用户名: 密码: 验证码:
激光对增强的UV—B辐射蚕豆幼苗损伤的防护及修复作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增强的UV-B辐射(280-320nm)不仅使蚕豆丙二醛(MDA)和电解质渗
    透率(REL)升高,而且使植物DNA链上相邻的2个胸腺嘧啶之间形成胸腺嘧
    啶二聚体(CPD),因此增强的UV-B辐射可导致植物伤害。本文用激光来处理
    UV-B辐射导致伤害的植物,结果表明:激光对增强的UV-B辐射植物伤害有
    明显的防护和修复作用。
     进一步研究发现,激光对植物的防护作用的机理是通过提高紫外吸收物的
    含量来加强植物第一条防线的屏蔽作用;激光辐射提高抗氧化酶SOD、CAT和
    APX的酶活性和抗氧化系统非酶类物质ASA和GSH的含量来增强植物防御
    UV-B辐射的第二条防线的防护能力;激光同时提高植物蛋白质的含量和促进
    某些“胁迫蛋白”的基因表达以防护增强的UV-B辐射对植物的伤害,本文认
    为这种防护方式叫植物第三条防线。
     激光对植物的修复作用主要体现在植物DNA上。一方面,激光辐射可提高
    光修复酶的活性,从而加速植物DNA伤害的修复过程。另一方面,本文用T4
    核酸内切酶V(T4EndoV)为探针,通过琼脂糖凝胶电泳检测发现,增强的UV-B
    辐射导致植物DNA伤害,使DNA链上相邻的2个胸腺嘧啶形成大量的CPD;
    用激光处理这种植物DNA伤害时,CPD显著下降到对照水平(末受UV-B处
    理植物),但同样用红光(与He-Ne激光同波长,633nm)处理,CPD无任何
    变化。由此可见,激光对植物DNA的伤害有明显修复作用。探讨激光修复的
    机理发现了激光修复是一种新的修复方式:激光断键修复。激光辐射可以打断
    植物DNA链上的CPD之间的CC键(即二聚体单体化),从而使DNA恢复到
    正常水平,使DNA复制,转录等生理活动能够继续正常地进行。
     激光对植物的防护效果非常明显,为今后激光在农业生产上的应用奠定了
    理论根据。同时,本文首次发现了DNA修复的一种新的方式——激光断键修
    复。这为人们今后探索DNA伤害修复开辟了一个新的领域和新的视角。
An increase of the concentration of MDA and rate of electrolyte leakage of
     cellular membrane in broad bean (Vicia faba L.) plant was induced by
     exposure to enhanced UV-B irradiation. Moreover, UV-B irradiation caused
     DNA damage to yield CPD (dimer) between two adjacent thymines in plant
     DNA. As a result, the plants were damaged by increased UV-B radiation.
     However, laser was found to be capable to protect and repair plants from UV-
     B-induced damage.
     In research for laser role of protecting plants from UV-B irradiation, it was
     shown that primary response to UV-B radiation damage in plant was to
     increase the UV absorbing compounds. Laser irradiation increased the UV
     absorbing compounds in order to protect plants from UV-B radiation. Thus, an
     increase of content of UV absorbing compound by laser irradiation was
     strengthened primary response to UV-B radiation damage. The secondary
     responses to UV-B radiation in plant were participated in ASA, GSH and
     antioxidative enzymes SOD, CAT and APX. If UV-B treatment on plants
     following laser radiation, laser irradiation could build-up the content of ASA and
     GSH, and increase the activities of SOD, CAT and APX to protect plants from
     enhanced UV-B radiation. Meanwhile, laser irradiation improved the content of
     soluble protein and stimulated expression of some genes of 搕hreatening
     proteins? which was called “the third responses to increased UV-B radiation in
     plant employing laser treatment on UV-B-induced damage”in this paper.
     These proteins could help plants to strengthen protecting from UV-B
     irradiation.
     Laser repair role on UV-B-induced plant damage mainly appeared plant
     DNA repair role. On the one hand, laser irradiation was capable to increase the
     activity of photolyase and thus shortened the recovery time of DNA damage.
     On the other hand, this paper employed T4EndoV as a symbol to test the
     quantitation of CPD. The results were shown that increased UV-B radiation
     caused plant DNA damage and yielded a lot of CPD5. However, if using laser
     treatment on UV-B-induced plant damage, we found that the quantitation of
     CPDs quickly decreased the normal level (without UV-B irradiation plant).
     Meanwhile, red light radiation had no effect on decreasing CPDs level. Thus,
     laser had obviously repair effect on UV-B-induced-damage in plant DNA
     strains. In further research for laser repair mechanism, it was found that laser
     repair was a new pathway-laser repair of breaking bonds. Laser irradiation
     could break CC bonds in CPD and thus made CPD monomer. As a result,
     plant DNA damage was repair and plant DNA transcription and expression
     became normal.
     Laser protection of plant from UV-B radiation damage was obvious and
     would be employed in agriculture in future. Furthermore, this paper was found
     a new plant repair pathway-laser repair of breaking bonds in CPD, which
    
    
    would pioneer a new field of researching for DNA damage and repair.
引文
1. Adamse, P., S.J. Britz, Rapid fluency dependent response to UV-B radiation in cucumber leaves: the role of UV absorbing pigments in damage protection, Plant Physiol, 148 (1996) 57-62.
