用户名: 密码: 验证码:
全膝关节在不同运动状态下的有限元仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膝关节是人全身最大、最复杂的关节,位居髋关节和踝关节之间,是下肢活动的枢纽。它的任何一个主要组成部分的损坏都会引起膝关节的反常运动,久之软骨和半月板由于磨损、变性而形成骨性关节病,从而严重影响得病者的正常活动。包括膝关节骨关节病、髋关节骨关节病在内的各类骨关节病其发病率随年龄的增长而不断增高。据统计,50岁以上的人群中,50%患有骨关节病,65岁以上的人群中,90%的女性和80%的男性患有此病。骨关节疾病严重地影响了老年人的生活质量,甚至对他们的生命构成了威胁;老年患者不仅饱尝病痛的折磨,同时也给家庭和社会带来许多负担。目前,随着经济的发展,生活水平的日渐提高,骨性关节病也开始趋向低龄化,将来越来越多的人会受到骨性关节病的困扰。
     鉴于膝关节的重要性及相关疾病的危害性,人们对其解剖结构与相应的生物力学特性的研究也越来越深入和广泛。通过对正常和病变膝关节的对比研究和分析,不但可以更好地阐明膝关节疾病的发生机制,而且还可以指导相关疾病的治疗及康复。但由于膝关节自身解剖结构的复杂性、组成材料性质的多样性、运动形式以及各组成部分载荷分配情况的复杂性,因而人们目前还不能对膝关节的各种生物力学性质及行为做出准确的描述。
     经过将近四十年的发展,有限元方法已经成为目前国际上进行肌肉—骨骼系统计算力学分析的主要手段,但由于膝关节处所涉及的关节面、韧带、肌肉众多,建立完全的有限元模型由于过于复杂而不易研究。目前的研究主要集中在组成膝关节的骨骼和主要韧带,但包括膝部各骨骼和主要韧带的三维有限元模型研究还较少。
     鉴于此,本文的主要工作是进行了下蹲和步行运动过程的拍摄,通过实验得到了下蹲过程中人体的足底受力情况,确定了在下蹲过程中股四头肌的力矩;建立包括膝部各骨骼和主要韧带的三维有限元模型,通过有限元仿真方法,研究膝关节在不同运动的情况下(包括下蹲、步行等运动),膝关节各关节及韧带的应力分布。
     具体内容包括以下几个方面:
     (1)建立简化的股骨、胫骨及半月板的生物力学模型,初步估算了股骨、胫骨软骨关节面接触时,接触面上的接触压力和股骨、半月板接触时的接触压力。并着重对软组织的生物力学特性进行分析,给出了韧带的材料特性、初始应变等数据。进行了下蹲和步行运动过程的拍摄,得到了运动过程中各关节角度的变化曲线;同时实验测量了下蹲过程中人体的足底受力情况,确定了在下蹲过程中股四头肌的力矩;
     (2)从生物力学角度,基于一名志愿者的膝部CT扫描图像,建立了包括完整股骨、胫骨、腓骨、髌骨,及膝部各主要软骨、韧带的三维有限元模型,通过与其它理论模型、实验、有限元模型的结果进行比较分析,证实了该模型的合理性、有效性;
     (3)利用已建成膝部的三维有限元模型,计算并分析了双腿站立、下蹲和步行运动作用下膝关节各部位和韧带的应力分布,探讨了载荷和运动耦合的情况对接触压力分布的影响。可以看出在0°~90°的屈膝运动中,随着屈膝角度的增大,各软骨和半月板上的接触压力峰值也随之增大,相对于内侧半月板,外侧半月板峰值变化不大,且内侧半月板的压力值大于外侧半月板的。在步行运动中,ACL比其他韧带的张力值大;
     (4)双腿站立时各软骨和半月板上的接触压力峰值最小,深度屈膝90时,各接触压力峰值最大,单腿支撑时压力峰值略大于脚跟着地状态;
     综上所述,本文建立了膝关节周围所有完整骨骼、主要韧带的三维有限元模型,引入髋、踝关节的运动形态学数据,从股骨顶端加载来研究膝部各关节面接触力及韧带的应力分布。通过与其他学者的研究数据比较,证实了该模型的合理性和有效性。本文的研究结果为个体化人膝关节的三维建模和在体生物力学研究提供了可操作的平台;也为进一步深入了解膝部各部件在力载荷作用下的生物力学行为和功能效应提供参考依据;对于了解日常活动对膝关节的影响具有重要的意义;以及对今后发展膝关节置换术及其临床应用具有重要的学术意义和应用价值。
The knee joint is the most biggest and complicated joint in the whole human body, lied between hip joint and ankle joint. And it is the junction for activities of human lower extremity. Anyone damage of the main components will result in abnormal movement of knee joint. As time passes, osteoarthritis of cartilage and meniscus will emerge because of wearing and degeneration, thereby normal activities of sufferers will be severely affected. Disease rate of all kinds of osteoarthritis,raises up unceasingly with age growing, including hip and knee joints’osteoarthritis. According to statistics, in crowd whose age above 50 year’s old, 50 percent people suffered the osteoarthritis; in crowd whose age above 65 year’s old, 90 percent female and 80 percent male suffered this disease. The osteoarthritis severely affects the old people’s quality of life, even threatens their life; old patient not only suffer the pains, but bring many burden to family and society. At present, with economy development and improvement of living standard day by day, the low age people begin to suffer the osteoarthritis, and more and more people will be cursed by the osteoarthritis in the future.
     In view of the significance of knee joint and hazardless of related disease, researches on anatomical structure and corresponding biomechanical characteristics become more and more deep and extensive. Through the comparative study and analysis of normal and diseased knee joint, the disease occurred mechanism of knee joint can not only be better demonstrated, but can be guided to cure and rehabilitate related disease. But because of the complexity of anatomical structure in knee joint, the diversity of material properties composed of the knee joint, and the complexity of moving form and load distribution in every component in knee joint, therefore accurate description can’t be made at present for biomechanical properties and behavior of knee joint.
