用户名: 密码: 验证码:
压力共培养下HKC与HFB增殖及胶原蛋白代谢的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增生性瘢痕是人体皮肤创伤修复过程中的常见疾病,主要以成纤维细胞的过度增生及细胞外基质的过度沉积和降解不足为特征,严重影响患者的身体和心理健康。对于功能部位深Ⅱ度创伤形成的增生性瘢痕,临床上多采用手术方法彻底切除增生性瘢痕,移植组织工程表皮膜片覆盖创面,伤口愈合后进行压力治疗,这种治疗方法具有一定的治愈效果。但是临床上手术切除瘢痕后移植表皮及结合压力法治疗增生性瘢痕的具体机制尚不明确,有必要对其进行更深入全面的研究。本文通过体外构建压力下异体表皮角质形成细胞与真皮成纤维细胞的三维共培养体系,研究对细胞增殖和胶原蛋白基质代谢的影响,从力学-生物学角度研究手术切除瘢痕后移植组织工程表皮结合压力法治疗增生性瘢痕的可能机理。本文的主要研究内容及结论如下:
     1.以3%、6%、8%和10%体积的戊二醛分别交联体积比例为3:7、1:2和1:1的2%壳聚糖与2%明胶的混合液(保持明胶溶液的体积不变),通过两次真空冷冻干燥方法制作了12种壳聚糖-明胶支架;并检测不同组别的壳聚糖-明胶支架的孔径值、表观密度、孔隙率、吸水性能、拉伸性能、压缩性能及HaCaT细胞在支架上增殖情况的差异,研究调整壳聚糖及戊二醛的体积比例对支架性能的影响。
     研究发现:壳聚糖-明胶支架的表观密度、孔隙率、吸水性能、拉伸性能和压缩性能的改变与壳聚糖和戊二醛的体积比例调整有关,并选择吸水性能、力学性能及HaCaT细胞在其上增殖良好的支架(壳聚糖与明胶的体积比例为1:1,8%体积的戊二醛制作的高2mm,直径5mm的圆柱状支架)作为后续实验培养皮肤细胞所使用的三维支架。
     2.构建3.4KPa气体压力下表皮角质形成细胞(HKC)与真皮成纤维细胞(HFB)的三维共培养体系。首先采用胰酶消化法提取人包皮表皮HKC;Ⅱ型胶原酶消化法提取真皮HFB;将HKC与HFB分别以3×105/支架的密度种植于壳聚糖-明胶支架2d后,将气-液界面诱导分化1d后的HKC-壳聚糖-明胶组织块与HFB-壳聚糖-明胶组织块共培养12h,应用自制气体压力装置提供3.4KPa气体压力,气体压力加载24h,并以3.4KPa压力、无压力单培养组或共培养组为实验对照组;HE染色观察HKC与HFB在支架中的分布及生长情况;MTT法测定HKC与HFB的增殖情况;分别用免疫组化方法、Q-PCR方法和ELISA方法观察Ⅰ、Ⅲ型胶原蛋白、IL-1α和MMPP-3分别在HKC-壳聚糖-明胶与HFB-壳聚糖-明胶组织中的分布、mRNA表达及在上清液中蛋白的合成。
     3.HE染色发现HKC与HFB均可以在壳聚糖-明胶支架上正常增殖成片;Ⅰ、Ⅲ型胶原蛋白在HKC和HFB三维组织内呈阳性表达;通过对比各组中HKC和HFB的增殖和胶原代谢情况发现:3.4KPa压力加载可以促进单独培养的HKC增殖、胶原蛋白的合成、HKC细胞内Ⅰ、Ⅲ型胶原蛋白mRNA的表达和蛋白的合成;抑制单独培养的HFB细胞增殖、胶原蛋白的合成、HFB细胞内Ⅰ、Ⅲ型胶原蛋白mRNA的表达和蛋白合成。HKC与HFB的无压力共培养可以促进HKC增殖和HKC细胞内Ⅰ、Ⅲ型胶原蛋白mRNA的表达,抑制HFB增殖和细胞内Ⅰ、Ⅲ型胶原蛋白mRNA的表达,且使共培养组分泌的胶原蛋白、Ⅰ和Ⅲ型胶原蛋白浓度均低于单独培养的HFB组的浓度。3.4KPa压力下HKC与HFB的三维共培养可以明显促进HKC增殖,Ⅰ、ⅢⅣ型胶原蛋白mRNA的表达;明显抑制HFB增殖和对Ⅰ、Ⅲ型胶原蛋白mRNA的表达,使上清液中胶原蛋白、Ⅰ和Ⅲ型胶原蛋白的合成明显少于无压力共培养组。
     4.基于3.4KPa气体压力下HKC与HFB的三维共培养对细胞增殖及Ⅰ、Ⅲ型胶原蛋白mRNA表达和蛋白合成有影响的基础上,关注3.4KPa气体压力下HKC与HFB的三维共培养体系中与Ⅰ、Ⅲ型胶原蛋白代谢密切相关的IL-1α和MMP-3mRNA表达和蛋白合成的变化:3.4KPa压力可以分别促进单独培养HKC细胞内IL-la mRNA、HFB细胞内MMP-3mRNA的表达和蛋白的合成;HKC与HFB的三维无压力共培养可以促进HKC内IL-1α mRNA和HFB内MMP-3mRNA的表达;且相较于无压力共培养组,3.4KPa压力下HKC与HFB的共培养可以明显促进HKC内IL-1α mRNA和HFB内MMP-3mRNA的表达,上清液中IL-1α和MMP-3的浓度明显提高。
     实验结果表明:3.4KPa压力下HKC与HFB的三维共培养对HKC与HFB细胞增殖及细胞外基质Ⅰ、Ⅲ型胶原蛋白的代谢具有一定的调控作用,且细胞因子IL-1α和基质金属蛋白酶MMP-3可能参与了HKC调控HFB内Ⅰ、Ⅲ型胶原蛋白的表达和合成,这些变化有利于表皮细胞外基质的沉积和真皮细胞外基质的降解,有利于表皮的再上皮化和瘢痕真皮的恢复。