    2. Ahmad, M., J.A. Jarillo, L.J. Klimczak, L.G. Landry, T. Peng, R.L. Last, A.R. Cashmore, An enzyme similar to anamal type two photolyases mediates photoreactivation in Arabidopsis thaliana. Plant Cell. 9 (1997) 199-207.
    3. Araoz, R., Expression of stress proteins under UV-B in Notstoc SP, Photochem. Photobiol,63(1996) 75-79.
    4. Arnott, T. and TM. Murphy, A comparison of the effects of a fungal elicitor and ultraviolet-radiation on ion-transport and hydrogen-peroxide synthesis by rose celis, Environ. Experi. Bot., 2 (1991) 209-216.
    5. Ballare, C.L., A.L. Scopel, A.E. Stapleton, M.J. Yanovsky, Solar UV-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate and attractiveness to herbivore insects in Detura ferox, Plant Physiol, 112 (1996) 161-170.
    6. Batschauer, A., A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage, Plant J, 4 (1993) 705-709.
    7. Beauchamp, C., L. Fridovich, Superoxide dismutase: Improved assays and an assay applicable to acryl amide gels, Anal. Biochem., 44 (1971) 276-287.
    8. Block, A., J. Dangl, K. Hahlbrock, Functional borders, genetic fine structure and distance requirement of elements mediating light responsiveness of the parsley chalcone synthase promoter, Proc. Natl. Acad. Sci. USA., 87 (1990) 5387-5392.
    9. Booisma, D., J.H. Hoeijmakers, DNA repair, engagement with transcription, Nature, 363(1993) 114-115.
    10. Bornman, J.F., A.H. Teramura, Effects of UV-B radiation on terrestrial plants , in: A.R. Young, L.O. Bjorn, J.Moan, W. Nultsch (Eds.), Environmental UV Photobiology, Plenum, New York, 1993, pp 427-471.
    11. Bowler, C., SOD and stress tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43(1991) 83-116.
    12. Brash, D.E., J.A. Rudolph, J. A. Simon, A. Lin, GJ. McKenna, H.P. Baden, A.Halperin, J. Ponten, A role for sunlight in skin cancer: UV-induced p53 mutations in aqueous cell carcinoma, Proc. Natl. Acad. Sci. USA, 88 (1991) 10124-10128.
    13. Brash, D.E., S. Seetharam, K.H. Kraemer, M.M. Seidman, A. Bredberg, Photoproduct frequency is not the major determinant of UV base substitution hot spots or cold spots in human celis, Proc. Natl. Acad. Sci. USA, 84 (1987) 3782-3786.
    14. Brirt, A.B., DNA damage and repair in plants, Annu. Rev. Plant Physiol, Plant Mol. Biol., 47 (1996) 75-100.
    
    
    15. Britt, A.B., Molecular genetics of DNA repair in higher plants, Trends in Plant Sci., 4(1999) 20-25.
    16. Buege, J.G. and S.D. Aust, Microtonal lipid per oxidation, Methods Enzyme, 52 (1978) 302-306.
    17. Caasi-Lit, M., M.I. Whitecross, M. Nayudu, G.J. Tanner. UV-B irradiation induces differential leaf damage, ultrastructural changes and accumulation of specific phenolic compounds in rice cultivars, Aust. J. Plant Physiol, 24 (1997) 261-274.
    18. Cakmak, I. and H. Marschner, Magnesium deficiency and high light intensity on enhance activities of superoxide dismutase, peroxidase and glatation reductase in bean leaves, Plant Physiol., 98 (1992) 1222-1227.
    19. Caldwell MM, A. Teramura, Effect of enhanced UV-B radiation on terrestrial plants, Ambio., 24 (1995) 166-173.
    20. Caldwell, M.M. and S.D. Flint, Implications of increased solar UV-B for terrestrial vegetation. The role of the stratosphere in global change, Springer-Verlag, Heidelberg, 1993, pp: 495-516.
    21. Caldwell, M.M., A.H. Teramura, M. Tevini, The changing solar ultraviolet climate and the ecological consequences for higher plant, Trends Evol. Ecol., 4(1989) 363-367.
    22. Caldvvell, M.M., Solar ultraviolet radiation and growth and development of higher plant, In Photophysiodogy Academic, New York, 6 (1971) 131-177.
    23. Cannon, G.C., L.A. Hedrick, S. Heinhorst, Repair mechanisms of UV-induced DNA damage in soybean chloroplasts, Plant Mol. Biol., 29 (1995) 1267-1277.
    24. Cen, Y.P., J.F. Bomman, The effects of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Physiol. Plant., 87 (1993) 247-251.
    25. Cerutti, H., M. Osman, P. Grandoni, A.T. Jagendorf, A homolog of E.coli RecA protein in plastids of higher plants, Proc. Natl. Acad. Sci. USA, 89 (1992) 8060-8072.
    26. Chasan, R., A ray of light on DNA repair, Cell, 6 (1994) 159-161.
    27. Chen, Z.G., Laser Biology, 1(1992) 99-103.
    28. Coohill, T.P., Action spectra again, Photochem Photobiol., 54 (1991) 849-870.
    29. Crutzen, P.J., SSTs-threat to the earth's ozone shield, Ambiol, 1(1972) 41-51.
    30. Dandoy, E., R. Schyns, R. Deltour, W.G. Verly, Appearance and repair of apurinic/apyrimidinic sites in DNA during early germination of Zea mays, Mutation Res, 181 (1987) 57-60.
