用户名: 密码: 验证码:
环糊精改性生物降解聚酯及其药物控制释放系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚-ε-己内酯、聚丙交酯由于具有良好的生物降解性、生物相容性和生物可吸收性,在生物医药领域得到广泛的应用。合成两种单体的无规或嵌段共聚物是改善各自性能的一种方法,另一种常用的改性方法是在分子链中引入支化结构。
     本研究用共聚方法,合成共聚组成为85/15(CL/LA)的聚-ε-己内酯-DL-丙交酯的嵌段共聚物,考查了共聚物作为埋植剂在动物体内、体外的降解行为及其相关性。结果表明,体内、体外降解行为基本相似,降解首先发生在无定形区,开始主要是PLA链段的降解,引起共聚组成发生变化,降解过程中聚合物的结晶度和热焓随降解的进行而升高。该嵌段共聚物形成的埋植剂在体内、体外降解三年后仍保持完好的形状,有望作为长效药物控释制剂的载体。
     由于环糊精是一类环状多糖化合物,具有特殊的结构和性能,并且是广为使用的药物载体。利用环糊精的亲水性和多羟基的特点,有望对聚酯从亲水性的改善和支化结构的形成两方面同时对聚酯性能加以改善。
     通过阴离子开环聚合,合成了β-CD为功能端基的聚-ε-己内酯,考查了单体/催化剂的比例、聚合反应温度和时间对聚合物分子量及其分布的影响。结果表明,聚合温度在60~70℃,反应8小时获得单体转化完全、分子量高并且分布较窄的聚合物。PCL链上β-环糊精的引入,使聚合物的吸水率提高,与水的接触角变小,提高了聚合物的亲水性。
     通过阴离子开环聚合,合成了β-CD为核的星型PCL、PDLLA、PLLA,研究了影响聚合物臂数的反应条件以及聚合物臂数对性能的影响。β-CD上羟基离子化数目决定聚合物臂数,同时影响聚合反应速率和单体的转化率:羟基离子化数目越多形成的臂数越多,引发活性越大,聚合速率也越快;星型结构的聚合物较线性聚合物有较低的熔融温度、结晶度、特性粘度,同时臂数越多,差别越大。相同的条件下,DLLA和LLA两种单体的手性差别对聚合反应速率、聚合结果没有影响。
     以BSA为模型蛋白,用W/O/W法制备了含药微球,考查了线性PCL和不同臂数星型PCL微球的降解行为和药物释放行为。结果表明,分子量相近的情况下,星型聚合物的降解速率较线性聚合物的降解速率快,而且臂数越多,降解越快;与线性聚合物相比,星型聚合物形成的微球载药量高,突释量小,释放速率快,而且支化程度越高,释放速率越趋于平缓。当分子量大于一定值后,降解释放速率主要受分子量影响,臂数的影响不明显。
Due to their excellent biodegradability,biocompatibility and bioabsorbance, poly-ε-caprolactone(PCL) and polylactide(PLA) are widely used in biomedical fields.In order to improve their properties it is usually used to synthesize their block or random copolymer by adjust the molar ratio of the two monomers.Another method usually be used to modify their properties is introducing branch structure into the polymer chain.
     First,block copolymer of poly-ε-caprolactone-b-lactide with 85 to 15 mole ratio (CL:LA) was synthesized and the biodegradation behavior as implant were investigated in vitro and in vivo.The biodegradation behaviors of in vitro and in vivo were similar.PLA segment was degraded initially because it was amorphous so its mole ratio was decreased in the beginning period of degradation.The crystallinity and fusion enthalpy of the implant were increased in the process of degradation.The appearance form of the implants was also sustained after three years and the weight loss is only about 25%(in vivo),so the polymer maybe used for long-acting drug delivery system.
     Cyclodextrin is a kind of cyclic polysaccharides with special structure and properties,and it is also extensively used as drug carrier.By using its hydrophilicity property and multi-hydroxy in the molecules,it is possible to introduce hydrophilicity and branched structure to PCL or PLA to enhance their degradation rates.
     Using anionic ring-opening polymerization method,PCL withβ-cyclodextrin (β-CD)as the end functional group were synthesized and characterized.Some polymerization factors influence on the monomer conversion and molecular weight and distribution,such as the mole ratio of monomer and initiator,polymerization temperature and polymerization time were investigated.Polymerization with high monomer conversion and narrow polymer molecular weight distribution was obtained at 60~70℃and 8 hours reaction.Because of containingβ-CD unit at the end of PCL chain,the water uptake was enhanced and contact angle was decreased,so the hyrophilicity of PCL was improved.
     Star-shaped PCL,PDLLA and PLLA based onβ-CD as the core were also synthesized by using anionic ring-opening polymerization and characterized.The reactive conditions that controlled the number of the star-shaped polymer arms and the influence of number of arms on the polymer properties were evaluated.The number of anionic hydroxyl ofβ-CD determined not only the arms,but also the polymerization rate and the monomer conversion,the more the number of anionic hydroxyl ofβ-CD,the more the arms of the star-shaped polymer and the faster the polymerization rate with higher monomer conversion.Star-shaped polymer has lower melting temperature,crystallbility,intrinsic viscosity than linear polymer at the similar molecular weight.The chiral difference of DLLA and LLA had no effect on the ring-opening polymerization results.
     As model protein,by using W/O/W solvent evaporation method,bovine serum albumin(BSA) was encapsulated in linear PCL and star-shaped PCL microspheres. The degradation behavior and BSA release behavior were studied.It was obviously that the degradation rate of star-shaped polymer was faster than the linear polymer at the similar molecular weight,and the more the arms,the faster the degradation rate. Microspheres prepared from star-shaped PCL showed higher drug-loading amount, small burst effect and fast release rate compared to those prepared from linear PCL.