Hyperplastic scar is a common diseases formed in the process of human skin wound repairing, with fibroblast proliferated excessively and extracellular matrix deposited relentlessly and absence of degradation as characteristic, which can effect the patients' physical and mental health seriously. The combination of several treatments were used to treat hyperplastic scar in clinical application, resected the hyperplastic scar completely, transplanted skin tissue engineering to the wound using clinical operation and combining pressure treatment after taking out stitches was a common treatment to cure the hyperplastic scar formed on functional parts by wound of deep degree Ⅱ, which can gain excellent effects. However, the definite mechanism of resecting the hyperplastic scar, transplanting skin tissue engineering to the wound using clinical operation and combining pressure treatment to cure the hyperplastic scar is unclear, it is necessary to research the mechanism deeply and completely. In this paper, the system of3D coculture of xenogenous keratinocytes and fibroblasts under pressure were formed to research the effects of cell proliferation and collagen matrix metabolism. Our aim is to explore the therapeutic mechanism of resecting the hyperplastic scar, transplanting skin tissue engineering to the wound using clinical operation and combining pressure treatment to cure the hyperplastic scar from mechanics-biology view. The main content and conclusions are as following:
     1.12kinds of chitosan-gelatin scaffolds were fabricated with3%、6%、8%and10%volume of glutaraldehyde as a crosslinker and mixtures of different volume of2%chitosan and2%gelatin (3:7、1:2and1:1, keeping the volume of gelatin solution unchange) by vacuum freeze-drying. Pore size, density, porosity, water absorbency, tensile and compressive properties of the scaffolds and HaCaT proliferation on the scaffolds were studied to study the effects of variation of chitosan and glutaraldehyde content on the properties of scaffolds.
     It was found that porosity, density, water absorbency and mechanical properties of CG scaffolds changed with the variation of chitosan or GA content. The CG scaffolds (vr=1:1, crosslinked with8%volume of glutaraldehyde, cylindrical scaffolds with high of2mm and diameter of5mm), particularly those have excellent water absorption properties, mechanical properties and good proliferation of HaCaT cells were chose to use as3D scaffolds for growing skin cells.