    31. Daniel, L.W. and F. Gideon, On the nature of thymine photoproduct, Biochem. Biophys., 51(1961) 332-339.
    32. Day, T.A., Relating UV-B radiation screening effectiveness of foliage to absorbing compound concentration and anatormical characteristics in a diverse group of plant, Oecotogia, 95 (1993) 542-550.
    33. Deng, X.M., Laser Technology, Higher Educational Publishing House, Beijing, 1996, PP: 99-150 (in Chinese).
    
    
    34. Dhidsa, R.S., P.P. Dhinasa, T.A. Thorpe, Leaf senescence: correlated with increased Ievels of membrane permeability and lipid per oxidation and decreased Ievels of super oxide dismutase and catalase, Exp. Bot., 32 (1981) 93-101.
    35. Dimitrov, B.D., Types of chromosomal aberrations induced by seed aging in Crepis capillaries, Environ. Mol. Mutagen., 23 (1994) 318-322.
    36. Doetsch, P.W., W.H. McCray, Jr. M.R. Valenzuela, Partial purification and characterization of an endonulease from spinach that cleaves UV light-damaged duplex DNA, Biochem. Biophys. Acta., 1007 (1989) 309-317.
    37. Doonan, J., T. Hunt, Cell cycle-Why do not plants get cancer? Nature, 380 (1996) 481-482.
    38. Doughty, C.J., A.B. Hope, Effects of ultraviolet radiation on the plasma membranes of charaorllina, Aust. J. Plant Physiol., 3 (1976) 677-684.
    39. Doutriaux, M.P., F. Couteau, C. Bergounioux, C. White, Isolation and characterization of the RAD51 and DMC1 homology from Arabidopsis thaliana, Accession Number: 1997,G2388778.
    40. D'Surney, S.J., T.J. Tschaplinski, N.T. Edwards, L.R. Shugart, Biological responses of two soybean cultivars exposed to enhanced UV-B radiation, Environ. Experi. Bot., 33 (1993) 347-356.
    41. Elder, R.H., A.D.Aquila, M. Mezzina, A. Sarasin, D.J.Osborne, DNA ligase in repair and replication in the embryos of rye Secale cereale, Mutation Res., 181(1987) 61-71.
    42. Ellman, G.L., Tissue sulfhydryl groups, Arch. Biochem. Biophys., 32 (1959) 70-77.
    43. Fiscus, E.L., F.L. Booker, Is increased UV-B a threat to crop photosynthesis and productivity? Photosynth. Res., 43 (1995) 81-92.
    44. Freeman, S.E., A.D. Blackett, D.C. Monteleone, R.B. Setlow, B.M. Sutherland, J.C. Sutherland, Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers, Anal. Biochem., 158 (1986) 119-129.
    45. Freidberg, E.C., DNA Repair, W.H.Freeman, San Francisco, 1985.
    46. Freidberg, E.C., G.C. Walker, W. Siede, DNA repair and mutagenesis, ASM Press, WA, 1995, pp199-211.
    47. Gaillard, C.P., E.M. Martini, P.D. Kaufman, B. Stillman, E. Moustacchi, G. Almouzni, Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I, Cell, 86 (1996) 887-896.
    48. Giannoplitis, C.N. and S.K. Ries, Superoxide dismutase I: purification and quantitative relationship with water-soluble protein in seedlings, Plant Physiol.,59(1977) 315-318.
    49. Govil, S.R., D.C. Agrawal, K.P. Rai, S.N. Thakur, Physiological responses of Vigna radiata L. to nitrogen and argon laser irradiation, Indian J. Plant Physiol., 1(1991) 72-76.
    50. Hader, D.P., Effect of solar radiation on local and German wheat seedlings in a Chilean high mountain station, Photochem. Photobio. B: Biology, 35 (1996)
    
    181-187.
    51. Hartmann, U., W.J. Valentine, J.M.Christie, J. Hays, G.I. Jenkins, B. Weisshaar, Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient, expression system. Plant Mol. Biol., 36 (1998) 741-754.
    52. He J, L.K. Huang, W.S. Chou, M.I. Whitecross, J.M. Anderson, Response of rice and pea plants to hardening with low dose of UV-B radiation, Aust. J. Plant Physiol., 21 (1994) 563-574.
    53. Hideg, E., I. Vass, UV-B induced free radical production in plant leaves and isolated thoylakoid membrane, Plant Sci., 2 (1996) 251-260.
    54. Hidema, J, T. Kumagai, J.C. Sutherland, B.M. Sutherland, UV-B-sensitive rice cultivar different in CPD repair, Plant Physiol, 113 (1997) 39-44.
    55. Hidema, J., H.-S. Kang, T. Kumagai, Changes in cyclobutyl pyrimidine dimer Ievels in rice (Oryza sativa L) growing indoors and outdoors with or without supplemental UV-B radiation, Photochem. Photobiol. B: Biology, 52 (1999) 7-13.
    56. Hidema, J., T. Kumagai, UV-B-induced CPD and photorepair with progress of growth and leaf age in rice, Photochem. Photobiol., 43 (1998) 121-127.