     By near 40 year’s development, finite element method already becomes the international main means in computational mechanics analysis for musculoskeletal system; but because of many articular surfaces, ligaments and muscles involved in knee joint, it is too difficult and too complex to built a complete finite element model for researching. Current research mainly concentrates on bones and important ligaments made up of knee joint, but studies on three-dimensional finite element model are fewer including complete bones and main ligaments of knee joint.
     In the light of these conditions, the main work in this paper is that : the motions of squat and gait are photographed,force distribution at the bottom of foot is obtained by experimental measurement, and the moments of the quadriceps are determined during the squat.; a three-dimensional finite element model above-mentioned is constructed to determine the stress distribution in articulation and ligaments of knee joint under different motions ( including squat, gait, and so on ) in this paper by finite element simulation method.
     Specific contents include the following several aspects:
     (1) A biomechanical model including simplified femur, tibia and menisci is built, and the contact pressure on articular cartilage of femur and tibia and contact pressure between femur and menisci are estimated preliminarily; and explicit analysis are done on mechanical properties of soft tissue, material properties, initial strain of ligaments and other data are given;the motions of squat and gait are photographed, the angle changed curves of some joints are obtained; at the same time, force distribution at the bottom of foot is obtained by experimental measurement, and the moments of the quadriceps are determined during the squat.
     (2) from the point of biomechanical view, based on CT scanning pictures of a volunteer’s knee joint, a three-dimensional finite element model is constructed including complete femur, tibia, fibular, patellar, the cartilages and the main ligaments of knee joint. It is proved to be reasonable and valid by comparison with results of other theoretical models, experiments, and finite element models.
     (3) by using the above constructed finite element model, the stress distribution of articulation and ligaments of knee joint are calculated and analyzed under the conditions of double leg standing, squat and gait; and effects of loads coupled with motions on contact stress distribution are investigated. The results of the 0°~90°squat are that the peak value of contact pressure of cartilages and menisci would grow larger with the flexion angle increasing; the change of peak value of lateral meniscus is not significant relative to medial meniscus, and the peak values are smaller than that of medial.
     (4) The peak value of contact pressure of cartilages and menisci is the smallest in double legs standing, the largest value in the deep flexion 90°, and the peak value in single limb stance is larger than heel strike. And the tension force of ACL is larger than other ligaments in gait.