     2. The formation of system of3D coculture of keratinocytes and fibroblasts under pressure. Trypsin digestion method was used to extract keratinocytes form hunman foreskin; II type collagenase digestion method was used to extract fibroblasts. The HKC and HFB was planting on chitosan-gelatin scaffolds with density of3×105/scaffolds respectively for2d, and the3D HKC was cultured by air-liquid interface1d for inducing differentiation, then the3D HKC and3D HFB were cocultured in96-well plate for12h, the selfmade gas pressure application was used to offered3.4KPa pressure for24h. The groups of3.4KPa pressure, without pressure culture alone or coculture were took as control groups. HE dyeing was used to observe the distribution and growth of HKC and HFB on chitosan-gelatin scaffolds; MTT method was used to test the proliferation of HKC and HFB; Immunohistochemical method, Q-polymerase chain reaction (PCR) and ELISA method were used to observe the distribution and expression of mRNA of Ⅰ、Ⅲ type of collagen、IL-1a and MMP-3in3D organization of HKC and HFB and the concentration of supernatant fluids.
     3. HKC and HFB can grow confluently on chitosan-gelatin scaffolds form HE staining pictures, and Ⅰ、Ⅲ type of collagen protein were positive expressed in HKC and HFB; through comparing the cell proliferation and collagen metabolism of HKC and HFB among ecah group it is found that:3.4KPa pressure could promote the proliferation、collagen synthesis、mRNA expression and synthesis of Ⅰ、Ⅲ type of collagen of HKC;3.4KPa pressure could restrain the proliferation、collagen synthesis、mRNA expression and synthesis of Ⅰ、Ⅲ type of collagen of HFB. The coculture of HKC and HFB without pressure could promote the proliferation、mRNA expression of Ⅰ、Ⅲ type of collagen of HKC, restrain the proliferation and mRNA expression of Ⅰ、Ⅲ type of collagen of HFB, and made the concentrations of collagen, Ⅰ and Ⅲ type of collagen were lower than those in the group of culture HFB alone. Coculture of HKC and HFB with3.4KPa pressure could promote the proliferation collagen synthesis and mRNA expression of Ⅰ、Ⅲ type of collagen of HKC obviously; and restrain the proliferation and mRNA expression of Ⅰ、Ⅲ type of collagen of HFB.
     4. The IL-la and MMP-3mRNA expression and synthesis of coculture of HKC and HFB with3.4KPa pressure were tested based on the effects of coculture of HKC and HFB with3.4KPa pressure on the expression of Ⅰ、Ⅲ type of collagen mRNA and synthesis of Ⅰ、Ⅲ type of collagen.3.4KPa pressure could promote the mRNA expression and synthesis of IL-la in HKC and MMP-3in HFB; coculture of HKC and HFB without pressure could promote the mRNA expression and synthesis of IL-la in HKC and MMP-3in HFB; and coculture of HKC and HFB with3.4KPa pressure could promote mRNA expression and synthesis of IL-1α in HKC and MMP-3in HFB obviously.
     It can be seen form the experimental results:there are certain regulation of coculture of HKC and HFB with3.4KPa pressure on the proliferation and extracellular matrix Ⅰ、Ⅲ type collagen metabolism of HKC and HFB, and the cytokine IL-1α and matrix metalloproteinases MMP-3may participate in the regulation of mRNA expression and synthesis of Ⅰ、Ⅲ type of collagen of HFB, which beneficial to skin extracellular matrix deposition of epidermis and extracellular matrix degradation of dermis, and advantageous to reconstruction of the skin epidermis and dermal scar disappear again.
引文
[1]http://baike.baidu.com/view/179492.html.
    [2]http://baike.baidu.com/view/227647.htm.
    [3]Hiroshi U., Hiroshi T., Tetsuya K., et al. Cytokines and chemokines in the epidermis [J]. Journal of Dermatological Science,2000,24(1):S29-S38.
    [4]毕志刚.皮肤性病学[M].北京:高等教育出版社.2010.
    [5]王德昌.人体皮肤组织学彩色图谱[M].济南:山东科学技术出版社.1999.
    [6]Claudia B., Caroline H., Ruth C.E., et al. Dermal fibroblast-derived growth factors restore the ability of β1 integrin-deficient embryonal stem cells to differentiate into keratinocytes [J]. Developmental Biology,2001,231:321-333.
    [7]Pierre S., Gail M., Sigrun S.H., Georg B., et al. Myofibroblast differentiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-β and interleukin-1 [J]. American Journal of Pathology,2004,6(164):2055-2066.
