用户名: 密码: 验证码:
基于BIA的人体健康监测与智能评价系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统动态的掌握个人身体机能,了解身体健康状况,树立健康意识是目前国家卫生健康领域的一个重要课题。生物电阻抗分析技术是一项无创、廉价、安全、无毒无害、操作简单的现代医疗检测方法,在人体健康信息的获取与监测中具有广阔的应用前景。
     体成分和内脏脂肪含量的改变是人体健康状态发生变化的重要诱因,也是普通人群易于分析的两个重要健康指标。传统的医疗检测手段操作复杂、检测成本较高,有的甚至会对人体带来一定伤害。应用生物电阻抗分析技术进行体成分、内脏脂肪含量的测量,并进行健康评估是实现个体健康状态监测和预警的有效手段。然而由于生物组织阻抗包含的生理状态信息并不充分,与人体体成分、内脏脂肪含量相关的关键参数较多,人体健康状态的科学分析过程中存在较多不确定性因素等问题,目前个人对健康状态的认识来源仍然是医学体检。如何利用人体生物电阻抗中带有的生理、病理信息,研究基于生物组织电特性和机器学习理论的体成分、内脏脂肪含量的测量模型并进行人体健康状态评价的新方法,具有重要意义。
     本课题的关键问题是在人群样本有限、阻抗信号资源有限、健康特征信息关系复杂条件下,通过科学的评价推理过程得到客观的结论。论文在对生物电阻抗技术理论研究的基础上,通过对人群样本相关数据的分析,得到体成分、内脏脂肪含量与样本个体参数的统计关系,利用机器学习领域的研究成果建立预测模型,构建了基于智能结构的健康状态云模型评价系统,主要研究内容如下:
     1.对人体生物电阻抗测量原理及方法进行了研究。包括人体生物电阻抗测量原理,生物组织电阻抗等效模型、频率特性,基于生物电阻抗的体成分和内脏脂肪面积相关的组织阻抗测量方法等问题,并对测量过程中影响结果的因素做出分析总结。
     2.对人体体成分预测模型进行了研究。通过样本人群数据的统计,分析了体成分与个体年龄、身高及性别的关系,针对阻抗测量过程中出现的噪声,设计了一种基于中值数绝对偏差的数据滤波器,消除了测量数据中由于突变性扰动或尖脉冲干扰导致的过失数据和随机噪声;将KLPS回归算法应用于人体TBW和FFM的预测,解决了特征数据可能存在的共线性和非线性;针对阻抗信息的局限性,采用相似性局部样本集进行训练学习,针对每个新样本单独建模并做出预测;通过定义训练样本集与待测样本的相似度,在对待测样本特征提取的同时进行KPLS回归;将KPLS、BP神经网络、多元回归、PLS等建模方法分别应用于体成分预测,对比了其在样本人群中的预测结果,通过与标准值的相关性、均方差分析,验证了本文提出的算法在人体成分预测中的有效性和优越性。
     3.对人体内脏脂肪面积的预测模型进行了研究。首先分析了与人体内脏脂肪含量相关的个体生理参数;针对基于生物电阻抗的人体内脏脂肪面积预测相关参数多,参数间存在一定相关性,训练样本较小,难以建立精确预测模型的问题,提出将支持向量机回归(SVR)应用于人体内脏脂肪面积的训练建模;针对建模过程中输入特征变量选择和SVR参数优化问题,提出将SVR和赤池信息准则(AIC)相组合的模型优化算法,将回归中的参数选择与支持向量机的参数优化看做一个组合问题,采用PSO算法进行搜索,实现SVM参数和输入变量的同时优化;对本文所提方法与KLPS回归、传统交叉验证SVR回归算法及多元回归方法在内脏脂肪面积预测中的结果进行了对比,通过相关性、均方差分析验证了本方法的有效性和优越性。
     4.对人体健康状态评价系统进行了研究。针对人体健康评价受影响因素多、人群样本非均质、相关数据庞大等问题,借鉴智能控制领域思想将人体健康评价系统分解为决策,测评两个层次,两层分别按智能计算、定性分析、定量执行三个阶段处理不同任务,构建了一种人体健康状态评价系统的智能结构模型,将研究目标不放在对象模式识别的数学模型上,而是建立被测目标模式特征模型的定性与定量结合的知识模型,解决了人体健康测评中任务复杂不易建模的问题;针对在健康评价过程中评价信息的模糊性和随机性,提出了基于自然语言的多属性群决策云模型集结方法;建立基于先验知识的健康评价指标属性与自然语言评语的标准云模型和基于实际测量指标的个人属性实际云模型;通过定义两种云模型的相似度,并进行计算得到测试者的健康评语;通过实例分析表明该评价方法在一定程度上客观的表达了自然语言在定性评价时的亦此亦彼,说明了本方法的可行性,为多属性评价问题提供了一个新思路。
     5.设计了一套用于人体生物电阻抗测量的仪器装置,完成了人体健康测评系统软件的编程。通过系统实验分别对测量仪器的重复性、相关性进行了分析;给出了详细的实验步骤、实验条件及实验结果,通过对结果的分析验证了设计仪器的有效性。
     仿真实验和实际应用结果均表明,本文所做的应用基础理论研究和给出的设计方法可适应于人体体成分、内脏脂肪的测量,结果的相关性、均方差优于其他方法,提出的基于云模型的智能结构评价系统适用于人体健康评估,课题的开展为国人健康管理领域健康促进的研究做出了探索。
It is an important subject to monitor human body function, physical quality systematically and dynamical to improve human health consciousness in Chinese health management fields. Bioelectrical impedance analysis (BIA) technology is a modern medical detection method with low-cost, non-invasive, simple operation, wealth of information, which has a wide application prospect in the human health monitoring and evaluation fields.