    57. Hoffman, P.D., A. Batschauer, J.B. Hays. PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases, Mol. Gen. Genet., 253 (1996) 259-265.
    58. Hopkins, L., M.A. Bond, A.K. Tobin, Effects of UV-B on the development and ultrastructure of the primary leaf of wheat (Triticum asetivum). Experim. Bot, 47(1996) 20-25.
    59. Huang, S.Y., Clinical research of radio-sensitization of HPD (Appen 69 analysis). Chinese Journal of Clinical On-cology, 16 (1991) 414-419.
    60. Hunt, J.E. and D.L. McNeil, Nitrogen status affects UV-B sensitivity of cucumber, Aust. J. Plant Physiol., 1 (1998) 79-86.
    61. Jackson, J.F., DNA repair in pollen, Mutation Res., 181 (1987) 17-29.
    62. James, R.A.,L. Hong, W.B.Michael, Cell Science,10 (1993) 1207-1216.
    63. Johnston, H.S., Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust, Science, 173 (1971) 517-522.
    64. Jordan, B.R., Changes in mRNA Ievels and polypeptide subunit of ribulose 1,5-bisphosphate caboxylase in response to supplementary ultraviolet-B radiation, Plant Cell Enviro., 15 (1992) 91-98.
    65. Joshi, P.N., B. Biswal, N.C. Biswal, Effect of UV-A on aging of wheat leaves and role of phytochrome. Environ., Experi. Bot., 3 (1991) 267-276.
    66. Kang, H.-S., J. Hidema, T. Kumagai, Effects of light environment during culture on UV-induced CPDs and their photorepair in rice (Oryza sativa L), Photochem. Photobiol., 68 (1998) 71-77.
    67. Kerr, R.A., The ozone hole reaches a new low, Science, 262 (1993) 501-512.
    68. Klebanov, G., A.B. Kapitanov, Y.A. Tesslkin, The antioxidant properties of lycopene, Biologicheskie Membrany (Mosc), 2 (1998) 22-28.
    69. Kondo, N. and M. Kawashima, Enhancement of the tolerance to oxidative stress
    
    in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and antioxidative enzymes, Plant Res., 113(2000) 311-317.
    70. Kramer, G.F., H.A. Norman, D.T. Krizek, Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipid in cucumber, Phytochem., 7(1991) 2101-2108.
    71. Kubo, A., M. Aono, N. Nakajima, H. Saji, K. Tanaka, N. Kondo, Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana., Plant Res., 112 (1999) 279-290.
    72. Landry, L.G., A.E. Stapleton, J. Lim, P. Hoffman, J.B. Hays, V. Walbot, R.L. Last. An Arabidopsis photolyase mutant is hypersensitive to UV-B radiation, Proc. Natl. Acad. Sci. USA, 94 (1997) 328-332.
    73. Lawlor, D.W., F.A. Boyle, A.J. Keys, A.C. Kendall, A.T. Young, Nitrate nutrition and temperature effects on wheat: a synthesis of plant growth and nitrogen uptake in relation to memtabolic and physiological processes, Exp. Bot., 39 (1988) 329-343.
    74. Li, J., T.M. Ou-Lee, R. Raba, R.G. Amundson, R.L. Last, Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation, Cell, 5 (1993) 171-179.
    75. Lowry, O.H., N.T. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin phenol reagent, Biol. Chem., 193 (1951) 265-275.
    76. Lumsden, P.J., Plants and UV-B Responses to Environmental Change. Cambridge University Press, UK, 1997.
    77. Lydon, J., A.H. Teramura, E.G. Summers, Effects of ultraviolet-B radiation on growth and productivity of field-grown soybean, In: R. C. Worrest (ed.), Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, Springer, Berlin, 1986, pp. 313-325.
    78. Machado, C.R., R.L. de Oliveira, S. Bioteux, U.M. Praekelt, P.A. Meacock, C.F. Menck. Thil, a thiamine biosynthetic gene in Arabidopsis thaliana, complements bacterial defects in DNA repair, Plant Mol. Biol., 31 (1996) 585-593.
    79. Mackerness, S.A., L.S. Liu, Individual members of the light-harvesting complex Ⅱ chlorophyll a\b binding protein gene family in pea show differential responses to ultraviolet-B radiation. Physiol Plant, 103 (1998) 377-384.
    80. Madronich, S., R.L. Mckenzie, M.M. Caldwell, Changes in ultraviolet radiation reaching the earth's surface, Ambio., 24 (1995) 143-152.
    81. Mark, U., M. Saile-Mark, M. Tevini, Effect of solar UV-B radiation on growth, flowering and yield of central and southern European maize cultivars (Zea mays L.), Photochem. Photobiol., 64 (1996) 457-463.
    82. Markolf, H.N. Laser and matter. In Laser-Tissue Interactions (Edited by H.N. Markolf), pp. 8-15. Springer-Verlag Berlin Heidelberg, German, 1996.
    83. Mayak, S., R.L. Legge, J.E. Thompson, Superoxide radical production by mecrosomal membrane from senescing carnation flowers an effect on membrane fluidity, Photochem., 6 (1983) 1375-1380.