引文
1.Langer R.Biomaterials in drug delivery and tissue engineering:One laboratory experience.Acc Chem Res 2000,33,94-101
    2.张国栋,顾忠伟,杨纪元,冯新德,聚乳酸的研究进展,化学进展,2000,12,89-105
    3.Ph.Dubois,Ph.Degee,R.Jerome,Ph.Tessie.Macromolecular engineering of polylactones and polylactides.11.Synthesis and use of alkylaluminum dialkoxides and dithiolates as promoters of hydroxy telechelic poly(ε-caprolactone) and dihydroxy triblock copolymers containing outer polyester blocks.Macromolecules 1993,26,2730-2735
    4.Ph.Dubois,I.Barakat,R.Jerome,Ph.Tessie.Ph.Tessie.Macromolecular engineering of polylactones and polylactides.12.Study of the depolymerization reactions of poly(ε-caprolactone) with functional aluminum alkoxide end groups.
    5.I.Barakat,Ph.Dubois,CH.Grandfils,R.Jerome.Macromolecular engineering of polylactones and polylactides.XXV.Synthesis and characterization of bioerodible amphiphilic networks and their use as controlled drug delivery systems.J Polym.Sci.Part A:Polym.Chem.Vol.37,2401-2411(1999)
    6.I.Barakat,Ph.Dubois,R.Jerome,Ph.Tessie.Living polymerization and selective end functionalization of ε-caprolactone uzing Zinc alkoxides as initiators.Macromolecules 1991,24,6542-6545
    7.Thierry Hamaide,Magdalena Pantiru,Harem Fessi,Pau Boullanger.Ring-opening polymerization of ε-caprolactone with monosaccharides as transfer agents.A novel route to functionalised nanoparticles.Macromol.Rapid Commun.2001,22,659-663
    8.J.Mohammadi-rovshandeh,S.M.F.Farnia,M.N.Sarbolouki.Synthesis and characterization of ABA triblock and novel multiblock copolymers from ethylene glycol,l-lactide,and e-caprolactone.Journal of Applied Polymer Science,Vol.83,2072-2081(2002)
    9.Daniel Cohn and Hani Younes.Biodegradable PEO/PLA block copolymers.Journal of Biomedical Materials Research,Vol.22,993-1009(1988)
    10.Meidong Lang,Jianzhong Bei and Shenguo Wang.Synthesis and characterization of polycaprolactone/poly(ethylene oxide)/polylactide tri-component copolymers.J.Biomater.Sci.Polymer Edn.Vol.10.No.4.pp.501-512(1999)
    11.Xianhai Chen,Stephen P.McCarthy,Richard A.Gross.Synthesis and characterization of[L]-lactide-ethylene oxide multiblock copolymers.Macromolecules 199 7,30,4295-4301
    12.Kimara,Y.;Matsuzaki,Y.;Yamane,H.;Kitao,T.Polymer 1989,30,1342
    13.Minglong Yuan,Yahui Wang,Xiaohong Li,Chengdong Xiong and Xianmo Deng. Polymerization of lactides and lactones.10.Synthesis characterization and application of amino terminated poly(ethylene glycol)-co-poly(ε-caprolactone)block copolymers.Macromolecules 2000,33(5),1615-1617
    14.Weijun Luo,Suming Li,Jianzhong Bei,Shenguo Wang.Synthesis and characterization of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers.Journal of Applied Polymer Science,Vol.84,1729-1736(2002)
    15.Young Moo Lee and Seong Soo Kim.Hydrolysis of poly(ethylene glycol)-co-poly(lactones) diacrylate macromers and α-chitin.Polymer Vol.38,No.10,pp.2415-2420,1997
    16.Jeong B.;Bae Y.H.;Lee D.S.;Kim S.W..Biodegradable block copolymers as injectable drug delivery systems.Nature 1997,388,860-862
    17.Kissel T.;Li Y.X.;Volland C.;et al.Parenteral protein delivery systems using biodegradable polyesters of ABA block structure,containing hydrophobic poly (lactide-co-glycolide) A blocks and hydrophilic poly(ethylene oxide) B blocks.Journa.Controlled release 1996,39,315-326
    18.Harris M.J.Polymer Prepr 1997,38,520
    19.Tatsuro Ouchi,Hidetake Miyazaki et al.Synthesis of biodegradable amphiphilic AB-type diblock copolymers of lactide and depsipeptide with pendent reactive groups.Journal of Polymer Science:Part A:Polymer Chemistry,vol,40,1218-1225(2002)
    20.Gorge John,Sakae Tsuda,Mikio Morita.Synthesis and modification of new biodegradable copolymers:serine/glycolic acid based copolymers.J Polym.Chem.35:1901-1907,1997
    21.Int Veld,P.J.A.,Ye W.P.,Feijen J.Copolymerization of epsilon-caprolactone and morpholine-2,5-dione derivatives.Makromol Chem 1992,193,1927-1942
    22.Barrera D.A.,Zylstre E.,Langer R.Copolymerization and degradation of poly(lactic acid-co-lysine) Macromolecules 1995,28,125-132
    23.Wang Dong,Feng Xinde.Macromolecules,1997,30:5688-5692
    24.Hubbell J.A.;Langer R.C&EN 1995,Mar,13:42-54
    25.Hiroyuki Shirahama,Akira Tanaka,Hajime Yasusa,Highly biodegradable copolymers composed of chiral depsipeptide and L-lactide units with favorable physical properties.Journal of Polymer Science:Part A:Polymer Chemistry,vol,40,302-316(2002)
    26.Tatsuro Ouchi,Atsushi Fujino.Synthesis of poly(α-malic acid) and its hydrolysis behavior in vitro.Makromol.Chem.190,1523-1530(1989)
    27.Yoshiharu Kimura,Kenji Shirotani,Hideki Yamana and Toshio Kitao.Copolymerization of 3-(S)-[(benzyioxycarbonyl) methyl]-1,4-dioxane-2,5-dione and L-lactide:a facile synthetic method for functionalized bioabsorbable polymer.Polymer,1993,volume 34,Number 8,1741-1748
    28.Yoshiharu Kimura,Kenji Shirotani,Hideki Yamaha and Toshio Kitao.Macromolecules 1988,21,3338-3340
    29.Tetsuji Yamaoka,Yasuyuki Hotta,Kohji Kobayashi,Yoshiharu Kimura.Synthesis and properties of malic acid-containing functional polymers.International Journal of Biological Macromolecules,25(1999) 265-271
    30.杨纪元,北京大学博士研究生学位论文2001
    31.Ji-yuan Yang,Jian Yu,Huai-zhong Pan,Zhong-wei Gu,Wei-xiao Cao and Xin-de Feng.Synthesis of novel hydrophilic biodegradable polyester with functionalized side chain groups.Chinese Journal of Polymer Science Vol.19,No.5,(2001),509-516
    32.Ioannis Arvanitoyannis,Atsuyashi Nakayama,Norioki Kawasali and Noboru Yamamoyo.Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst:1.Synthesis,characterization and study of their biodegradability.Polymer Vol.36,No.15,2947-2956,1995