     The change body Compositon and visceral fat is an important incentive to the human health change, as well as the two health indexes are also easy to analyze for normal population. It is high-cost, complex operation and even harmful of the traditional medical measurement methods. It is an effective method for human health monitoring and alarm using BIA to measure body Compositon and visceral fat to evaluate the body health status. While the health information in the bioelectrical impedance is insufficiency and the parameters related body compositon and visceral fat are uncertainty, which lead to the difficulty in the filed of human health status analysis. Now the medical examination is still a primary method for health recognition. The electrical characteristics of human biological tissue is change with the pump-frequency, but it always incudes the human physiology, pathology information. So it is significance to research a new method to predict the body compositon, visceral fat and evaluate the health status using BIA and machine learning theory.
     The key problem of this project is how to get the scientific conclusion through humanoid inference in the case of the limited human specimen, limited information of impedance signal resource, complex relationship of health feature. In this paper, the relationship between the individual physiological parameters and body Compositon, visceral fat is analyzed through collection of specimen data. The prediction model is built using the results of machine learning fields and the intelligent structure evolution system for health is designed using cloud model. The main research contents are as follow:
     1. The theory of human bioelectric impedance and the measure method are studied. It includes the model of human body biology tissue impedance equivalent model, the problem of response frequency of bio-issue, the measurement methods of bioelectrical impedance related body Compositon and visceral fat et al, and the factors influence results in the process of measurement are analyzed
     2. The prediction model for human body Compositon of Chinese is studied. The relationship among the body Compositon and the age, height, weight is analyzed through the specimen population data statistics. A new method data filter on improved median number absolute deviation is proposed to filter impedance data, which can eliminate the fault data and random noise brought by mutational perturbation or sharp pulse jamming; the KPLS algorithm is applied in the human TBW and FFM prediction, the colinearity and nonlinear of the feature data can be avoided; aiming to the limited information of impedance, the similarity of local sample set is chosen to train, the poetical model is obtained for the new sample of testing sample set; the similarity local sample set is obtained through definition of the similarity between the train set and the testing set; the modeling methods include KPLS, BPNN, multiple regression, PLS are studied and applied in the body compositon prediction. The better method is given through comparison of the results using above several methods to predict the body compositon. The modeling method is proven efficient through computing of the coefficient and standard error of the test sample.