    84. McLennan, A.G., DNA damage, repair and mutagenesis, In: J.A. Bryant (Eds.).
    
    DNA replication in plants, CRC Press, Boca Raton, F.L. 1988, pp135-186.
    85. Mellon, L, D.K. Rajpal, M. Koi, C.R. Boland, G.N. Champe, Transcription-coupled repair deficiency and mutations in human mismatch repair genes, Science, 272 (1996) 557-560.
    86. Meuller, J.P., M.J. Smerdon, Rad23 is required for transcription-coupled repair and efficient overall repair in Saccharomyces cerevisiae, Mol. Cell Biol., 15 (1996) 2361-2368.
    87. Mi, F.S., Sensitization of HPD to different phases of radiotherapy treatment. Chinese Journal of Radiation Onclogy,4 (1999) 282-286.
    88. Middletion, E.M., W.C. Emmett, A. Takisha, Initial assessment of physiological response to UV-B irradiation using fluorescence measurements, Plant Physiol., 148(1996) 69-77.
    89. Mirecki, R.M. and A.H. Teramura, Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion, Plant Physiol., 74 (1984) 475-480.
    90. Mishra, N.P., R.K. Mishra, G.S. Singhal, Changes are the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light of different temperature in the presence of protein synthesis inhibitors, Plant Physiol., 102(1993) 903-910.
    91. Mitchell, D.L., R.A. Nairn, The biology of the (6-4) photoproduct, photochem. Photobiol., 49 (1989) 805-815.
    92. Mu, G.G., Optics, People's Educational Publishing House, Bejing, 1978, PP: 599-601 (in Chinese).
    93. Murphy, T.M. and H. Willekens, Inhibition of protein in cultured tobacco celis by radiation. Photochem. Photobiol., 21 (1975) 219-225.
    94. Murphy, T.M., Effect of broad-band Ultraviolet and visible radiation on hydrogen peroxide formation by cultured rose celis, Physiol. Plant, 80 (1990) 63-78.
    95. Murphy, T.M., Effect of broad-bend UV and visible radiation on hydrogen peroxider formation by cultured rose celis, Physiol. Plant, 80 (1990) 63-78.
    96. Murphy, T.M., Membranes as targets of UV radiation, Physiol. Plant, 58 (1983) 381-388.
    97. Nakano, Y and K. Asada, Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 5 (1981) 867-880.
    98. Narimasa, S. and H. Werbin, Evidence for a DNA-photoreactivating enzyme in higher plants. Photochem. Photobiol., 9 (1969) 389-393.
    99. Nedunchezhian, N., Induction of heat short-like proteins in Vigna sinensis seedlings growing under UV-B enhanced radiation, Phsiol. Plant, 85 (1992) 503-506.
    100. Ohyamat, K., L.E. Pelcher, O.L. Gamborg, The effects of UV irradiation on survival and on nucleic acids and protein synthesis in plant protoplasts, Rad. Bot., 14(1974) 343-346.
    101. Olszyk, D.K., UV-B effect on crops: response of the irrigated rice ecosystem, Plant Physiol., 148 (1996) 24-26.
    102. Osborne, D.J., Senescence in seeds. In: K.V. Thimann (Ed.). Senescence in Plants,
    
    CRC Press, New York, 1980.
    103. Paleg, L.G., D. Aspinall, Field control of plant growth and development through the laser activation of phytochrome, Nature, 5275 (1970) 970-973.
    104. Pang, Q., J.B. Hays, I. Rajagopal, T.S. Schaefer. Selection of Arabidopsis thaliana cDNA that partially correct phenotypes of E.coli DNA-damage-sensitive mutants and analysis of two plant cDNAs that appear to express UV-specific dark repair activities. Plant Mol. Biol., 22 (1993) 411-426.
    105. Pang, Q., J.B. Hays, I. Rajagopal, Two cDNA from the plant Arabidopsis thaliana that partially restore recombination proficiency and DNA-damage resistance to E.Coli mutants lacking recombination-intermediate-resolution activities, Nucleic Acids Res., 21 (1993) 1647-1653.
    106. Pang, Q., J.B. Hays, UV-B-induced and temperature sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol., 95 (1991) 536-543.
    107. Predieri S, MA. Norman, DT. Krizek, P. Pillai, RM. Mirecki, RH. Zimmerman, Influence of UV-B radiation on membrane lipid composition and ethylene of evolution in 'Doyenne d' Hiver' pear shoots grown in vitro under different photosynthetic photo fluxes, Environ. Experi. Bot., 35 (1995) 152-160.
    108. Quaite, F.E., J.C. Sutherland, B.M. Sutherland. Isolation of high-molecular-weight plant DNA for DNA damage quantitation: relative effects of solar 297 nm UV-B and 365 nm radiation, Plant Mol. Biol., 24 (1994) 475-483.
    109. Quaite, F.E., S. Takayanagi, J. Ruffini, J.C. Sutherland, B.M. Sutherland, DNA damage levels determine cyclobutyl pyrimidine dimer repair mechanisms in alfalfa seedlings, Plant Cell, 6 (1994) 1635-1641.
    110. Rao, M.V., G. Paliyah, D.P. Ormrod, Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana, Plant Physiol., 110(1996) 125-136.
    111. Robberecht, R., M.M. Caldwell, D.W. Billings, Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone, Ecology, 61 (1980) 612-619.