    [8]Rosa M. S., Luz A., C. Adriana M.R., et al. Post-burn hypertrophic scars are characterized by high levels of IL-1β mRNA and protein and TNF-a type I receptors [J].Burns,2011,3664:1-9.
    [9]Dolores W., Alexandar T. Hypertrophic scars and keloids-a review of their pathophysiology, risk factors, and therapeutic management [J]. Dermatol surg,2009, 35:171-181.
    [10]Rei O. Mechanobiology of scarring. Wound rep reg,2011,19:S2-S9.
    [11]Cecilia W.P, Li-T. Prevalence of hypertrophic scar formation and its characteristics among the Chinese population [J].Burns,2005,31:610-616.
    [12]张振,章一新.增生性瘢痕治疗的研究进展[J].组织工程与重建外科杂志2010.6(3):178-180
    [13]Gregor M., Bran U.R. Keloids:current concepts of pathogenesis[J]. International journal of molecular medicine,2009,24:283-293.
    [14]Riaz A.M.B.B.S. A Review of the role of mechanical forces in cutaneous wound healing [J]. Journal of surgical research,2011(171):700-708.
    [15]Cormac F., Brendan A.O. A simplified model of scar contraction [J]. Journal of biomechanics,2008(41):1582-1589.
    [16]Ogawa R., Akaishi S., Huang C.Y., et al. Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring:the importance of fascial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction [J]. J Nippon Med Sch,2011, 78(2):68-76.
    [17]Willem M., Monica C.T., Magda M.W, et al. Potential cellular and molecular causes of hypertrophic scar formation [J].Burns,2009,35:15-29.
    [18]Shuichi Mizuno., Setsuo W. Hydrostatic fluid pressure promotes cellularity and proliferation of human dermal fibroblasts in a three-dimensional collagen gel/sponge [J]. Biochemical engineering journal,2004,20:203-208.
    [19]Monica C.T. Bloemen W.M. Prevention and curative management of hypertrophic scar formation [J].Burns,2009,35:463-475.
    [20]Richard S., Joshua W., Gregory R.D., et al. Review of over-the-counter topical scartreatment products [J]. Plastic and reconstructive surgery,2007,3(119): 1091-1095.
    [21]http://image.baidu.com/i?ct=503316480&z=&tn=baiduimagedetail&ipn
    [22]王德怀,钟宇等.功能部位深度烧伤的综合康复治疗320例临床观察[J].四川医学,2011,32(11):1669-1670.
    [23]杨军,杨光辉.组织工程化表皮膜片的构建及其在增殖性疤痕治疗中的应用[J].上海第二医科大学学报,2004,24(04):296-297.
    [24]Pauline D.H.M. Verhaegen, M. B.A., Monica C.T. Bloemen., et al. Sustainable effect of skin stretching for burn scar excision:long-term results of a multicenter randomized controlled trial[J]. Burns,2011,37:1222-2228.
    [25]Chen X., Jiang Z., Chen Z., et al. Application of skin traction for surgical treatment of grade IV pressure sore:a clinical report of 160 cases [J]. International spinal cord society,2011,49:76-80.
    [26]Lai H.Y.C., Li T.W.P., Zheng Y.P. Effect of different pressure magnitudes on hypertrophic scar in a Chinese population [J]. Burns,2010,36:1234-1241.
    [27]Lisa M., Margot B. Pressure garments for use in the treatment of hypertrophic scars-a review of the problems associated with their use [J]. Burns,2006,32:10-15.
    [28]W. Gregory Cherno B.S., F.R.C.S.C., Harvey Cramer., et al. The ecacy of topical silicone gel elastomers in the treatment of hypertrophic scars, keloid scars, and post-laser exfoliation erythema [J]. Aesth. Plast. Surg,2007,31:495-500.
    [29]Suk J.O., Yoojeong K.Combined AlloDerm and thin skin grafting for the treatment of post burn dyspigmented scar contracture of the upper extremity [J]. Journal of Plastic, Reconstructive Aesthetic Surgery,2011(64):229-233.
    [30]刘飞,吴凤卿,等.增生性瘢痕动物模型的研究进展[J].医学综述,2009,15(1):18-21.