     3. The prediction model for human visceral fat area is studied. The relationship among the visceral fat area and the age, related impedance,weight,abdomenal shape are analyzed through the specimen population data statistics; due to the complex signals and many interfering factors in the process of assessing the viscera fat area using bioelectrical impedance, it is hard to get an accurate predicting model, the Support Vector Regress (SVR) algorithm is applied in the visceral fat area prediction; the optimum of the SVR parameters and the selection of the feature parameters can be regarded as a compound optimum problem, a new optimization algorithm on SVR and Akaike information criterion (AIC) is presented; the improvement PSO optimal algorithm is used to search the optimal value of the objective function to improve the efficiency; in the experiment, KPLS, traditional SVR, multiple regression are applied in the visceral fat area prediction, the result shows the method presented in this paper has valuable and good capability to measure the human viscera fat area.
     4. The evaluation system of human health status is built. Aiming to many interfering factors, the heterogeneous of human specimen and the huge data in the health evaluation process, the complex task can be decomposed into two levels:decision and evaluation according to the intelligent control thought, each level can be decomposed into three stage that intelligent computing, qualitative analysis and quantitative evaluation, thus the emphasis of the research is not on the mathematic model but on the knowledge model that is combined the qualitative judgment and quantitative calculation, which solve the model problem; aiming at the problem of uncertainty and the transform between the qualitative and quantitative in evaluation of human health process, the multi-attribute-evaluation model based on cloud model is presented; the multi-attribute-evaluation individal preference cloud model aggregation method based on natural language is given; the standard evaluation cloud model on health evaluation index and natural language is built; the practical cloud model is obtained through the tester's health index, the conclusion of tester's health status is drew through definition of similarity. Through the example analysis, the method presented in paper can show the obscurity of the nature langue objectively and the method is feasible, which bring about a new thought of the multi-attribute-evaluation problem.
     5. The bio-impedance measurement instrument for human body is designed, the software of human health evaluation is completed. The repetition and correlation of the instrument are analyzed through experiments; the detail procedure, condition and results of experiments are given; the conclusion of the results shows valuable of the instrument.
     The simulation experiments and the practical application show that the instrument designed this paper can be used in practice, the research of application fundamental theory in this paper and the presented methods can be used to predict body Compositon and visceral fat area, the correlativity and standard error are better than other models, the intelligent structure evaluation system on cloud model is suitable for health evaluation, the subject makes exploration in the field of Chinese health management.
引文
[1]卫生部信息化工作领导小组办公室.基于健康档案的区域卫生信息平台建设指南[Z].www.moh.gov.cn,2009.
    [2]孙怡宁.健康促进产业热点分析[J].中国科技投资,2011,6:64-66.
    [3]计惠民,张黎平,蒋鹤生.我国健康管理研究现状与展望[J].白求恩军医学院学报,2011,9(5):364-366.
    [4]彭青渝,郑文红.实施以健康体检为基础的健康管理模式的探讨[J].西南农业大学学报,2011,9(9):194-195.
    [5]符美玲,冯泽永,陈少春.发达国家健康管理经验对我们的启示[J].中国卫生事业管理,2011,3:233-236.
    [6]Kylea UG, Bosaeusb I, De Lorenzo AD, et al. Bioelectrical impedance analysis part II: utilization in clinical practice. Clinical Nutrition,2004,23:1430-1453.
    [7]Akin A, Sun HH. Non-invasive gastric motiliry monitor:fast electro gastro gram (EGG). Physiological Measurement,2002,23:505-519.
    [8]孙伟.生物阻抗的测量方法与实现[D].2006,天津:天津师范大学.
    [9]Cole KS. Membranes, ions and impulses:a chapter of classical biophysics.Berkeley, A: University of California Press,1972.
    [10]Cole KS, Cole RH. Dispersion and absorption in dielectrics. The Journal of Chemical Physics, 1941,9:341-351.
    [11]Schwan HP. Alternating current spectroscopy of biological substances. Proceedings of the IRE, 1959,47:184-195.
    [12]Foster KR, Schwan HP. Dielectric properties of tissues and biological materials:a critical review CRC Crit. Rev. Biomed. Eng.,1989,17:25-104.