    112. Rosemarie, W., Cell Science, 88 (1987) 145-149.
    113. Rozena J, J. van de Staaij, L.O. Bjon, M.M. Caldwell, UV-B as an environmental factor in plant life: stress and regulation, Tree, 12 (1997) 22-28.
    114. Ruderman, M.A., Possible consequence of nearby super our explosions for atmospheric ozone and terrestrial, Life Science, 184 (1974) 1079-1081.
    115. Santerre, A., A.B. Britt, Cloning of a 3-methyladenine-DNA glycosylase from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 91 (1994) 2240-2244.
    116. Schultz, T.F., R.S. Quatrano, Characterization and expression of a rice RAD23 gene, Plant Mol. Biol., 34 (1997) 557-562.
    117. Seeberg, E., L. Eide, M. Bjoras, The base excision repair pathway, Trends in Biochemical Science, 20 (1995) 391-397.
    118. Shi, L., R. Kent, N. Bence, A.B. Britt, Developmental expression of a DNA repair gene in Arabidopsis thaliana, Mutations Res., 384 (1997) 145-146.
    119. Siede, W., E.C. Freidberg, Regulation of the yeast RAD2 gene: DNA damage-
    
    dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival, Mol. Gen. Genet., 232 (1992) 247-256.
    120. Singh, R.J., Chromosomal variation in immature embryo derived calluses of barley, Theor. Appl. Genet., 72 (1986) 716-721.
    121. Soyfer, V.N., G.V. Krause, A.A. Pokrovskaya, N.I. Yakovleva, Repair of the single-stranded DNA breaks and recovery of chromosomal and chromatid aberrations after treatment of plant seeds with propyl methanesulphonate in vivo, Mutation Res., 42 (1979) 51-64.
    122. Stager, D., H. Kauler, J. Schell, A CACGTG motif of the Antirrhinum magus chalcone syntheses promoter is recognized by an evolutionarily conserved nuclear protein, Proc. Natl. Acad. Sci. USA, 89 (1989) 6930-6934.
    123. Stapleton, A.E., Ultraviolet radiation and plants: burning questions, Plant Cell, 4 (1992) 1353-1358.
    124. Stolarshi, R., Measured trends in stratospheric ozone, Science, 256 (1992) 342-349.
    125. Strid, A., W.S. Chow, J.M. Anderson, Effects of supplementary UV-B radiation on photosynthesis in Pisum sativum, Biochem. Biophys. Acta., 1020 (1990) 1015-1023.
    126. Sullivan, J.H. and A.H. Teramura, The effects of ultraviolet-B radiation on loblolly pine. I. Growth, photosynthesis and pigment production in greenhouse-grown seedlings, Physiologia. Plantarum, 77 (1989) 202-207.
    127. Sullivan, M.L., R.D. Vierstra, Cloning of a 16-Kda ubiquity carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis, Biol. Chem., 266 (1991) 23878-23885.
    128. Surplus, S.L., B.R. Jordan, A.M. Murphy, J.P. Carr, B. Thomas, S.A.H. Mackerness, UV-B induced responses in Arabidopsis thaliana, role of saclicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthesis and acidic pathogenesis related protein, Plant Cell Environ, 21 (1998) 685-694.
    129. Sutherland, B.M., P.V. Bennett, K. Conlon, G.A. Epling, J.C. Sutherland, Quantitation of super coiled DNA cleavage in non-radioactive DNA: application to ionizing radiation and synthetic endonuclease cleavage, Anal. Biochem., 201 (1992) 80-86.
    130. Sutherland, B.M., S. Takeyanagi, J.H. Sullivan and J.C. Sutherland, Plant responses to changing environmental stress: cyclobutyl pyrimidine dimer repair in soybean leaves, Photochem. Photobio., 64 (1996) 464-468.
    131. Takeuchi Y, Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B, J. Plant Physiol., 147 (1996) 589-592.
    132. Takeuchi, Y., H. Kubo, H. Kasahasa and T. Sakaki, Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B, Plant Physiol, 147 (1996) 589-592.
    133. Taylor, R.M., A.K. Tobin, C.M. Bray, DNA damage and repair in plants. In Plants and UV-B: Responses to Environmental Change (Edited by P.J. Lumsden),
    
    Cambridge University Press, Cambridge, U.K., 1997, pp 53-76.
    134. Tayor, R.M., A. Tobin, C. Bray, The cloning and sequence analysis of a putative Type Ⅱ CPD photolyase from Arabidopsis thaliana, Accession Number: 1996,X99301.
    135. Tekchandani, S., K.N. Guruprasad, Modulation of a guaiacol peroxidase inhibitor by UV-B in Cucumber cotyledons, Plant Sci., 136 (1998) 131-137.
    136. Teramura, A.H, Effects of UV-B radiation on growth and yield of crop plant, Physiol. Plantrum., 58 (1983) 415-427.
    137. Teramura, A.H., Interaction of elevated UV-B radiation and CO2 on productivity and photosynthetic characteristics in wheat rice and soybean, Plant Physiol., 94(1990) 470-475.
    138. Teramura, A.H., L.H. Ziska, A.S. Ester, A. Sytein, Changes in growth and photosynthetic capacity rice and increased UV-B radiation, Physiol. Plant, 83 (1991) 373-378.