    [31]Paris D. Butler. Use of organotypic coculture to study keloid biology [J].The American journal of surgery,2008,(195):144-148.
    [32]Fred T. B., Ivan S. Functional structure and composition of the extracellular matrix [J]. Journal of pathology,2003,200:423-428.
    [33]Rajndra R. The role of extracellular matix in postinfianrnatory wound healing and fibrosis [J]. The Faseb journal,1994,8:823-831.
    [34]Wang Z., Fong K.D., Phan T.T., et al. Increased transcriptional response to mechanical strain in keloid fibroblasts due to increased focal adhesion complex formation[J]. Journal of cellular physiology,2006,206:510-517.
    [35]Harry N. A., Theofanis G., Janine N.G., et al. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts [J]. Proc. Nati. Acad. Sci, 1991,88:565-569.
    [36]Xu S.W., Andrew L., David A. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis [J]. Cytokine Growth Factor Reviews,2008,19:133-144.
    [37]Zhang X.F., Guo S.Z., et al. Different roles of PKC and PKA in effect of interferon gamma on proliferation and collagen synthesis of fibroblasts [J]. Act a Pharmacol Sin,2004,25:1320-1326.
    [38]Frank B.N., Joost S., Hans V., et al. Hypertrophic scar formation is associated with an increased number of epidermal langerhans cells [J]. Journal of pathology,2004, 202:121-129.
    [39]Oka S., Kubota Y., Ninomiya T., et al. Positive pressure enhances secretion of MMP-2 and MMP-3 from fibroblasts in keratinocyte cocultures[C]. Tooth movement and the periodontal ligament, sandiego convention center exhibit hall, 2002, p88.
    [40]Daniel N., Patrik H., Thomas E., et al. Keratinocytes inhibit expression of connective tissue growth factor in fibroblasts in vitro by an interleukin-1 a-dependent mechanism [J]. The society for investigative dermatology,2002,2(119): 449-455.
    [41]Huang S., Fu X.B. Naturally derived materials-based cell and drug delivery systems in skin regeneration [J]. Journal of controlled release,2010,142:149-159.
    [42]James G, Rheinwald., Howard G Serial cultivation of strains of human epidermal keratinocytes:the formation of keratinizing colonies from single cells [J]. Cell, 1975(6):331-344.
    [43]O'Conner N.E., Malliken J.B., Banksclilegcls, et al. Grafting of burns with culured epitheli unt prepared from autologous epidermal cells [J]. Lancet,1981,1 (8211): 75-78.
    [44]Horch R.E., Debus M., Wagner G, et al. Cuitured human keratinocyres on type I collagen membranes to reconstitute the epidermis [J]. Tissue Eng,2000,6 (1):53.
    [45]Gregory B., Altshuler, Reginald B., et al. Medical applications of lasers in dermatology, ophthalmology, dentistry, and endoscopy [J].1997; 306
    [46]Steven J. L. A Biographical database of medieval commentators on aristotle and peter Lombard [J]. Prosopon Newsletter,1995,3:1-3.
    [47]Srivastavs A., Jeaninga L.J., Hanumadass M., et al. Xenogenic acellular dermal matrix as a dermal substitute in rats [J]. J Burn Care Rehabill,1999,20(5):382.
    [48]Clinical O., Histological A. Evaluation of acellular dermal fraft in sheet (alloderm) and injectable (micronized alloderm) forms for soft tissue augmentation [J]. American Medical Association,2000(2):130-136.
    [49]《中困组织工程研究与临床康复》杂志社学术部.组织工程皮肤研究的临床应用:表皮与支架材料及其他[J].中国组织工程研究与临床康复2010,2(14):306-308.
    [50]AllenetB., Paree F., Lehurn T, et al. Cost-effectiveness modeling of dermagraft for the treatment of diabetic foot ulcers in the French context [J]. Diabetic Metab, 2000,26:125-132.
    [51]Copper M.L., Hansbroug J.F., Spielovgel R.L., et al. In vivo optimization of a living dermal substitiute employing cultured human fibroblasts on a biodegradable polyglycolicacid or polyglacitn mesh [J].Biomaterials,1991,12(3):243.
    [52]William H., Eaglstein, Vincent F. Tissue engineering and the development of Apligraf, a Human skin equivalent [J]. Clinical therapeuticsvvol.1997,5(19): 894-905.