    33.Ioannis Arvanitoyannis,Atsuyashi Nakayama,Norioki Kawasali and Noboru Yamamoyo.Novel polylactide with aminopropanediol using stannous octoate as catalyst:Synthesis,characterization and study of their biodegradability:2 Polymer Vol.36,No.11,2271-2279,1995
    34.Ioannis Arvanitoyannis,Atsuyashi Nakayama,Eleni Psomiadou Norioki Kawasali and Noboru Yamamoyo.Synthesis and degradability of a novel aliphatic polyester based on L-lactide and sorbital:3 Polymer Vol.37,No.4,651-660,1996
    35.Harri Korhonen,Antti Helminen,Jukka V.Seppala.Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups.Polymer 42(2001) 7541-7549
    36.董常明 北京大学博士研究生学位论文2001
    37.Deng F,Bisht K.S.,Gross R.A.,Kaplan D.L.Chemoenzymatic synthesis of a multiarm poly(D,L-lactide-co-caprolactone).Macromolecules 1999,32,5159-5161
    38.Fumio Sanda,Hidetsugu Sanada,Yuji Shibasaki and Takeshi Endo.Star polymer synthesis from ε-caprolactone utilizing polyol/protonic.Macomolecules 2002,35,680-683
    39.Trollas M.,Hedrick J.L.Dendrimer-like star polymers.J.Am.Chem.Soc 1998,120,4644-4651
    40.Burgath A.,Sunder A.,Neuner I.,Mulhaupt R.,Frey H.Multiarm star block copolymers based on caprolactone with hyperbranched polyglycerol core. Macromol Chem Phys 2000,201,792-797
    41.Hans R.Kricheldorf,Bjorn Fechner.Polylactones.LⅧ.Star-shaped polylactones with functional end groups via ring-expansion polymerization with a spiroinitiator.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.40,1047-1057(2002)
    42.姚康德主编 智能材料21世纪的新材料 智能药物释放体系1996.136-137。
    43.Langer R.,Polymer controlled drug delivery systems.Acc Chem.Res.1993,26,537-542
    44.Langer R.,Drug delivery and targeting,Nature 1998,392,5-10
    45.Banaga AK,Chien YW.Systemic delivery of therapeutic peptides and proteins.International Journal of Pharmaceutics,1988;48:15-50
    46.邢梦龙,医药情报1993:4:1
    47.Banerjee P.S,Ritschel W.A.,Transdermal permeation of vasopressin Ⅱ.Influence of azone on in vitro and in vivo permeation.International Journal of Pharmaceutics,1989;49:199-204
    48.Zhou X.H.Peptide and protein drugs:Ⅰ.Therapeutic applications absorption and parenteral administration.International Journal of Pharmaceutics,1991;752(2/3):97-115
    49.Heit MC,Williams PL,Jayes FL.Transdermal iontophonetic peptide delivery:in vitro and in vivo studies with luteinizing hormone releasing hormone.J.Pharm.Sci.1993;82(3):240-243
    50.Rajeev S.Raghuvanshi,Sandhya Goyal,Om Singh,and Amulya K.Panda.Stabilization of dichloromethane-induced protein denaturation during microencapsulation.Pharmaceutical Development and Technology,3(2),269-276(1998)
    51.Manosori A.Baner KH.Drug Delivery Ind.Pharm.1990;61:179-188
    52.Maitani Y.,Hazama M.et al.Oral administration of recombinant of human erythropoietin in rats:influence of lipid composition and size of liposomes on bioavailability J.Pharm.Sci.,1996;85(4);440
    53.Huang SH,Maitani Y,Qi YR,et al.Remote loading of diclofenac,insulin and fluorescein isothiocyanate labeled insulin into liposomes by pH and acetate gradient methods.Int.J.Pharm.1999;179(1):85
    54.Chong-kook Kim,Eun Ju Jeong.Development of dried liposomes as effective immuno-adjuvant for hepatitis B surface antigen.Int.J.Pharm.1995;115:193-199
    55.Liposomally-encapsulated ricin toxoid vaccine delivered intratracheally elicits a good immune response and protects against a lethal pulmonary dose ofricin toxin. Gareth D.Griffiths et al.Vaccine vol.15,No.17/18 1933-1939,1997
    56.F.G.Hutchinsen and B.J.A.Furr.Biodegradable polymer systems for the sustained release of polypeptides.Journal of controlled release,13(1990)279-294
    57.U.McKeever,S.Barman,T.Hao,P.Chambers,S.Song et al.Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles.Vaccine 20(2002) 1524-1531
    58.Tabato.Y.,Takebayashi.Y.,Ueda.T.,Ikada.Y.,A formulation methods using D,L-lactic acid oligomer for protein release with reduced initial burst.Journal of Controlled Release 23,55-64 1993
    59.Lu.W.,and Park.T.G.,Protein release from poly(lactic-co-glycolic acid)microspheres:protein stability problems.PDA J.Pharm.Sci.Tech.49(1).13-191995
    60.T.G.Park,W.Lu and G.Crotts,Importance of in vitro experimental conditions on protein release kinetics,stability and polymer degradation in protein encapsulated poly(d,l-lactide-co-glycolide acid) microspheres.Journal Controlled Release,33,211-222(1995)
    61.G.Crotts,and T.G.Park,Stability and release of bovine serum albumin encapsulated with poly(d,l-lactide-co-glycolide) microspheres.Journal Controlled Release,44,123-134(1997)
    62.G.Zhu,S.R.Mallery and S.P.Schwendeman.Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide) microspheres.Nature Biotechnol.18:52-57(2000)
    63.G.Zhu,S.R.Mallery and S.P.Schwendeman.Controlled release of basic fibroblast growth factor from cylindrical poly(lactide-co-glycolide) implants.Pharm.Sci.1:S-229(1998)
    64.A.Shenderova,T.G.Burke and S.P.Schwendeman.The acidic microclimate in poly(lactide- co-glycolide) microspheres stablizes camptothecins.Pharm.Res.16:241-248(1999)
    65.Gaozhong Zhu and S.P.Schwendeman Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants:mechanism of stabilization by basic additives Pharm.Rse.17:351-357(2000)
    66.Pushpa G.Shao and Leonard C.Bailey Stabilization of pH-induced degradation of porcine insulin in biodegradable polyester microspheres Pharmaceutical Development and Technology,4(4),633-642(1999)
    67.M.Tobio,S.P.Schwendeman et al.Improved immunogenicity of a core-coated tetanus toxoid delivery system Vaccine 18(2000) 618-622