     Above all, a three-dimensional finite element model of the knee joint is constructed in this paper for the first time, including complete femur, tibia, fibular, patellar,main cartilage,menisci,and ligaments around the knee joint. The contact force for every articular surface and the stress distribution for ligaments of knee joint are researched by loading at the top femurios, based on morphological data of hip and ankle joints. It is proved to be reseanale and valid by comparing with research data of other scholars. Results of this paper give a operational platform for three-dimensional modeling of personal human knee joint and in vivo biomechanical studies; it also gives reference for insight to further to understand the mechanical behavior and function in every component of the knee joint under mechanical loads; it has significant meaning to understand the effects of daily activities on knee joint; and it has significant academic meaning and applicable value to develop replacement method of knee joint and to guide for clinical application.
引文
[1]柏树令主编,系统解剖学,第五版,北京,人民卫生出版社,2001,7-61.
    [2] http://www.welink.com.cn/hospital/kepu03.html.
    [3] B. Bresler,J.P Frankel, The forces and moments in the leg during level walking, Trans ASME, 1950, vol. 72, 27-30
    [4] J.P. Paul,Bio-engineering studies of the forces transmitted by joints,Engineering analysis,In: Kenedi, Biomechanics and Related Bio-Engineering Topics,Pergamon Press, Oxford,1967,369-380
    [5] G.L. Smith , Biomechanical analysis of knee flexion and extension, Journal of Biomechanics,1973,vol. 6,79-92
    [6] A. Serieg,R.J. Arvikar,The prediction of muscular load sharing and joint forces in the lower extremities during walking,Journal of Biomechanics,1973,vol. 8,89-102
    [7] A. Serieg,R.J. Arvikar,A mathematical model for evaluation of forces in lower extremities of the musculo skeletal system,Journal of Biomechanics,1973,vol. 6,313-326
    [8] J.P. Paul,Approaches to design: force actions transmitted by joints in the human body,Proceedings of Royal Society of London,1976,vol. 192,163-172
    [9] L. Lindbeck,Impulse and moment of impulse in the leg joints by impact from kicking,ASME,Journal of Biomechanical Engineering,1983,vol. 105,108-111
    [10]王西十,白瑞蒲,关于人膝关节生物力学模型的研究现状,力学进展,1999,vol. 29(2),244-250
    [11] F. Freudenstein,S.L. Woo,Kinematics of the human knee joint,Bull Math Biophys,1969,vol. 31,25-43
    [12] P.A. Blacharski,J.H. Somerset,D.G. Murray,A three-dimensional study of the kinematics of the human knee,Journal of Biomechanics,1975,vol. 8,375-384
    [13] R. Crowninshield, M.H. Pope,R. J. Johnson,An analytical model of the knee, Journal of Biomechanics,1976,vol. 9,397-405
    [14] Van. R. Dijk,R. Huiskes,G. Selvik,Roentgen stereophoto grammetric study of the kinematics of three dimensional kinematic behavior and cruciate ligament length patterns of the human knee joint, Journal of Biomechanics, 1979, vol. 12,727-731
    [15] C.D. Tamea,C.E. Hennings,Pathomechanics of the pivot shift maneuver: an instant center analysis, Americal Journal Sports Medicine,1981,vol. 9,31-37
    [16] M.A. Hartfel,H.J. Lysdahl,D.G. Olson,et.al.,The use of screw/ axis surfaces in the three-dimensional analysis of the human knee joint,In: Lantz SA,King AI,eds,Advances in Bioengineering,ASME,WAM,Anaheim CA,1986,Dec 7-12,105-106
    [17] J.B. Morrison,Bioengineering analysis of force actions transmitted by the knee joint,BioMedical Engineering,1968,vol. 3,164-170