    [53]Mike K.C., Stephen F. Small bowel tissue engineering using small intestinal submucosa as a scaffold [J]. Journal of Surgical Research,2001,99:352-358.
    [54]Giovanni V., Christopher F., Arti A., et al. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition [J]. Biomaterials,2003(24):2533-2540.
    [55]Stephen F. The extracellular matrix as a biologic scaffold material [J]. Biomaterials, 2007(28):3587-3593.
    [56]Li W.J., Laurencin C.T., Caterson E.J., et al. Electrospun nanofibrous structure:a novel scaffold for tissue engineering [J]. J. Biomed. Mater. Res. A.2002,60, 613-621.
    [57]Peng Z.Y., Peng Z.P., Shen Y.Q. Fabrication and properties of gelatin/chitosan composite hydrogel [J]. Polym-Plast. Technol.2011,50,1160-1164.
    [58]Khan M.A., Rahman M. A., Khan R. A., et al. Preparation and characterzation of the mechanical properties of the photocured chitosan/starch blend film [J]. Polym-Plast. Technol.2012,49,748-756.
    [59]Aisling N.A., Karine B., Michel D., et al. Characterization of the anisotropic mechanical properties of excised human skin [J]. J. Mech. Behav. Biomed.2012,17, 139-148.
    [60]Peng Z.Y., Chen F.G. Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose [J]. Int. J. Polym. Mater.2010,59,450-461.
    [61]Lin C.C., Metters A.T. Hydrogels in controlled release formulations network design and mathematical modeling [J]. Adv. Drug. Deliver. Rev.2006,58,1379-1408.
    [62]Park W.H., Jeong L., Yoo D.I., et al. Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers [J]. Polymer,2004,45, 7151-7157.
    [63]Shin M., Yoshimoto H., Vacanti J.P. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold [J]. Tissue. Eng. 2004,10,33-41.
    [64]Shin M., Ishii O., Sueda T., et al. Contractile cardiac grafts using a novel nanofibrous mesh [J]. Biomaterials 2004,25,3717-3723.
    [65]Yu Y.Q., Zhu C.J. Synthesis and characterization of N-maleyl chitosan-cross-linked poly (acrylamide)/montmorillonite nanocomposite hydrogels [J]. Polym-Plast. Technol.2011,50:5,525-529.
    [66]Jeong B., Gutowska, A. Lessons from nature:stimuli responsive polymers and their biomedical applications [J]. Trends. Biotechnol.2002,20,305-311.
    [67]Zhou Z.H., Zhou J.N., Liu L.H., et al. Fabrication and characterization of gelatin/chitosan microspheres for drug release [J]. J. Macromol. Sci, Part B, Phrs. 2012,51,777-785.
    [68]Molinaroa G., Lerouxa J.C., Damasb J., et al. Biocompatibility of thermosensitive chitosan-based hydrogels:an in vivo experimental approach to injectable biomaterials [J]. Biomaterials,2002,23,2717-2722.
    [69]Yang C., Xu L., Zhou Y., et al. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing [J]. Carbohyd. Polym.2010,82,1297-1305.
    [70]Mukhopadhyay A., Tan E.K.J., Khoo Y.T.A, et al. Conditioned medium from keloid keratinocyte/keloid fibroblast coculture induces contraction of fibroblast-populated collagen lattices [J]. British association of dermatologists, british journal of dermatology,2005,152:639-645.
    [71]Ying T.K., Chee T.O., Anandaroop M, et al. Upregulation of secretory connective tissues growth factor (CTGF) in keratinocyte-fibroblast coculture contributes to keloid pathogensis [J]. Journal of cellular physiology,2006,208:336-343.
    [72]鲁元刚.复方壳多糖组织工程皮肤基底膜重建的实验研究[D].重庆:第三军医大学.2006.
    [73]Ikuta S., Sekino N., Hara T., et al. Mouse epidermal keratinocytes in three-dimensional organotypic coculture with dermal fibroblast form a stratified sheet resembling skin[J]. Biotechnol. Biochem,2006,70(11):2669-2675.
    [74]Veronika M., Nicolae M., Norbert E. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal Fibroblast [J]. The society for investigative dermatology, Inc,1999,3(112):343-353.