    [13]Bhattacherjee AB, Chaudhury K, Bajaj MM. The dielectric parameters of skin tissues and their change during thermal burn injuries between one and 100MHz. Physica Medica,1995,11: 27-32.
    [14]Bodakian B, Hart FX. The dielectric properties of meat. IEEE Transactions on Dielectrics and Electrical Insulation,1994,181-192.
    [15]Cornish BH, Ward LC, Thomas BJ, Jebb SA, Elia M. Evaluation of multiple frequency bioelectrical impedance and Cole-Cole analysis for the assessment of body water volumes in healthy humans. European Journal of Clinical Nutrition,1996,50,159-164.
    [16]Brown BH, Barber DC, Morice AC, Leafhard AD. Cardiac and respiratory related electrical impedance changes in the human thorax. IEEE Transactions on Biomedical Engineering,1994, 41,129-134.
    [17]Chizmadzhev YA, Indenbom AV, Kuzmin PI, et al. Electrical properties of skin at moderate voltages:Contribution of appendageal maeropores. Biophysical Journal,1998,74:843-856.
    [18]DV Belik, Yu V Tomuev. Use of impedance measurements to aAssess degree of thermal injury to biological tissue. Biomedical Engineering,2001,35(2):97-100.
    [17]Tsal JZ, Will JA, Stelle HV, et al. In-vivo measurement of swine myocardial resistivity. IEEE transactions on biomedical engineering,2002,49(5):472-483.
    [19]Semenov SY, Svenson RH, Posukh VG, et al. Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz. IEEE transactions on medical imaging,2002,21(6):703-710.
    [20]刘晓江.基于直角坐标机器人的人体电阻抗测量系统的研究[D].2010,浙江大学.
    [21]宫伟彦,吕婧华,任超世等.生物电阻抗测量电极的阻抗特性[J].中国组织工程研究与临床康复,2009,13(9):1653-1656.
    [22]任超世,李章勇,王伟等.无创电阻抗胃动力检测与评价[J].中国组织工程研究与临床康复,2010,14(9):1653-1657.
    [23]林新,董秀珍,付峰等.生物组织阻抗频谱在体测量方法的研究[J].实用医药杂志,2004,21(5):437-438.
    [24]黄仲曦.用生物电阻抗法测量人体成份(脂肪)的方法研究[D].2004,第一军医大学.
    [25]Palko T, Bialokoz F, Weglarz J. Multi-frequency device for measurement of the complex electrical bio-impedance-design and application.14th Conference of the Biomedical Engineering Society of India,1995,3(1):45-46.
    [26]Kuhlmann MK, Levin NW. How common is malnutrition in ESRD? New approaches to diagnosis of malnutrition. Blood Purification,2008,26(1):49-53.
    [27]Tura A. Noninvasive glycaemia monitoring:background, traditional findings, and novelties in the recent clinical trials. Current Opinion in Clinical Nutrition & Metabolic Care,2008,11(5): 607-612.
    [28]王超.医学电阻抗成像的研究[M].天津大学,2001,博士学位论文.
    [29]Khaled MA, Khatun M, Haque M, et al. Single, dual and multi-frequency bioimpedance to measure human body compositon. Proceedings RC IEEE-EMBS &14th BMESI,1995,1: 87-90.
    [30]王力,马青,陈林等.人血液介电谱Cole-Cole数学模型的解析[J].中国生物医学工程学报,2010,29(2):253-258.
    [31]任超世,李章勇,王伟等.无创电阻抗胃动力检测与评价[J].中国组织工程研究与临床康复,2010,14(9):1653-1657.
    [32]李玉贤,孟庆华.生物电阻抗技术在肝病病人人体成分测量中的应用[J].肠外与肠内营养,2006,13(4):240-242.
    [33]Dey DK, Bosaeus I, Lissner L, et al. Body composition estimated by bioelectrical impedance in the Swedish elderly. Development of population-based prediction equation and reference values of fat-free mass and body fat for 70- and 75-y olds. European journal of clinical Nutrition,2003,57:909-916.
    [34]Horlick M, Arpadi SM, Bethel J, et al. Bioelectrical impedance analysis models for prediction of total body water and fat-free mass in healthy and HIV-infected children and adolescents. The American Journal of Clinical Nutrition,2002,76:991-999.