    68.E.C.Lavelle,M.-K.Yeh,A.G.A.Coombes,S.S.Davis.The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethelene glycol Vaccine 17(1999) 512-529
    69.Wenlei Jiang and Steven P.Schwendeman Stabilization and controlled release of bovine serum albumin encapsulated in poly(D,L-lactide) and poly(ethylene glycol)microsphere blends.Pharmaceutical Research,vol18,No.6,2001
    70.N.Wang and X.S.Wu.A novel approach to stabilization of protein drugs in poly(lactide-co- glicolide) microspheres using agarose hydrogel.Int.J.Pharm.166:1-14(1998)
    71.N.Wang,X.S.Wu and J.K.Li,A heterogeneous structured composite based on poly(lactide- co-glycolide) mocrospheres and poly(vinyl alcohol) hydrogel nanoparticals for long-term protein drug delivery.Pharm.Res.16:1430-1435(1999)
    72.Nuo Wang,Xue shen Wu.A novel approach to stabilization of protein drugs in poly(lactide-co-glycolide acid) microspheres using agarose hydrogel.International Journal of Pharmacentics 166(1998) 1-14
    73.H.R.Costantino,R.Langer and A.M.Klibanov,Solid phase aggregation of proteins under pharmaceutically relevant conditions J.Pharm.Sci.,83,1662-1669(1994)
    74.C.R.Middaugh and D.B.Volkin Protein solubility,in stability of protein pharmaceuticals.Part A:Chemical and Physical pathways of protein degradation(T.J.Ahern and M.C.Manning eds.),Plenum Press.New York 1992.PP109
    75.S.N.Timasheff Stabilization of protein structure by solvent additives in stability of protein pharmaceuticals.Part A:Chemical and Physical pathways of protein degradation(T.J.Ahern and M.C.Manning eds.),Plenum Press.New York 1992.PP265
    76.A.G.Hausberger and P.P Deluca Characterization of biodegradable poly (d,l-lactide-co- glycolide) polymers and microspheres J.Pharm.Biomed.Anal.,13,747-760(1995)
    77.P.P.DeLuca,M.Shamean and H.Lee,Influence of microenviorment in PGA microspheres on polymer mass loss and drug release,3rd Jerusalem Conference on Pharmaceutical Sciences and Clinical Pharmacology,Jerusalem,Israel,September 1-6,1996
    78.Weiping Ye,Yong Xu and Fusheng Du The properties of polyesteramide and the effects on the stability of bovine sereum albumin Pharmaceutical Development and Technology 4(1),9 7-106(1999)
    79.Karen G.Carrasquillo et.Al Journal of controlled release 76(2001) 199-208
    80.Karin Frauke Pistel,Armin Breitenbach,Regina Zange-Volland et al.Brush-like branched biodegradable polyesters,part Ⅲ:Protein release from microspheres of poly(vinyi alcohol)-graft-poly(D,L-lactic-co-glycolic acid).Journal of Controlled Release 73(2001) 7-20
    81.Yi-Yan Yang,Tai-Shung Chung,Ngee Ping Ng.Morphology,drug distribution,and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method.Biomaterials 22(2001) 231-241
    82.H.Rafati et al.Journal of controlled release 43(1997) 89-102
    83.王绪兵,易以木,纳米粒胃肠道吸收影响因素,中国药学杂志 2002年7月第37卷第7期.484-487。
    84.Russei JG.Utilization of the natural mechanism for vitamin B 12 uptake for the oral delivery of therapeutics.Eur J Pharm Biopharm,1996,42(4):241
    85.Tobio M,Sanchez A,Vila A,Soriano I,et al.The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration.Colloids Surg B Biointerfaces,2000,18(3-4):315
    86.Dunn,S,E.,Coombes,A.G.A.,Garnett,M.C.,Davis,S.S.,Davis,M.C.and Illum,L.J.,In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide)nanosphere surface modified poloxamer and poloxamine copolymers.Journal of Controlled Release,44:65- 76,1997
    87.Emetich DF,Tracy MA,Ward KL,et al.Biocompatibility of poly(D,C-lactide-co-glycolide) microspheres implanted into the brain.Cell Transplant,1999,8(1):47
    88.Vanessa Carla Furtado Mosqueira,Philippe Legrand,et al.Biodistribution of Long- Circulating PEG-Grafted Nanocapsules in Mice:Effects of PEG Chain Length and Density.Pharmaceutical Research,Vol.18,No.10,October 2001(1411-1419)
    89.Vila,A.Sánchez,M.Tobio,P.Calvo,M.J.Alonso.Design of biodegradable particles for protein delivery.Journal of controlled release 78(2002) 15-24
    90.Jozesef Szejtli.Introduction and general overview of cyclodextrin chemistry.Chem.Rew.1998,98,1743-1753
    91.《超分子化学--合成受体的分子识别与组装》 刘育 尤长城 张衡益编著南开大学出版社p166
    92.J.Szejtli.Comprehensive supramolecular chemistry.J.L.Atwood,J.-M.Lehn,Eds.;Vol.3,Cyclodextrins,Chapter 2,Pergamon:Oxford,U.K.,1996,6-36
    93.J.Szejtli.Cyclodextrin technology,Kluwer,Dordrecht,1988,p.12
    94.Allan R.Hedges.Industrial applications of cyclodextrins.Chem.Rev.1998,98, 2035-2044
    95.Ohtani Y.,Irie T.,Uekama K.,Fukunaga K.,Pitha J.Differential effects of α-,β-and γ-cyclodextrins on human erythrocytes.Eur.J.Biochem.1989,186,17-22
    96.Kaneto Uekama,Fumitoshi Hirayama and Tetsumi Irie.Cyclodextrin drug carrier systems.Chem.Rev.1998,98,2045-2076
    97.Erem Memisoglu,Amélie Bochot,Murat Sen etc.Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins.International Journal of Pharmaceutics 251(2003) 143-153
    98.A.Miro,F.Quaglia,U.Sorrentino etc.Improvement of gliquidone hypoglycaemic effect in rats by cyclodextrin formulations.European Journal of Pharmaceutical Sciences 23(2004) 57-64
    99.K.Uekama,T.Irie.Comprehensive supramolecular chemistry.J.L.Atwood,J.-M.Lehn,Eds.;Vol.3,Cyclodextrins,Chapter 15,Pergamon:Oxford,U.K.,1996,p.451-478
    100.J.Szejtli.Cyclodextrin technology.Kluwer,Dordrecht,1988,p.186-293
    101.T.Nagai,H.Ueda.Comprehensive supramolecular chemistry.J.L.Atwood,J.-M.Lehn,Eds.;Vol.3,Cyclodextrins Chapter 14,Pergamon:Oxford,U.K,1996,p.441-449
    102.Uekama,K.;Hirayama,F.;Irie,T.,In drug targeting delivery;Boer,A.G,Ed.;Harwood Publishers:Amsterdam,1993;Vol.3 p411.
