulated bone cells[J].J Bone Jiont Surg. 2001,83-A(10):1154-1123.
    [114]McAllister T N, Frangos J A .Study and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways [J].J Bone Miner Res.1999.14(6):930-936.
    [115]邹寿彬,陈良怡,康华光等.胞内钙信号系统[J].生命的化学. 2000, 20(6):254-256
    [116]Chen N X, Ryder K D, Pavalko F M, et al.Ca~(2+)regulates fluid shear-induced cytoskeletal reorganization and expression in osteoblasts[J].Am J Physiol.2000, 278:C989-997.
    [117]Hung C T, Allen F D, Pollack S R, et al. Intracellular Ca~(2+) stores and are required in the real-time Ca~(2+) response of bone cells experiencing fluid flow[J].J Biomecha. 1996.29(11): 1411-7.
    [118]季煜华;曾耀英;钱中清.激光对细胞内反应氧、钙离子浓度及细胞膜完整性的影响[J].解剖学报,2007,38(03):330-333.
    [119]卢绮萍,史陈让,吴笑春,蔡逊,孙天恩,周平.用Fluo-2和显微荧光术定量检测活性肝细胞内游离钙离子[J].中国病理生理杂志,1996,12 (4) :446– 448.
    [120]宋平根,李素文.流式细胞术的原理和应用[M].北京:北京师范大学出版社,1992 :78– 84.
    [121]刘仁则,秦仁义.用Fluo-3-Am荧光探针和流式细胞术检测活性胰腺泡细胞内游离钙离子[J].华人消化杂志, 1998 ;6 (4) :279.
    [122]Peake M A Cooling L M, Magnay J L, et al. Selected contribution:regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells[J]. J Appl Physiol. 2000,89(6):2498-2507.
    [123]Walker L M, Publicover S J, Preston M R,e t al. Calcium channel activation and matrix protein upregulation in bone cells in response to mechanical strain[J]. J Cell Biochem. 2000.79(4):648-661.
    [124]Chen N X, Ryder K D, Pavalko F M, et al. Ca~(2+)regulates fluid shear-induced cytoskeletal reorganization and expression in osteoblasts[J]. Am J Physiol. 2000. 278:C989-997
    [125]Ninomiya T, Hosoya A, Nakamura H, et al. Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteoclast number and an activated osteoblasts[J]. Bone. 2007 Jan;40(1):140-148.
    [126]Chellini F, Sassoli C, Nosi D, et al.Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: "an in vitro study"[J].Lasers Surg Med. 2010 Aug,42(6):527-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700