    [35]Verdicha C, Barbe P, Petersen M, et al. Changes in body composition during weight loss in obese subjects in the NUGENOB study:Comparison of bioelectrical impedance vs. dual-energy X-ray absorptiometry. Diabetes & Metabolism,2011,2:353-361.
    [36]占叶俊.女大学生内脏脂肪面积逐步回归预测模型研[J].体育科技,2011,32(3):63-65.
    [37]Ahn AC, Martinsen OG. Electrical characterization of acupuncture points:technical issues and challenges. Journal of Alternative and Complementary Medicine,2007,13(8):817-824.
    [38]Wang J, Mei F, Xu X, et al. An improvement of body composition analysis estimation model based on bioelectrical impedance analysis method. Advanced in Control Engineering and Information Science,2011,15:4608-4612.
    [39]Reinehr T, Schaefer A, Winkel K, et al. An effective lifestyle intervention in overweight children:Findings from a randomized controlled trial on "Obeldicks light". Clinical Nutrition, 2010,29:331-336.
    [40]Sun SS, Chumlea WC, Heymsfield SB, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multi component model for use in epidemiologic surveys. The American Journal of Clinical Nutrition,2003; 77:331-340.
    [41]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. COLT '92 Proceedings of the fifth annual workshop on Computational learning theory,1992: 144-152.
    [42]Muller KR, Smola AJ, Ratsch G, et al. Predicting time series with support vector machines. Proceeding of the International Conference on Artificial Neural Net works. Lausaunne, Switzerland, Springer,1997,999-1004
    [43]Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using a support vector machine. Neural Networks for Signal Processing Ⅶ. Proceeding of the 1997 IEEE Workshop, New York,1997:511-520.
    [44]Drezet PML, Harrison RF. Support vector machines for system identification. Proof UKACC International Conference on Control, Swansea, UK,2000,1:688-692.
    [45]Suykens JAK, Vandewalle J, De Moor B. Optimal Control by Least Squares Support Vector Machines. Neural Networks,2001,14:105-113.
    [46]王定成,方廷健,高理富等.支持向量机回归在线建模及应用[J].控制与决策,2003,18(1):89-91.
    [47]马勇,黄德先,金以慧.基于支持向量机的软测量建模方法[J].信息与控制,2004,33(4): 417-421.
    [48]孙鹏.基于图像处理的氧化铝回转窑烧结工况识别系统研究[D].2008,东北大学博士论文.
    [49]Wang JJ, YU T, Jin CY. On-line estimation of biomassin fermentation process using support vector machine. Chinese Journal of Chemical Engineering.2006,14(3):383-388.
    [50]Lisboa PJ, Taktak AFG. The use of artificial neural networks in decision support in cancer:a systematic review. Neural Networks,2006,19(4):408-415.
    [51]Ismail AI, Sohn W, Tellez M, et al. The international caries detection and assessment system (ICDAS):an integrated system for measuring dental caries. Community Dentistry and Oral Epidemiology,2007,35(3):170-178.
    [52]Ekstrand KR, Ricketts DNJ, Kidd EAM. Reproducibility and accuracy of three methods for assessment of demineralization depth of the occlusal surface:an in vitro examination. Caries Research,1997,31(3):224-231.
    [53]Saxton J, Morrow L, Eschman A, et al. Computer assessment of mild cognitive impairment. Postgraduate Medicine,2009,121(2):177-185.
    [54]Xu ZX, Wang YQ, Yan JJ, et al. Deduction research on syndromes diagnosis of TCM inquiry for cardiovascular diseases based on RBF nerve network.2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops, Hong Kong,2010:578-681.
    [55]Liu W, Wang J, Zhang Ci, et al. Application of intelligent structure model in human health assessment system on bioelectrical impedance analyze. Advanced Materials Research,2012, 433(10):2957-2963.
    [56]刘秀玲,杨国杰,王洪瑞等.动态生理信息融合在人体健康评价系统的应用[J].计算机工程与应用,2010,46(16):226-228.