    103.Skiba m.;Morvan C.;Duchene D.;Puisieux,F.;et al.Evaluation of gastrointestinal behaviour in the rat of amphiphilic β-CD nanoparticles loaded with indomethacin.International Journal of Pharmaceutics 1995,126,275-279
    104.Uekama,K.;Horiuchi,Y.;Irie,T.;Hirayama,F.O-carboxymethyl-O-ethylcyclomaltoheptaose as a delayed-release-type drug carrier:important of the oral bioavailability of diltiazen in the dog.Carbohydr.Res.1989,192,323-330
    105.Uekama,K.;Horiuchi,Y.;Irie,T.;Hirayama,F.Journal of Controlled Release 1993,25,99
    106.Uekama,K.;Horiuchi,T.;Hirayama,F.Invivo and in-vitro correlation for delayed-release behaviour of a molsidomine/O-carboxymethyl-O-ethyl-β-cyclodextrin coplex in gastric acidity-controlled dogs.Journal of Pharmaceutical Pharmacology 1995,47,124-127
    107.Uekama,K.;Horikawa T.;Yamanaka,M.;Hirayama,F.Peracylated β-cyclodextrins as novel sustained release carriers for a water soluble drug,molsidomine.Journal of Pharmaceutical Pharmacology 1994,46,714-717
    108.Soliman,O.A.;Kimura,K.;Hirayama,F.;et al.Pharmaceutical Science 1996,2,533
    109.Wang Z.;Hirayama F.;Ikegami K.;Uekama K.Release characterizations of nifedipine from 2-hydroxypropyl-b-CD complex during storage and its modification of hybridizing polyvinyl pyrrolidone K-30.Chemical Pharmaceutical Bull.1993,41,1822-1826
    110.Wang Z.;Horikama T.;Uekama K.Journal of Pharmaceutical Pharmacology 1993,45,942
    111.Maletic,M.;Wennemers,H.;McDonald,D.Q.;Breslow,R.;Still,W.C.Selective binding of the dipeptides L-Phe-D-Pro and D-Phe-L-Pro to β-cyclodextrin.Angew.Chem.,Int.Ed.Engl.1996,35,1490.
    112.Liu,Y.;Zhang,Y.-M.;Qi,A.D.;Chen,R.-T.;Yamamoto,K.;Wada,T.;Inoue,Y.Molecular recognition study on a supramolecular system.10.~1 Inclusion complexation of modified β-cyclodextrins with amino acids:enhanced enantioselectivity for L/D-Leucine.J.Org.Chem.1997,62,1826-1830.
    113.Horsky,J.;Pitha,J.J.Inclusion Phenom.Mol.Recognit.Chem.1994,18,291.
    114.Cooper,A.Effect of cyclodextrins on the thermal stability of globular proteins.J.Am.Chem.Soc.1992,114,9208-9209.
    115.Matsubara,K.;Irie,T.;Uekama,K.Spectroscopic characterization of the inclusion complex of a Luteinizing Hormone-Releasing Hormone agonist,buserelin acetate with dimethyl-β-CD.Chem.Pharm.Bull.1997,45,378.
    116.Tajiri,S.;Tahara,T.;Tokihiro,K.;Irie,T.;Uekama,K.In Proceedings of the 15th Cyclodextrin Symposium;Ueno,A.,Ed.;Tokyo,1997.
    117.Brewster,M.E.;Hora,M.S.;Simpkins,J.W.;Bodor,N.Use of 2-hydroxypropyl -β-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs Pharm.Res.1991,8,792.
    118.Charman,S.A.;Mason,K.L.;Charman,W.N.Techniques for assessing the effects of pharmaceutical excipients on the aggregation of Porcine Growth Hormone Pharm.Res.1993,10,954-962.
    119.Ressing,M.E.;Jiskoot,W.;Talsma,H.;vanlngen,C.W.;Beubery,D.C.;Crommelin,D.J.A.The influence of sucrose,dextrin,and hydroxylpropyl-β-cyclodextrin as lyoprotectants for a freeze-dried mouse IgG2a monoc lonal antibody(MN 12).Pharm.Res.1992,9,266-270.
    120.Hora,M.S.;Rana,R.K.;Smith,F.W.Lyophilized formulations of recombinant tumor necosis factor.Pharm.Res.1992,9,33-36.
    121.Tokihito,K.;IRIE,T.;Uekama,K.;Pitha.Absorption of transdermally delivered ketorolac acids in human.J.Pharm.Sci.1995,1,49-52.
    122.Banga,A.K.;Mitra,T.J.Drug Targeting 1993,1,341.
    123.Katakam,M.;Banga,A.K.PDAJ.Pharm.Sci.Technol.1995,49,160.