    [18] T.P. Andriacchi,R.P. Mikosz,S.J. Hampton,et.al.,A statically indeterminate model of the human knee joint,Proceedings Biomechanics Symposium AMV223,1977,vol. 227-229
    [19] R.J. Minns , Forces at the knee joint: anatomical considerations. Journal of Biomechanics,1981,vol. 14,633-643
    [20] M.S. Hefzy,E.S. Grood,An analytical technique for modeling knee joint stiffness,part II: Ligamentous Geometric Nonlinearities,ASME,Journal of Biomechanical Engineering,1983,vol. 105,145-153
    [21] E.S. Grood,M.S. Hefzy,An analytical technique for modeling knee joint stiffness,part I: ligamentous forces,ASME,Journal of Biomechanical Engineering,1982,vol. 104,330-337
    [22] V. Baltzopoulos,Muscular and tibiofemoral joint forces during isokinetic concentric knee extension,Clinical Biomechanics,1995,vol.10,208-214
    [23] N. Zheng,G.S. Fleisig,R.F. Escamilla,et.al.,An analytical model of the knee for estimation of internal forces during exercise,Journal of Biomechanics,1998,vol. 31(10), 963-967
    [24] E. Kellis,Tibio-femoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors, Clinical Biomechanics,2001,vol. 16,229-236
    [25] S.J. Piazza,S.L. Delp,Three-dimensional dynamic simulation of total knee replacement motion during a step-up task, Journal of Biomechanical Engineering,2001,vol. 123,599-606
    [26] H.S. Gill,J.J. O’Connor,Biarticulating two-dimensional computer model of the humanpatellofemoral joint,Clinical Biomechanics,1996,vol. 11(2),81-89
    [27] P.A. Costigan,K.J. Deluzio,U.P. Wyss,Knee and hip kinetics during normal stair climbing,Gait and Posture,2002,vol. 16(1),31-37
    [28] W.R. Taylor,M.O. Heller,G. Bergmann,et.al.,Tibio-femoral loading during human gait and stair climbing,Journal of Orthopaedic Research,2004,vol. 22(3),625-632
    [29] M.H Moeinzadeh,A.E Engin,N.Akkas,Two-dimensional dynamic modeling of human knee joint,Journal of Biomechanics,1983,vol. 16,253-264
    [30] C. Wongchaisuwat,H. Hemami,H.J Buchner,Control of sliding and rolling at natural joints,ASME,Journal of Biomechanical Engineering,1984,vol. 106,368-375
    [31] R.D. Komistek,Mathematical modeling of the human arm: an aid in the investigation of the role of muscle forces in the development of lateral epicondylitis,[PH.D. Dissertation], University of Memphis,University of Memphis,1992
    [32] R.D. Komistek,J.B. Stiehl,D.A. Dennis, Mathematical model of the lower extremity joint reaction forces using Kane’s method of dynamics,Journal of Biomechanics,1992,vol. 31,185-189
    [33] X.S. Wang,N. Akkas,Two-dimensional biodynamic model of the human femur-knee joint-tibia system,French: The 14th International Conference on Biomechanics,1993.
    [34] X.S. Wang,Two-dimensional biodynamic model of the human lower extremity [Ph D Dissertationl,Ankara,Turkey: Middle East Technical University,1994.
    [35] S.T. Tumer,X.S. Wang,N. Akkas,A planar dynamic anatomical model of the human lower limb,Biomedical Engineering,1995,vol. 7,365-378
    [36]王西十,白瑞蒲,S.T. Tumer,一个人膝关节数学模型及其生物力学响应研究,医用生物力学,1998,vol. 13(1),10-16
    [37] S.T. Tumer,A.E. Engin,Three-body segment dynamic model of the human knee,ASME,Journal of Biomechanical Engineering,1993,vol. 115,350-356
    [38] T.W. Lu,S.J.G. Taylor,J.J. O’Connor,et.al.,Influence of muscle activity on the forces in the femur: am in vivo study,Journal of Biomechanics,1997,vol. 30,1101-1106