    [57]罗二平,申广浩,周龙甫等.人体健康状况评测仪的研究[J].第四军医大学学报,2009,28(3):197-201.
    [58]朱天桥,黄力宇.单导癫痫脑电模糊特征提取的支持向量机发作预测[J].仪器仪表学报,2010,11,31(11):2434-2439.
    [59]Boryana S, Xu HC. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke,2010,41:2171-2177.
    [60]陈莉.探讨ARIMA模型在细菌性痢疾发病预测中的应用[J].中国卫生统计,2011,8,28(4):417-419.
    [61]Zadeh LA. Fuzzy sets. Information and Control.1965,8(3):338-353.
    [62]Linstone HA, Turoff M. The Delphi method:techniques and applications. London: Addison-Wesley,1975.
    [63]Jakicic JM, Wing RR, Lang W. Bioelectrical impedance analysis to assess body composition in obese adult women:the effect of ethnicity. International Journal of Obesity and Related Metabolic Disorder,1998,22:243-249.
    [64]Roy B. The Problems and methods with multiple objectives functions. Mathematical Programming,1971,22:270-282.
    [65]Saaty TL. The Analytic Hierarchy Proeess. NewYork:Mc Graw-Hill Company,1980.
    [66]Vargas LC. An overview of the analytic hierarchy process and its applications. European Journal of Operation Research,1990,48:2-8.
    [67]宋庆克,汪希龄,胡铁牛.多属性评价方法及发展评述[J].决策与决策支持系统,1997,7(4):128-138.
    [68]达庆利,徐泽水.不确定多属性决策的单目标最优化模型[J].系统工程学报,2002,17(1):50-55.
    [69]杨威.几种不确定多属性决策问题的研究[D].西安电子科技大学,2006,硕士论文.
    [70]徐福留,周家贵,李本纲等.城市环境质量多级模糊综合评价[J].城市环境与城市生态,2001,14(2):13-15.
    [71]陈武,李凡修,梅平.应用多目标决策——理想点法综合评价水环境质量.环境工程,2002,20(3):64-65.
    [72]Verdich C, Barbe P, et al. Changes in body composition during weight loss in obese subjects in the NUGENOB study:Comparison of bioelectrical impedance vs. dual-energy X-ray absorptiome-try. Diabetes & Metabolism 2011,2:353-361.
    [73]李雪迎,于文,王宁华.多频节段生物电阻抗分析法测量人体成分的信度研究[J].中国康复医学杂志,2003,18:595-596.
    [74]邴强,王健.人体体成分的模型及检测方法研究进展[J].天津体育学院学报,2001,16(1):51-55.
    [75]侯少华,侯曼.人体体成份检测方法[J].体育科研,2004,25(6):35-39.
    [76]Schwan HP. Determination of biological impedance. Physical techniques in biomedical research,1963,6(4):323-406.
    [77]KuoSheng Cheng, JiJer Huang, CheauJane Peng. Segmental bioelectrical impedance analysis for body composition estimation using a new Segmelltal model. Proc. of the 3rd WACBE World Congress on Bioengineering,2007.
    [78]Sun SS, Chumlea WC, Heymsfield SB, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 2003; 77:331-340.
    [79]Kyle UG, Genton L, Karsegard L, et al. Single prediction equation for bioelectrical impedance analysis in adults aged 20-94 years. Nutrition,2001,17:2482-53.
    [80]Haapala I, Hirvonen A, Niskanen L, et al. Anthropometry, bioelectrical impedance and dual-energy X-ray absorptiometry in the assessment of body composition in elderly Finnish women. Clinical Physiologyand Functional Imaging,2002,22:383-391.
    [81]Roubenoff R, Baumgartner RN, Harris TB, et al. Application of bioelectrical impedance analysis to elderly population. The Journals of Gerontology,1997,52A:M129-M136.
    [82]张荣欣,薛长勇等.成年人去脂组织重、体脂含量与体重、身高和体围的关系[J].营养学报,2003,25(1):105-107.
    [83]纪泷迪,徐济达.青少年体脂百分比与身高体重的相关性[J].中国学校卫生1997,18(2):96-97.