    124.Sayani,A.;Chien,Y.W.CRC Crit.Reb.Ther.Drug Carrier Syst.1996,13,85.
    125.Ukai,K.L;Murakawa,Y.;Kurosaki,Y.;Nakayama,T.;Kimura,T.Yakuzaigaku 1996,56,156.
    126.Merkus,F.W.H.M.;Verhoef,J.C.;Romeijn,S.G.;Schipper,N.G.M.Absorpotion enhancing effect of cyclodextrins on intranasally administered insulin in rats.Pharm.Res.1991,8,588-592.
    127.Shao,Z.;Krishnamoorthy,R.;Mitra,A.K.Cyclodextrins as nasal absorption promoters of insulin:mechanistic evaluations.Pharm.Res.1992,9,1157-1163.
    128.Irwin,W.J.;Dwivedi,A.K.;Holbrook,P.A.;Dey,M.J.The effect of cyclodextrins on the stability of peptides in nasal enzyme systems.Pharm.Res.1994,11,1698-1703.
    129.Chun,I.K.;Chien,Y.W.Stabilization of methionine enkephalin in various rabbit mucocal extracts by enzyme inhibitors.Int.J.Pharm.1995,121,217-231.
    130.Matsubara,K.;Abe,K.;Irie,T.;Uekama,K.Improvement of nasal bioavalibility of Luteinizing Hormone Releasings Hormone agoinst.Buserelin by cyclodextrins derivatives in rats.J.Pharm.Sci.1995,84,1295-1300.
    131.Ohtani,Y.;Irie,T.;Uekama,K.;Fukunaga,K.;Pitha,J.Eur.J.Biochem.1989,186,17.
    132.Djedaini-Pilard,F;Desalos,J.;Perly,B.Synthesis of a new molecular carrier:N-(Leu-enkephalin)yl 6-amide-6-deoxy-cyciomaltoheptaose.Tereahedron Lett.1993,34,2457.
    133.Hristova-Kazmierski,M.D.;Horan,P;Davis,P.;Yamamura,H.I.;Kramer,T.;Horavath,R.;Kazmi-erski,W.M.;Porreca,F.;Hruby,V.A new approach to enhance bioavailability of biologically active peptides:conjugation of a δ opioid agonist to β-cyclodextrin.Bioorg.Med.Chem.Lett.1993,3,831.
    134.Hirayama,G.;Minami,K.;Uekama,K.In-vitro evaluation of biphenylyl acetic acid-β-cyclodextrin conjugates as colon-targeting prodrugs:drug release behaviour in rat biological media.J.Pharm.Pharmacol.1996,48,27.
    135.Uekama,K.;Minami,K.;Hirayama,E J.Meal.Chem.I997,40,2755.
    136.Kim,C.;MacKellar,W.C.;Cho,N.;Byrn,S.R.,Morre,D.J.Biochem.Biophys.Acta 1997,1324,171.
    137.Alberts,B.;Bray,D.;Lewis,J.;Raff,M.;Roberts,K.;Watson.J.D.ed.Molecular Biology of the Cell,3rd ed.;Garland Publishing Inc.:New York,1994.
    138.Parrot-Lopez,H.;Leray,e.;Coleman,A.W.Supramol.Chem.1993,3,37.
    139.Robertis,L.;Lancelon-Pin,C.;Driguez,H.;Attioui,f.;Bonaly,R.;Marsura,A.Synthesis of new oligosaccharidyl-thio-β-cyclodextrins(CDS):a novle family of potent drug-targetting vectors.Bioorg.Med.Chem.Lett.1994,4,1127-1130.
    140.Harada A.,Okada M.,Kawachi M.Polym.Adv.Technol.,1999,5,237
    141.Leclerco L.,Bria M.,Morcellet M.,Martel B.Mol.Recognit.Inclusion,Proc.Int.Syrup.,9th,1996,p395
    142.Ogata N.,Sanui K.,Wada J.J.Polym.Chem.,1976,14,459
    143.Harada A.,Li J.,Kamachi M.The molecular necklace:a rotaxane containing many threaded α-CD.Natrue,1992,356,325-327
    144.Jun Li,Bin Chen,Xin Wang,Suat Hong Gob.Preparation and characterization of inclusion complexes formed by biodegradable poly(ε-caprolactone)-poly (tetrahydrofuran)-poly(ε-caprolactone) triblock copolymer and cyclodextrins Polymer 45(2004) 1777-1785
    145.Lei Huang,Emily Allen and Alan E.Tonell,Study of the inclusion compounds formed between α-cyclodextrin and high moleculae weight poly(ethelene oxide)and poly(ε-caprolactone) Polymer Vol.39,No.20,4857-4865,1998
    146.Jin Lu,I.D.Shin,S.Nojima,A.E.Tonelli.Formation and characterization of the inclusion compounds between poly(ε-caprolactone)-poly(ethylene oxide)-poly (ε-caprolactone) triblock copolymer and α-and γ-cyclodextrin Polymer Vol.41,5871-5883,2000
    147.Xintao Shuai,Francis E.Porbeni,Min Wei,Todd Bullions,and Alan E.Tonelli.Inclusion complex formation between a,g-cyclodextrin and a triblock copolymer and the cyclodextrin-type-dependent microphase structures of their coalesced samples.Macromolecules 2002,35,2401-2405
    148.Cristian C.Rusa and Alan E.Tonelli.Polymer/polymer inclusion compounds as a novle approach to obtaining a PLLA/PCL intimately compatible blend.Macromolecules 2000,33,5321-5324
    149.Xu Li,Jun Li and Kam W.Leong.Preparaton and characterization of inclusion complexes of biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) triblock copolymers with cyclodextrins.Macromolecules 2003,36,1209-1214.