    [39] T.W. Lu,J.J. O’Connor,S.J.G. Taylor,et.al.,Validation of a lower limb model with in vivo femoral forces telemetered from two subjects,Journal of Biomechanics,1998,vol. 31,63-69
    [40]王西十,白瑞蒲,S. Turgut Tumer,et.al.,股骨-胫骨-髌骨三体人膝关节啮合运动数学模型,生物医学工程学,1998,vol. 18 (4),360-363
    [41] X.H. Jia,M. Zhang,W.C.C.Lee,Load transfer mechanics between trans-tibial prosthetic socket and residual limb-dynamic effects,Journal of bBiomechanics,2004,vol.37,1371-1377
    [42] R.D. Komistek,T.R. Kanec, M. Mahfouz, Knee mechanics: a review of past and present techniques to determine in vivo loads ,Journal of Biomechanics,2005,vol. 38,215-228
    [43] A.S. Greenwald,J.J. O'Connor,The transmission of load through the human hip joint. Journal of Biomechanics,1971,vol. 4 (6),507-528
    [44] J.D. Black,M.B. Matejczyk,A.S. Greenwald, Reversible cartilage staining technique for defining articular weight-bearing surfaces,Clinical Orthopaedics,1981,vol. 159,265-267
    [45] H. Kurosawa,T. Fukubayashi,H. Nakajima,Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clinical Orthopaedics,1980,vol. 149,283-290
    [46] A.M. Ahmed, D.L. Burke,In-vitro measurement of static pressure distribution in synovial joints—Part I: Tibial surface of the knee,Journal of Biomechanical Engineering,1983,vol. 105(3),216-225
    [47] T.D. Brown,D.T. Shaw,In vitro contact stress distribution on the femoral condyles,Journal of Orthopaedic Research,1984,vol. 2 (2),190-199
    [48] M. Manouel,H.S. Pearlman,A. Belakhlef,et.al.,A miniature piezoelectric polymer transducer for in vitro measurement of the dynamic contact stress distribution,Journal of Biomechanics,1992,vol. 25 (6),627-635
    [49] G.A. Ateshian,S.D. Kwak,L.J. Soslowsky,et.al.,A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints,and a comparison with other methods,Journal of Biomechanics,1994,vol. 27(1),111-124
    [50] T. Stewart,Z.M. Jin,D. Shaw,et.al.,Experimental and theoretical study of the contact mechanics of five total knee joint replacements,Proceedings of the Institution of Mechanical Engineering,1995,vol. 209(4) ,225-231
    [51] T. Takeuchi,V.K. Lathi,A.M. Khan,et.al.,Patellofemoral contact pressures exceed the compressive yield strength of UHMWPE in total knee arthroplasties,Journal of Arthroplasty,1995,vol. 10(3),363-368
    [52] P.S. Walker,G. Yildirim,J. Sussman-Fort,et.al.,Relative positions of the contacts on the cartilage surfaces of the knee joint,Knee,2006,vol.13,382-388
    [53]李润,赵淑芝,关丽媛等,光弹性法在人体膝关节应力分析中的应用,吉林工业大学学报,2004,vol. 24,38-43
    [54] M.L. Harris,P. Morberg,W.J.M. Bruce,et.al.,An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film,Journal of Biomechanics,1999,vol. 32,951-958
    [55] T. Ashvin,C.H.G. James,D.D. Shamal,Contact stresses in the knee joint in deep flexion,Medical Engineering & Physics,2005,vol. 27,329–335
    [56] E.J. Bassey,J.J. Littlewood,S.J.G. Taylor,Relations between compressive axial forces in an instrumented massive femoral implant, ground reaction forces, and integrated electromyographs from vastus lateralis during various osteogenic exercises,Journal of Biomechanics,1997,vol.30,213-223
    [57] S.J.G. Taylor,J.S. Perry,J.M. Meswania,et.al.,Telemetry of forces deom proximal femoral replacements and relevance to fixation,Journal of Biomechanics,1997,vol.30,225-234
    [58] S.J.G. Taylor,P.S. Walker,J.S. Perry,et.al.,The forces in the distal femur and the knee during walking and other activities measured by telemetry,Journal of Arthroplasty,1998,vol.13,428-437