    [84]祁朋祥.基于生物电阻抗的人体成分测试与研究[M].中国科学技术大学,2009,硕士论文.
    [85]陈果.神经网络模型的预测精度影响因素分析及其优化[J].模式识别与人工智能,2005,18(5):528-534.
    [86]Sean F. McLoone, George. W. Irwin. Improving neural network training solutions using regularization. Neurocomputing,2001,37(1-4):71-90.
    [87]Huang GB, Zhu YZ, Siew CK. Extreme learning machine:Theory and applications. Neurocomputing,2006,70:489-501.
    [88]Hoskuldsson P. PLS regression methods. Journal of Chemometrics,1988,2(3):211-228.
    [89]Qin SJ, McAvoy TJ. Nonlinear PLS modelling using neural networks. Computers and Chemical Engineering,1992,16(4):379-391.
    [90]Baffi G, Martin EB, Morris AJ. Non-linear projection to latent structures revisited (the neural network PLS algorithm. Computers and Chemical Engineering,1999,23:1293-1307.
    [91]Gomi T, Kawawa Y, Nagamoto M, et al. Measurement of visceral fat/subcutaneous fat ratio by 0.3 tesla MRI. Radiation Medicine,2005,23(8):584-587.
    [92]Murakami K, Uchiyama T. Bioelectrical impedance measurement of subcutaneous fat thickness using Aapparent resistivity.6th International Special Topic Conference on ITAB, 2007, Tokyo,210-212.
    [93]Ryo M, Maeda K, Onda T, et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabetes Care,2005,28(2):451-453.
    [94]Shiga T, Oshima Y, Kanal H, et al. A simple measurement method of visceral fat accumulatiYonedaon by bioelectrical impedance analysis. IFMBE Proceedings,2007,17: 687-690.
    [95]全卉,马利庄.基于生物电阻抗的人体内脏脂肪预测方法[J].浙江大学学报,2011,45(2):301-305.
    [96]You F, Shi X, Dong X, et al. A quantitative method based on total relative change for dynamic electrical impedance tomography. IEEE Transactions on Biomedical Engineering,2008,55(3): 1224-1226.
    [97]Kotanko P, Levin NW, Zhu F. Current state of bioimpedance technologies in dialysis. Nephrology Dialysis Transplantation,2008,23(3):808-812.
    [98]Lin SW, Ying KC, Chen SC, et al. Particle swarm optimization for parameter determination and feature se lection of support vector machines. Expert System with Application,2008,35: 1817-1824.
    [99]颜根廷,李传江.基于混合遗传算法支持向量机参数选择[J].哈尔滨工业大学学报,2008,(05):688—691.
    [100]Yan W, Shao H, Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Computers and Chemical Engineering,2004,28(8):1489-1498.
    [101]刘国海,周大为,徐海霞等.基于SVM的微生物发酵过程软测量建模研究[J].仪器仪表学报,2009,30(6):1228-1232.
    [102]徐海龙,王晓丹,廖勇等.一种基于PSO的RBF-SVM模型优化新方法[J].控制与决策,2010,25(3):367-270.
    [103]金翠云,王建林,马江宁等.改进的PSO算法及其在PID控制器参数整定中的应[J],电子测量与仪器学报,2010,24(2):141-146.
    [104]Voss R, Cullen P, Schulte H, et al. Prediction of risk of coronary events in middle-aged men in Prospective Cardiovascular Munster Study (PROCAM) using neural networks. International Journal of Epidemiology,2002,31:1253-1262.
    [105]付颖,王丽宏,李强.内脏脂肪素的结构、功能及临床意义[J].医学研究生学报,22(5):552-557.
    [106]蒲云飞.腹型肥胖内脏脂肪定量检测的评估及其临床价值[M].第三军医大学,2009,硕士论文.
    [107]王萱,薛华丹,康维明等.重度肥胖患者体积与人体测量参数相关性[J].中国医学科学院学报,2011,33(3):277-281.
    [108]Zhu M, Wang Y, Chen S, et al. Sphere-structured support vector machines for multi-class pattern recognition[J]. Lecture Notes in Artificial Intelligence (S0302-9743), RSFDGrc 2003, 2639:589-593.