    [75]厉孟.不同分化角质形成细胞对成纤维细胞的作用及其机理研究[D].西安:第四军医大学.2006.
    [76]Wang T.Wei., Sun J.S., Huang Y.C., et al. Skin basement membrane and extracellular matrix proteins characterization and quantification by real time RT-PCR [J]. Biomaterials,2006,27:5059-5068.
    [77]King V. A., Liu C. F., Liu Y.J. Chlophyll stability in apinach dehydrated by freeze-drying and controlled low-temperature vacuum dehydration [J]. Food research international,2001,34:167-175.
    [78]Wang Z.H., Shi M. H. Numerical study on sublimation condensation phenomena during microwave freeze drying [J]. Chemical Engineering Science,1998, 18(53):3189-3197.
    [79]Ingeborg B., Clemens L., Lucien A., et al. Modulation of IL-6 production and IL-1 activity by keratinocyte-fibroblast interaction [J]. The society for investigative dermatology,1993,3(101):316-324.
    [80]吴晓萍.人皮肤角质形成细胞的蛋白质组学研究[D].暨南:暨南大学.2007.
    [81]孙文娟,蔡霞,唐胜建,等。人皮肤角质形成细胞和成纤维细胞的原代培养和鉴定的实验研究[J]。潍坊医学院学报,2004,6(26):401-404.
    [82]王国辉.后巩膜加固术治疗高度近视眼机理的力学生物学研究[D].太原:太原理上大学.2011.
    [83]Puzey G. The use of pressure garments on hypertrophic scars [J]. Tissue Viability, 2002,12(1):11-15.
    [84]Roques C. Pressure therapy to treat burns cars [J]. Wound Repair Regen,2002,10(2): 122-125.
    [85]肖洪,李建福.压应力对增生性瘢痕成纤维细胞增殖与凋亡的影响[J].中国修复重建外科杂志,2007,12(21):1330-1334.
    [86]肖洪.人增生性瘫痕成纤维细胞(HHSFb)压应力效应及其分子机制初探[D].重庆:第三军医大学.2007.
    [87]Chris M.D., Patrick M.D., Karen M, et al. A new in vitro model of venous hypertension:the effect of pressure on dermal fibroblasts [J]. Jouanal of vascular surgery.2003,5 (38)-.1099-1105.
    [88]Andrew C., Karen M., Kim C., et al. Pressure elevation slows the fibroblast response to wound healing [J]. The society for vascular surgery.2005,3(42):546-551.
    [89]Dietmar R. T., Markus H, Wolfgang S. Selective quantitative analysis of the intensity of immunohistochemical reactions [J]. Acta histochem.1995,97:203-211.
    [90]Hans E., Grossniklaus, George O, et al. Evaluation of hematoxylin and eosin and special stains for the detection of acanthamoeba keratitis in penetrating keratoplasties [J]. Elsevier inc,2003,3(136):520-526.
    [91]David D., Giani S., Faccini R., et al. Silver staining combined with alcian blue and hematoxylin-eosin for the detection of lawsonia intracelullaris in swine proliferative enteropathy [J]. Acta histochemica,2002,104(3):285-287.
    [92]Santa-Maria C., Revilla E., Miramontes, et al. Protection against free radicals (UVB irradiation) of a water-soluble enzymatic extract from rice bran [J]. Study using human keratinocyte monolayer and reconstructed human epidermis. Food and Chemical Toxicology,2010,48:83-88.
    [93]Tobita T., Izumi K., Feinberg S. E. Development of an in vitro model for radiation-induced effects on oral keratinocytes [J]. Int. J. Oral Maxillofac. Surg. 2010,39:364-370.
    [94]Nurhidayatul A.M., Aly F. E., Shuhaimi M., et al. Comparison of gene nature used in real-time PCR for porcine identification and quantification:a review [J]. Food Research International,2013,50:330-338.
    [95]Bernd H., Martin B., Scott M., et al. A review of RT-PCR technologies used in veterinary virology and disease control:sensitive and specific diagnosis of five livestock diseases notifiable to the world organisation for animal health [J]. Veterinary Microbiology,2009,139:1-23.
    [96]邓文星,张映.实时荧光定量PCR技术综述[J]。生物技术通报,2007,5:83-96.