    [59] S.J.G. Taylor,P.S. Walke,Forces and moments telemetered from two distal femoral replacements during various activities,Journal of Biomechanics,2001,vol. 34(7),839-848
    [60] K.R. Kaufman,N. Kovacevic,S.E. Irby,et.al.,Instrumented implant for measuring tibiofemoral forces,Journal of Biomechanics,1996,vol.29,667-671
    [61] D.L. Foster,F. Werner,D.G. Murray,et.al.,Telemetry instrumentation for kinesiologic studies of knee motion,Medical Research Engineering,1997,vol.13,17-21
    [62] F. Burny,M. Donkerwolcke,F. Moulart,et.al.,Concept, design and fabrication of smart orthopedic implants,Medical Engineering Physics,2000,vol.22,469-479
    [63] B.A. Morris,D.D. D’Lima,J. Slamin,et.al.,E-knee: evolution of the electronic knee prosthesis,Journal of Bone Joint Surgery,2001,vol. 83A (Suppl 2 part 2),62-66
    [64] E. F. Rybicki,F. A. Simonen,E. B. Weis,On the mathematical analysis of stress in the human femur,Journal of Biomechanics,1972,vol. 5(2),203-215
    [65] M.Z. Bendjaballah,A. Shirazi-Adl,D.J. Zukor,Biomechanics of the human knee joint in compression: reconstruction,mesh generation and finite element analysis,Knee,1995,vol. 2,69-79
    [66] M.Z. Bendjaballah,A. Shirazi-Adl,D.J. Zukor,Finite element analysis of human knee joint in varus-valgus,Clinical Biomechanics,1997,vol. 12(3),139-148
    [67] M.Z. Bendjaballah,A. Shirazi-Adl,D.J. Zukor,Biomechanical response of the passive human knee joint under anterior-posterior forces,Clinical Biomechanics,1998,vol.13,625-633
    [68] A. Jalani,A. Shirazi-Adl,M.Z. Bendjaballah,Biomechanics of human tibio-femoral joint in axial rotation,Knee,1997,vol. 4,203-213
    [69] B. Beynnon,J. Yu,D. Huston,et.al.,A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis, ASME Journal of Biomechanical Engineering,1996,vol. 118,227-239
    [70] A.C. Godest,M. Beaugonin,E. Haug, et.al.,Simulation of a knee joint replacement during a gait cycle using explicit element analysis,Journal of Biomechanics,2002,vol. 35(2),267-275
    [71] K.E. Moglo,A. Shirazi-Adl,On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study,Clinical Biomechanics,2003,vol. 18(8),751-759
    [72] K.B. Shelburne,M.G. Pandy,M.R. Torry,Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait,Journal of Biomechanics,2004,vol. 37(3),313-319
    [73] S. Hirokawa,R. Tsuruno,Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament, Journal of Biomechanics, 2000,vol. 33,1069-1077
    [74] Y. Song,R. Debski,V. Musahl,et.al.,A three-dimensional finite element model of thehuman anterior cruciate ligament: a computational analysis with experimental validation,Journal of Biomechanics,2004,vol. 37,383-390
    [75] G. Limbert,J. Middleton,M. Taylor,Finite element analysis of the human ACL subjected to passive anterior tibial loads,Computer Methods in Biomechanics and Biomedical Engineering,2004,vol. 7,1-8
    [76] D.L. Butler,M. Sheh,D. Stouffer,et.al.,Surface strain variation in human patellar tendon and knee cruciate ligaments,ASME Journal of Biomechanical Engineering,1990,vol.39,38-45
    [77] J.A. Weiss,B. Maker,S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity,Computer Methods and Applications in Mechanical Engineering,1996,vol.135,107-128
    [78] J.C. Gardiner,J.A. Weiss,T. Rosenberg,Strain in the human medial collateral ligament during valgus lading of the knee,Clinical Orthopaedics and Related Research,2001,vol. 391,266-274