    [109]贺杰,漆正堂.生物电阻抗技术建立运动人体特征性参数相关模型的价值[J].中国组织工程研究与临床康复,2008,12(26):5127-5130
    [110]Kotanko P, Levin NW, Zhu F. Current state of bioimpedance technologies in dialysis. Nephrology Dialysis Transplantation,2008,23(3):808-812.
    [111]Ma G, Lu Y, Song E, et al. Neural network based online hypertension risk evaluation system. Journal of Southeast University (English Edition),2008,24(3):267-271.
    [112]Wu HX, Hu J, Xie Y. Characteristic model-based all-coefficients adaptive control method and its applications. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2007,37(2):213-221.
    [113]王建平,张涛.移动机器人检测与跟踪系统的研究与设计[J].浙江大学学报,2007,41(10):1710-1714.
    [114]李德毅.三级倒立摆的云控制方法及动平衡模式阴.中国工程科学,1999,1(2):41-46.
    [115]吕辉军,王晔,李德毅.逆向云在定性评价中的应用[J].计算机学报,2003,26(8):1009-1014.
    [116]杜鹚,李德毅.基于云模型的概念划分及其在关联采掘上的应用[J].软件学报,2001,12(2):196-203.
    [117]张峰,张鹏林,吕志勇等.云模型在城镇空气质量评价中的应用[J].环境科学与技术,2009,32(6):160-164.
    [118]刘常昱,李德毅,杜鹚等.正态云模型的统计分析[J].信息与控制,2005,34(4):236-239.
    [119]刘鹏,鄢余武.协调质量的云模型评价方法[J].系统仿真学报,2009,21(6):1602-1604.
    [120]王超,王化祥,王静.基于DSP的多频率电阻抗成像系统[J].仪器仪表学报,2002,23(4):347-350.
    [121]史学涛,尤富生,付峰等.同时工作于四种频率的多频电阻抗断层成像系统[J].航空医学与医学工程,2006,19(1):47-50.
    [122]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [123]Wold S, Ruhe A, Wold H, et al. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing,1984,5(3):735-743.
    [124]Rosipal R. Kernel partial least squares for nonlinear regression and discrimination. Neural Network World,2003,13(3):291-300.
    [125]董春,吴喜之,程博.偏最小二乘回归方法在地理与经济的相关性分析中的应用研究[J].测绘科学,2000,25(4):48-51.
    [126]成忠PLSR用于化学化工建模的几个关键问题的研究[D].浙江:浙江大学,2005.
    [127]Vapnik V. Statistical learning theory. New York:John Wiley & Sons,1998.
    [128]Rosipal R, Trejo LJ. Kernel partial least squares regression in reproducing kernel hilbert space. The Journal of Machine Learning Research,2001,2:97-123.
    [129]Yang Y, Jing ZR, Gao T. Multi-sources in-formation fusion algorithm in airborne detection systems. Journal of Systems Engineering and Electronics,2007,18(1):171-176.
    [130]Chen TL, Que PW. Target recognition based on modified combination rule. Journal of Systems Engineering and Electronics,2006,17(2):279-283.
    [131]祁朋祥,马祖长,孙怡宁等.一种基于生物电阻抗原理的人体成分测试装置的研制[J].生物医学工程研究,2009,28(3):197-201.
    [132]任超世.生物电阻抗测量技术[J].中国医疗器械信息,2004,1:21-25.
    [133]霍旭阳,尤富生.史学涛等.一种高精度生物电阻抗测量系统的设计[J].仪器仪表学报,2007,28(6):994-998.
    [134]帅万钧,史学涛.尤富生等.一种单源电流激励方法的电阻抗成像仿真及实验[J].仪器仪表学报,2008,29(11):2278-2281.
    [135]You F, Shi X, Dong X. et al. A quantitative method based on total relative change for dynamic electrical impedance tomography. IEEE Transaction on Biomedical Engineering, 2008,55(3):1224-1226.
    [136]Kyle UG, Bosaeus 1. De Lorenzo AD, et al. Bioelectrical impedance analysis part I:review of principles and methods. Clinical Nutrition,2004,23:1226-1243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700