    139. Terry, A.C., W.J. Stark, H.E. Maumenee and W. Fagadau, Ne-Ya laser for posterior capsulotomy, Am. J. Ophthalmol, 96 (1983) 716-720.
    140. Tevini, M, W. Iwanzik, U. Thoma, Some effects of enhanced UV-B radiation on the growth and composition of plants, Planta., 153 (1981) 388-394.
    141. Tevini, M. and A.H. Teramura, UV-B effects on terrestrial plants, Photochem. Photobiol., 50 (1989) 479-487.
    142. Tevini, M., J. Braun, G. Fieser, The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation, Photochem. Photobiol., 53 (1991) 329-333.
    143. Tonamura, B., Test reactions for a stopped flow apparatus regulation of 2,6-D and potassium ferricynide by L-ascorbic acid, Anal. Biochem., 84 (1978) 370-383.
    144. Tsukakoshiet, M., J.Appl. Phys-B,35 (1984) 135-141.
    145. Vanhasselt, P.R., W.S. Chow and J. M. Anderson Short-term treatment of pea leaves with supplementary UV-B at different oxygen concentrations: impacts on chloroplast and plasma membrane bound processes, Plant Sci., 120 (1996) 1-9.
    146. Villiers, T.A., D.J. Edgcumbe, On the cause of seed deterioration in dry storage, Seed Sci. Tech, 3 (1975) 761-774.
    147. Voronkov, L.A, D.Y. Tsepenyuk, In influence of laser irradiation on cotton leaf apparatus. Biol. Nauki (Mosc), 11 (1988) 24-27.
    148. Wang, H.W, Laser and Life Science, Beijing Instiut of Technology Publishing House, Beijing,1995, PP: 99-150(in Chinese).
    149. Willekens, H., W.V. Camp, M.V. Montage, Ozone, SO2 and UV-B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia, Plant Physiol., 106(1994) 1007-1014.
    150. Wright, L.A. and Murphy, T.M, UV radiation-stimulated effect of 86-rubidium from cultured tobacco celis, Plant Physiol., 61 (1978) 434-436.
    151. Yuan Li, Ming Yue, Xun-ling Wang, Effects of enhanced ultraviolet-B radiation on cropstucre, growth and yield components of spring wheat under field
    
    conditions, Field Crops Research, 1998, 57(3): 253-263.
    152.Yue M, Y. Li, XL. Wang, Effects of enhanced UV-B radiation on plant nutrients and decomposition of spring wheat under field conditions, Environ. Experi. Bot., 40 (1998) 187-196.
    153.Zwim, P., S. Stary, C. Lunching, A. Bachmair, Arabidopsis thaliana RAD6 homology AtUBC2 complements UV sensitivity, but not N-end rule degradation deficiency of Saccharomyces cererisiae rad6 mutants, Curr Genet, 32(1997) 309-314.
    154.敖秀珠,苏联农业中激光技术的应用,国外激光,8(1988)12-15。
    155.蔡素雯,激光在农业的的应用,应用激光,16(1996)35-37。
    156.蔡素雯,齐智,马小来,姜晋庆,He-Ne激光对玉米幼苗可溶性蛋白合成的影响,中国激光,A27(2000)283-288。
    157.蔡素雯,苑春慧,崔小慧,王永喻,He-Ne激光对玉米幼苗POD和CAT酶活性的影响,应用激光,13(1993)181-183。
    158.蔡素雯,赵雪淞,卢凤涛,姜晋庆,He-Ne激光对玉米幼苗活性氧代谢的影响,中国激光,A21(1994)767-772。
    159.曹恩华,激光对DNA的作用,激光生物学,2(1993)290-295。
    160.陈拓,王勋陵,UV-B辐射对小麦叶片中H2O2代谢的影响,西北植物学报,19(1999)284-289。
    161.陈晓勇,宋永昌,二氧化硫对蚕豆叶片H2O2累积和膜脂过氧化的影响,武汉植物研究,12(1994)154-157。