    [79] J.C. Gardiner,J.A. Weiss,Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading,Journal of Orthopaedics Research,2003, vol. 21,1098-1106
    [80] J. Heegard,P.F. Leyvraz,A. Curnier,et.al.,The biomechanics of the human patella during passive knee flexion,Journal of Biomechanics,1995,vol. 28,265-1279
    [81] D. Périé,M.C. Hobatho,In vivo determination of contact areas and pressure of the femorotibial joint using nonlinear finite element analysis,Clinical Biomechanics,1998,vol. 13,394-402
    [82] G. Li,J. Gil,A. Kanamori,et.al.,A validated three-dimensional computational model of a human joint,ASME Journal of Biomechanical Engineering,1999,vol. 121,657-662
    [83] G. Li,O. Lopez,H. Rubash,Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis, ASME Journal of Biomechanical Engineering,2001,vol. 123,341-346
    [84] B. Zielinska,L. Tammy,H. Donahue,3D finite element model of meniscectomy: changes in joint contact behavior,Journal of Biomechanical Engineering,2006,vol.128,115-123
    [85] E. Pe?a,B. Calvo,M.A. Martinez,et.al.,A three-dimensional finite element analysis of the combined behaviour of ligaments and menisci in the healthy human knee joint,J Biomechanics,2006,vol. 39,1686-1701
    [86] A. Shirazi-Adl,W. Mesfar,Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads,Clinical Biomechanics,2007,vol.22,344-351
    [87]张美超,赵卫东,原林等,建立数字化虚拟中国男性一号膝关节的有限元模型,第一军医大学学报,2003,vol. 23(6),527-529
    [88]万磊,李义凯,原林等,基于中国数字人CT数据重建膝关节有限元模型,中国骨与关节损伤杂志,2006,vol. 21(4),271-273
    [89]潘哲尔,黄加张,顾湘杰等,磁共振影像膝关节三维有限元模型的建立,中国骨与关节损伤杂志,2006,vol. 21(4),268-270
    [90]汪强,孙俊英,赖震等,膝关节三维有限元模型的建立,山西医药杂志,2007,vol. 36(3),210-212
    [91]黄文华,姜楠,张美超等,膝关节计算机三维模型的建立,中国医学物理学杂志, 2007,vol.24. No.4,267-268
    [92]张宇,郝智秀,金德闻等,基于磁共振图像的人体膝关节三维模型的建立,中国康复医学杂志,2007,vol. 22(4),339-342
    [93]郝智秀,金德闻,张济川等,含半月板的活体股胫关节接触特性有限元分析,2008,vol. 48(2),176-179
    [94]吴迪,基于CT、MRI的人体膝关节三维有限元模型的建立及应用[硕士学位论文],大连医科大学,大连医科大学,2007
    [95]杨桂通,陈维毅,徐晋斌,生物力学,北京,重庆出版社,2000,14-32
    [96] D.T. Reilly,A.T. Burstein,The elastic and ultimate properties of compact bone tissue, Journal of Biomechanics,1975,vol.8,393-405
    [97] T.M. Keaveny,A.L. ET,Differencies between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus,Journal of Biomechanics,1994,vol. 27(9),1137-1146
    [98] E.F. Morgan,T.M. Keaveny,Dependence of yield strain of human trabecular bone on anatomic site,Journal of Biomechanics,2001,vol. 34(5),569-577
    [99] D.P. Fyhrie,D.R. Carter,A unifying principle relating stress to trabecular bone morphology,Journal of Orthopaedic Research,1986,vol.4,304-317
    [100] D.L. Kopperdahl,T. M. Keaveny,Yield strain behavior of trabecular bone,Journal of Biomechanics,1998,vol. 31(7),601-608
    [101] F. Linde, I. Hvid,F. Madsen,The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens,Journal of Biomechanics,1992,vol. 25(4),359-368
    [102] C.M. Ford,T.M. Keaveny,The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation,Journal of Biomechanics,1996,vol. 29(10),1309-1317
    [103] http:// www.ttyyzz.com
    [104]吴家龙,弹性力学,北京,高等教育出版社,2004,71-74,261-274
    [105] J.Z. Wu,W. Herzog,M. Epstein,Joint contact mechanics in the early stages of osteoarthritis,Medical Engineering & Physics,2002,vol. 22,1-12
    [106] C. Armstrong,W. Lai,V. Mow,An analysis of the unconfined compression of articular cartilage,ASME Journal of Biomechanical Engineering,1984,vol.106,165-173
    [107] P.J. Flory,Thermodynamic relations for high elastic materials,Transactions of the Faraday Society,1961,vol.57,829-838.