    [97]周晓燕,况晓东,黄永红,等.脂氧素A4对瘢痕成纤维细胞生物学活性的影响及机制研究[J]。中国细胞生物学学报,2013,35(2):141-144.
    [98]谢永芳.力学刺激对巩膜成纤维细胞粘弹性及CTGF表达的影响[D].太原:太原理工大学.2010.
    [99]Liu Y., An M.W., Qiu H.X., et al. The affection of the vacuum freeze-dry temperature on properties of chitosan-gelatin scaffolds [J]. Journal of Pure and Applied Microbiology,2013,7:179-184.
    [100]Liu Y., An M.W., Qiu H.X., et al. The properties of chitosan-gelatin scaffolds by once or twice vacuum freeze-drying methods [J]. Polymer-Plastics Technology and Engineering,2013,52(11):1154-1159.
    [101]Nagahama H., Divya Rani V. V., Shalumon K. T., et al. Preparation, characterization, bioactive and cell attachment studies of a-chitin/gelatin composite membranes [J]. Int. J. Biol. Macromol.2009,44:333-337.
    [102]Salati A., Keshvari H., Karkhaneh A., et al. Design and fabrication of artificial skin: chitosan and gelatin immobilization on silicone by poly acrylic acid graft using a plasma surface modification method [J]. J. Macromol. Sci, Part B, Phrs.2011, 50:1972-1982.
    [103]Yang G. H., Yang J., Wang J.M., et al. Biological behaviors of keratinocytes cultured on chitosan-gelatin membrane [J]. Key. Eng. Mater,2005,288:401-404.
    [104]Peter M., Ganesh N., Selvamurugan N., et al. Preparation and characterization of chitosan-gelatin/nanohydrox-yapatite composite scaffolds for tissue engineering applications [J]. Carbohyd. Polym.2010.80:255-260.
    [105]Lisa M., Margot B. Pressure garments for use in the treatment of hypertrophic scars-a review of the problems associated with their use [J]. Burns.2006,32:10-15.
    [106]Zhao F., Yin Y.J., William W., et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds [J]. Biomaterials,2002,23:3227-3234.
    [107]Suzana C.C.C. Miranda., Gerluza A.B. Silva., Rafaela C.R. Hell., et al. Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold:A promising association for bone tissue engineering in oral reconstruction [J]. Archives of oral biology,2011,56:1-15.
    [108]He J.k., Li D., Liu Y.X., et al. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures [J]. Polymer,2007,48: 4578-4588.
    [109]Zheng J. P., Wang C. Z., Wang X. X., et al. Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffold for tissue engineering [J]. React. Funct. Polym.2007,67:780-788.
    [110]Mao J.S., Zhao L., Yin Y.J., et al. Structure and properties of bilayer chitosan-gelatin scaffolds [J]. Biomaterials.2003,24:1067-1074.
    [111]Sokker H.H., Abdel G.A.M., Gad Y.H., et al. Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release [J]. Carbohyd. Polym.2009,75:222-229.
    [112]Nie H.R., Shen X.X., Zhou Z.H., et al. Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells [J]. Carbohyd. Polym.2010,8:681-686.
    [113]Rose A.F., Thi H.N., Byong, T.L. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications [J]. J. Mater. Sci-Mater. M.2011,22:2207-2218.
    [114]Deiber, J., Ottone, M., Piaggio, M., et al. Characterization of cross-linked gelatin hydrogels through the rubber elasticity and thermodynamic swelling theories [J]. Polymer.2009,50:6065-6075.
    [115]Karsten B., Nicolae M., Alessandra P., et al. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents [J]. European Journal of Cell Biology,2007,86:731-746.
    [116]Abdi G, Ruhangiz T. Keratinocyte-conditioned media regulate collagen expression in dermal fibroblasts [J]. Journal of Investigative Dermatology,2009,129:340-347.
    [117]Pierre S., Gail M., Sigrun S.H. Myofibroblast differentiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-and interleukin-1[J]. AJP June,2004, Vol.164, No.6 2055-2066
    [118]Sabine W., Thomas K., Hans S. Keratinocyte-fibroblast interactions in wound healing [J]. Journal of Investigative Dermatology,2007,127:998-1008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700