    162.董丽娟,贺利雄,王鹏飞,He-Ne激光对茶树诱变的生理效应的研究,应用激光,8(1988)280-283。
    163.冯国宁,安黎哲,王勋陵,增强的UV-B辐射对菜豆蛋白质代谢的影响,植物学报,41(1999)833-836。
    164.龚明,低温下稻苗叶片叶蛋白质及游离氨基酸的变化,植物生理学通讯,25(1989)18-22。
    165.郭桂云,王友好,李玉滨,He-Ne激光辐射番茄种子的研究,哈尔滨师范大学自然科学学报,6(1990)60-63。
    166.韩榕,王勋陵,岳明,齐智,增强的UV-B和激光复合处理对植物细胞形态学的影响,植物学报,2001(修改中)。
    167.郝丽珍,敖秀珠,张焕莲,低剂量激光对茄子种子活力影响的研究,中国激光,8(1993)633-635。
    168.郝丽珍,激光在生物刺激效应的研究概况,国外激光,9(1990)5-7。
    169.胡能书,王保仁,吴秀山,激光辐射水稻的生理生化基础研究(1),应用激光,1(1981)22-24。
    170.胡能书,吴秀山,激光油菜的生物学特性及其同工酶分析,应用激光,5 (1985)119-121。
    171.胡能书,向洋,激光辐射水稻的生理生化基础研究(2),应用激光,2(1982) 37-40,49。
    172.黄凌燕,刘秀珍,葛忠良,氦氖激光对棘泡小单孢菌诱变育种的研究,中国激光,1993,11(1993)877-880。
    173.黄少白,戴秋杰,刘小忠,彭少兵,B.S.Vergara,水稻对UV-B辐射增强的生化适应机制,作物学报,24(1998)464-469。
    
    
    174.李光林,杨亚玲,He-Ne激光对玉米幼苗的生理效应,激光生物学,5(1993)831-832,846。
    175.李琳,焦新之,应用蛋白染色剂考马斯亮蓝G-250测定蛋白质的方法,植物生理学通讯,6(1980)52-55。
    176.李韶山,王艳,王小菁,朱延彬,刘颂豪,UV-B诱导的水稻DNA损伤和修复研究,光子学报,29(2000)595-597。
    177.李耀维,冯文新,He-Ne激光对白术种子萌发与幼苗生长的影响,应用激光,16(1996)37-41。
    178.李玉滨,郭桂云,王友好,He-Ne激光处理番茄种子最适剂量的研究,中国激光,17(1990)189-192。
    179.李庄,激光诱导沙田柚无核化的研究,中国激光,22(1995)78-80。
    180.梁宏,M.伯恩斯,活细胞染色体切割(光刀)和光捕捉(光钳研究),激光生物学,3(1994)481-488。
    181.廖映分,激光对柑桔的生理学效应及其在育种上的应用,见:陈芳远,胡能书,梁宏等主编,中国激光遗传育种与激光生物学,长沙:湖南师范大学出版社,1992,PP:150-154。
    182.刘福全,激光对玉米种子的辐射及诱变作用,沈阳农业大学学报,18(1987)46-51。
    183.刘永军,He-Ne激光辐射对黄瓜萌发过程影响的研究,应用激光,15(1995)81-84,60。
    184.陆治国,激光束空间质量评价,激光杂志,1995,2(1995)53-58。
    185.欧阳光察,植物生理学实验手册,上海植物生理学会主编,上海科学技术出版社,1985,PP:191-192。
    186.彭绍民,He-Ne激光辐射对大豆生物学效应的研究,应用激光,5(1985)165-166。
    187.齐智,蔡素雯,王勋陵,He-Ne激光对玉米幼苗可溶性蛋白质谱带的影响,西北大学学报,30(2000)47-51。
    188.齐智,岳明,王勋陵,蔡素雯,激光对蚕豆幼苗紫外线-B辐射损伤的防护作用,中国激光,2001,A28(印刷中)。
    189.孙娟,陈瑗,周玫,MnSOD与CuZnSOD基因转染细胞在电离辐射敏感性中的作用,生物物理学报,13(1997)653-658。
    190.唐旭东,安黎哲,王勋陵,增强的UV-B辐射对蚕豆叶子微粒体的影响,植物生理学通讯,24(1998)171-176。
    191.万贤国,庞国良,早籼“湘激80-82”选育兼激光育种,应用激光,8(1988)280-283。
    192.王爱国,植物的氧代谢,《植物生理与分子生物学》(第二版),余叔文主编,科学出版社,1998,PP:366-389。
    193.王小菁,潘瑞炽,UV-B对高等植物生长和产量及某些生理代谢过程的影响,植物生理学通讯,31(1995)385-389。
    194.吴少伯,植物组织中蛋白质及同工酶的聚丙烯酰胺凝胶电泳,植物生物学通讯,1(1979)30-35。
    195.向洋,光电子,激光,1994,5(2):87-90
    196.向洋,激光的生物学效应研究,激光生物学,3(1994)423-425。
    197.向洋,激光辐照真菌的脂酶、淀粉同工酶研究,激光生物学,4(1993)364-366。
    
    
    198.谢惠安,马玉蓉,激光微束对豌豆幼苗的生物效应研究,激光生物学,4(1993)364-366。
    199.许梅芬,王桂贞,罗廷礼,激光对小麦诱变效应的研究,应用激光,9(1989)177-179。
    200.薛应龙,抗性生理,植物生理学手册,科学技术出版社,1982,PP:67-70。
    201.严涛,孙丽亚,崔立斌,魏康,用EndoV和碱电泳法检测哺乳动物细胞嘧啶二聚体的切除修复,细胞生物学杂志,1993,15(4):182-186。
    202.晏斌,戴秋杰,UV-B对水稻叶组织中活性氧代谢及膜系统的影响,植物生理学报,22(1996)373-378。
    203.杨景宏,陈拓,王勋陵,增强的UV-B辐射对小麦叶绿体膜组分和膜流动性的影响,植物生态学报,24(2000B)102-105。
    204.袁朝兴,丁静,水胁迫对棉花叶子IAA、IAAPOD和POD活性的影响,植物生理学报,16(1990)37-42。
    205.袁晓华,杨中汉,植物生理生化实验,北京:高等教育出版社,1983,PP:10-15。
    206.朱九明,激光照射的遗传学效应,国外激光,11(1986)1-5。
    207.朱孝达,张泽,王贵学,小麦激光后代的遗传变异和选择指数的研究,见:陈芳远,胡能书,梁宏等主编,中国激光遗传育种与激光生物学,长沙:湖南师范大学出版社,1992,PP:104-107。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700