    [108] D. Pioletti,L. Rakotomanana,J. F. Benvenuti,et.al.,Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons , Journal of Biomechanics,1998,vol.31,753-757
    [109] J.C. Gardiner , J.A. Weiss , C. Bonifasi-Lista , Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading,Journal of Biomechanics,2002,vol. 35,943-950
    [110] L. Blankevoort,R. Huiskes,Ligament-bone interaction in a three-dimensional model of the knee,ASME Journal of Biomechanical Engineering,1991,vol.113,263-269
    [111]郑秀瑗,贾书惠,高云峰等,现代运动生物力学,北京,国防工业出版社,2002,100-163,366-407
    [112]范清,张菁,有限元分析与髋关节研究进展,国际骨科学杂志,2007,vol. 28(1),47-51
    [113]张美超,,夏虹,樊继宏,人体骨骼有限元几何模型的重建,中国脊柱脊髓杂志,2003,vol.21(5),118-119
    [114] Ls-Dyna keywords user’s manual,California,Livermore Software Technology Corporation,2002,1-44
    [115]黄加张,基于MRI膝关节半月板的临床及其生物力学的三维有限元研究,[博士学位论文],复旦大学,复旦大学,2005
    [116] W. Mesfar,A. Shirazi-Adl,Biomechanics of the knee joint in flexion under various quadriceps forces,Knee,2005,vol.12,424–434
    [117]左立新,高雁卿,杨卫兵,正常人前后交叉韧带与腓骨长肌腱的解剖学形态、力学特性对比,中医正骨,2007,vol. 19 (10),5-6
    [118]王晓宇,杨柳,陈伟等,膝关节前交叉韧带解剖测量和MRI测量对照分析,重庆医学,2006,vol.35(13),25-27
    [119]余正红,李义凯,赵卫东等,伸膝装置应用解剖及其在膝关节置换术中的临床意义,中国临床解剖学杂志,2007,vol.25(5) ,489-492
    [120]陈游,人膝关节内侧副韧带解剖观察和重建手术的应用研究,[博士学位论文],中南大学,中南大学,2006
    [121]于春水,正常膝关节非常见韧带和肌键类结构的解剖和MRI研究,天津医科大学,天津医科大学,2002
    [122] J.A. Weiss,J.C. Gardiner,B.J. Ellis,et.al.,Three-dimensional finite element modeling of ligaments: Technical aspects,Medical Engineering & Physics,2005,vol.27(10),845-861
    [123] P. Donzelli,R.S. Spilker,G.A. Ateshian,et.al.,Contact analysis of biphasic transversely isotropic cartilage layers and correlation with tissue failure , Journal of Biomechanics,1999,vol.32,1037-1047
    [124] M.A. LeRoux,L.A. Setton,Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension,ASME Journal of Biomechanical Engineering,2002,vol.124,315-321
    [125]李润方,龚建霞主编,接触问题数值方法及其在机械设计中的应用,重庆,重庆大学出版社,1991,1-70
    [126] T. Murakam,The lubrication in natural synovial joints and joint prostheses,JSME International Journal,1990,vol. 33,465–474
    [127] C.K. Cheng,N.K. Yao,H.C. Liu,The influence of body weight-bearing on knee joint biomechanics,医用生物力学,1995,vol. 10(3),173-182
    [128] J.O. Hallquist,Ls-Dyna theoretical manual,California,Livermore Software Technology Corporation,1998,1-285
    [129] F.Farahmand, T. Rezaeian, R.Narimani,et.al., Kinematic and dynamic analysis of the gait cycle of above-knee amputees, Scientia Iranica, 2006,vol. 13(3),261-271
    [130]范洪辉,李冬松,周振平等,不同骨质密度下生物型及骨水泥型股骨假体置入后的三维有限元分析,中国骨与关节损伤杂志,2007,vol. 22(6),465-467
    [131]刘琦,膝关节病变的治疗与功能重建,山东医药,2003,vol. 43(3),53-55
    [132] A. Thambyah,B.P Pereira,U. Wyss, Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking,The Knee,2005,vol. 12 (5),383-388
    [133] R.D. Komistek,J.B. Stiehl, D.A. Dennis,et.al.,Mathematical model of the lower extremity joint reaction forces using Kane’s method of dynamics, Journal of Biomechanics, 1998,vol. 31(2),185-189
    [134] I.J. Harrington,A bioengineering analysis of force actions at the knee in normal and pathological gait,Biomedical Engineering,1976,vol.11 (5),167-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700