    150.Xu Li,Jun Li and Kam W.Role of intermolecular interaction between hydrophobic blocks in block-selected inclusion complexation of amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) triblock copolymers with cyclodextrins.Polymer 45(2004) 6845-6851
    151.Jun Li,Xu Li,Xiping Ni,and Kam W.Leong.Injectable supramolecular hydrogels self-assembled by biodegradable triblock copolymers and cyclodextrin for drug delivery.The Sixth Asian Symposium on Biomedical Materizals July 19-22,2004 Chengdu China p68
    152.Tooru Ooya,Nobuhiko Yui.Supramolecular dissociation of biodegradable polyrotaxanes by enzymatic terminal hydrolysis.Macromol,Chem.Phys.199,2311-2320
    153.Kang Moo Huh,Tooru Ooya,Shintaro Sasaki and Nobuhiko Yui.Polymer inclusion complex consisting of poly(ε-lysine) and α-cyciodextrin.Macromolecules 2001,34,2402-2404
    154.Kang Moo Huh,Hajime Tomita,Won Kyu Lee,Tooru Ooya and Nobuhiko Yui.Synthesis of α-cyclodextrin-conjugated poly(ε-lysine)s and their inclusion complexation behavior.Macromol.Rapid Commun.2002,23,179-182
    155.Hak Soo Choi,Tooru Ooya,Shintaro Sasaki and Nobuhiko Yui Control of rapid phase transition induced by supramolecular complexation of β-cyclodextrinconjugated poly(ε-lysine) with a specific guest.Macromolecules 2003,36,5342-5347
    156.黄怡、范晓东、张楠楠 聚乙烯醇固载β-环糊精线性高聚物的合成及其药物控制释放研究 高分子学报 第6期 2004年12月854-858
    157.Mayumi Hayashi,Surapich Loykulnant and Akira Hirao etc.;Synthesis of end-functional polymers by means of living anionic polymerization.9.Synthesis of well-defined end-functionalized polymers with one,two,three,or four monosaccharide residues.Macromolecules 1998,31,2027-2063
    158.Surapich Loykulnant,Mayumi Hayashi and Akira Hirao.Protection and polymerization of functional monomer.28.Anionic living polymerization of styrene derivatives containing acetal-protected monosaccharide residues.Macromolecules 1998,31,9121-9126
    159.Atsushi Narumi,Toshifumi Satoh,Harumi Kaga and Kakuchi Giycoconjugated polymer.3.Synthesis and amphiphilic property of core-glycoconjugated star-shaped polysterene Macromolecules 2002,35,699-705
    160.Kohji Ohno,Benjamin Wong,David M.Haddleton Synthesis of well-defined cyclodextrin-core star polymers.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.39,2206-2214 2001
    161.Toyoji Kakuchi,Atsushi Narum etc.Glycoconjugated polymer.4.Synthesis and aggregation property of well-defined end-functionalized polysterene with β-cyclodextrin.Mascromolecules 2003,36,3909-3913
    162.Toyoji Kakuchi,Atsushi Narum etc.Glycoconjugated polymer.5.Synthesis and characterization of a seven-arm polystyrene with a β-cyclodextrin core based on TEMPO-mediated living radical polymerization. Mascromolecules 2003,36,3914-3920
    163.胡晖 范晓东 黄怡 以环糊精为核的星型高分子合成及其温度、pH敏感性研究 高分子学报第6期2004年12月805-811
    164.Yan Jiang,Hongwei Zhang,Limei Zhang,Jingyuan Wang etc.Synthesis and characterization of the star polymer with β-cyclodextrin core Polymer preprints 2004,45(1),1075
    165.Yan Jiang,Shiyun Li,Hongwei Zhang,Jingyuan Wang The synthesis and characterization of part dithiocarboxyl β-cyclodextrin and its metal complex Polymer preprints 2003,44(2),756
    1.D.M.Long et al,U.S.3,279,996
    2.Ruth Duncan.The dawning era of polymer therapeutics.Nature Review/Drug Discovery.Vol.2 May 2003 347-360
    3.Seung Jin Lee,Yoon Joeng Park,Young Ku,and Chong PYoung Chung.42.Guided tissue regeneration using biodegradable polymers.Advances Polymeric Science.433-439,1997
    4.V.R.Sinka,K.Bansal,R.Kaushik,R.Kumira,A.Trehan.Poly-ε-caprolactone microspheres and nanospheres:an overview.International Journal of Pharmaceutics.278(2004) 1-24
    5.Murthy,R.S.R..Biodegradable polymers.In:Jain,N.K.(Eds.).Controlled and Novel Drug Delivery.CBS Publisher.New Delhi,pp.27-51,1997
    6.Dieter Bendix.Chemical synthesis of polylactide and its copolymers for medical applications.Polymer Degradation and Stability 59(1998) 129-135
    7.Minoru Nagata,Yuki Sato.Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(ε-caprolactone) and poly(L-lactide) segments.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.43,2426-2439
    8.Ming-His Huang,Jean Coudane,Suming Li,Michel Vert.Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification of di-hydroxy PCL combined with the ring opening polymerization of lactide.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.43,4196-4205
    1.《糖化学》孔繁祚 编著 科学出版社
    2.Thierry Hamaide,Magdalena Pantiru,Hatem Fessi,Pau Boullanger.Ring-opening polymerization of ε-caprolactone with monosaccharides as transfer agents.A novel route to functionalised nanoparticles.Macromol.Rapid Commun.2001,22,659-663
    3.Framk D'Agosto,Marie-Therese Charreyre,Christian,Bernard Mandrand.Polymer of controlled chain length carrying hydrophilic galactose moieties for immobilization of DNA probes.Macromol.Chem.Phys.2002,203,146-154
    4.Yongming Chert,Giinter Wulff ABA and star amphiphilic block copolymers composed of polymethacrylate bearing a galactose fragment and poly(ε-caprolactone).Macromol.Rapid Commun.2002,23,59-63
    5.Kenji Yasugi,Teruo Nakamura,Yukio Nagasaki,Masao Kato,and Kazunori Kataota.Suger-installed polymer micelles:Synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the end PEG chain end.Macromolecules 1999,32,8024-8032
    6.Toyoji kakuchi,Atsushi Narumi,Yutaka Miura,Soh Matsuya,Naoya Sugimoto,Toshifumi Satoh and Harumi Kaga.Glycoconjugated polymer.4.Synthesis and aggregation property of well-defined end-functionalized polystyrene with β-cyclodextrin.Macromolecules 2003,36,3909-3913
    7.Ding Rong and Valerian T.D'Souza.A convenient method for functionalization of the 2-position of cyclodextrins.Tetrahedron Letters.Vol.31,No.30,pp42 75-4278,1990
    1.Langer,R.Drug delivery and targeting.Nature 1998,392,5-10
    2.Langer,R.Biomaterials in drug delivery and tissue engineering:One laboratory's experience.ACC Chem.Res.2000,33,94-101
    3.Sudesh,K.,Abe,H.,Doi,Y.Synthesis,Structure and properties of polyhydroxyalkanoates:Biological Polyesters.Prog.Polym.Sci.2000,25,1503-1555
    4.Yoshito Ikada,Hideto Tsuji.Biodegradable polyesters for biomedical and ecological applications.Macromol.Rapid Commun.21,117-132(2000)
    5.Pitt C.G.Poly(ε-caprolactone) and its copolymers.In:Dumitrih S ed.Polymeric Biomaterial.New York:Marcel Dekker,Inc.,1994,71-119
    6.Meidong Lang,Renee Puisan,Chih-Chang Chu.Synthesis and structrual analysis of functionalized poly(ε-caprolactone)-based three-arm star polymers.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.40,1127-1141(2002)
    7.Fumio Sands,Hidetsugu Sanada,Yuji Shibasaki and Takeshi Endo.Star Polymer Synthesis from ε-caprolactone utilizing polyoi/protonic Acid Initiator.Macromolecules 2002,35,680-683
    8.Mingxiao Deng,Xuesi Chen,Longhai Piao et al.Synthesis of four-armed poly(ε-caprolactone)-block-poly(ethylene oxide) by diethylzinc catalyst.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.42,950-959(2004)
    9.Peisheng Xu,Maciej Radosz and Youqing Shen.Novel synthesis of PCL-PEG brush copolymer by free radical polymerization and ATRP and micelles preparation.Polymer Preprints 2004,45(1),731
    10.Caiqing Wang,Yuping Dong,Huimin Tan.Biodegradable brushlike graft polymers.Ⅰ.Polymerization of ε-caprolactone onto water-soluble hydroxypropyl cellulose as the backbone by the protection of the trimethylsilyl group.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.41,273-280(2002)
    11.Delphine Rutot,Emmanuel Duquese,Philippe Dubios et al.Aliphatic polyester-based biodegradable materials:new amphiphilic graft copolymers.Polymer Degradation and Stability 73(2001) 561-566
    12.Ruiwen Shi,Helen M.Butt.Amphiphilic dextran-graft-poly(ε-cprolactone)rims for the controlled release of paclitaxel.International Journal of Pharmaceutics 271(2004) 16 7-179
    13.Taek Woong Chung,Kwang Yong Cho,Hyun-Chui Lee et al.Novel micelle-forming block copolymer composed of poly(ε-caprolactone) and poly(vinyl pyrrolidone).Polymer 45(2004) 1591-1597
    14,Takayuki Toyoda,Hisakazu Mihara,Akihiko Ueno.Fluoesent cyclodextrin /peptide chemosensor in the peptide side chain.Macromol.Rapid Commun.2002,23,905-908
    15.Lorenzo Mejias,Dieter Schollmeyer,Silvia Sepulveda-Boza et al.Cyclodextrins in polymer synthesis:Enzymatic polymerization of a 2,6-dimethyl-b-cyclodextrin/ 2,4-dihydroxyphenyl-4'-hydrox ybenzylketone host-guest complex catalyzed by horseradish peroxide(HRP).Macromol.Biosci.2003,3,395-399
    16.Lee K.P.,Choi S.H.,Ryu E.N.,et al.Preparation and characterization of cyclodextrin polymer and its high-performance liquid-chromatography stationary phase.Analysis Science 18,31-34,2002
    17.S.Simeoni,S.Scalia,H.A.E.Benson.Influence of cyclodextrins on in vitro human skin absorption of the sunscreen,butyl-metboxydibenzoylmethane.International Journal of Pharmaceutics 280(2004) 163-171
    18.Eren Memisoglu,Amelie Bochot,A.Atilla Hincal et al.Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins.International Journal of Pharmaceutics 251(2003) 143-153
    19.Jianshu Li,Huining Xiao,Jiehua Li et al.Drug carrier systems based on water-soluble cationic β-cyc[odextrin polymers.International Journal of Pharmaceutics 278(2004) 329-342
    20.高中 主编《现代药物新剂型新技术》 人民军医出版社p114
    21.Toyoji Kakuchi,Atsushi Narum etc.Glycoconjugated polymer.5.Synthesis and characterization of a seven-arm polystyrene with a β-cyclodextrin core based on TEMPO-mediated living radical polymerization.Mascromolecules 2003,36,3914-3920
    22.Kohji Ohno,Benjamin Wong,David M.Haddleton Synthesis of well-defined cyclodextrin-core star polymers.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.39,2206-2214 2001
    23.胡晖 范晓东 黄怡 以环糊精为核的星型高分子合成及其温度、pH敏感性研究 高分子学报第6期2004年12月805-811
    24.Robson F.Story and John W.Sherman.Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone.Macromolecules 2002,35,1504-1512
    25.Harri Korhonen,Anti Heiminen,Jukka V.Sepp(a|¨)l(a|¨).Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups.Polymer 42(2001) 7541-7549
    26.Shengping Tian,Peter Forgo and Valerian T.D'souza.Selective modification at the 3-position of β-cyclodextrin Tetrahedron Letters,Vol.37,No.46,pp.8309-8312,1996
    27.Eun Sub Kim,Byoung Chui Kim,Soo Hyun Kim.Structural effect of linear and star-shaped poly(L-lactic acid) on physical properties.Journal of Polymer Science:Part B:Polymer Physics,Vol.42,939-946(2004).
    28.Douglas,J.F.;Roovers,J.;Freed,K.F.Characterization of branching architecture through universal ratios of polymer solution properties.Macromolecules 1990,23,4168
    1.D.E.Rafferty,M.G.Elfaki and P.C.Montgomery.Preparation and characterization of a biodegradable microparticle antigen/cytokine delivery system.Vaccine,Vol.14,No.6,pp.532-538,1996
    2.Yoon Sung Nam,Hyung Seok Kang,Ju Young Park et al.New micelle-like polymer aggregates made from PEI-PLGA diblock copolymers:micellar characteristics and cellular uptake.Biomaterials 24(2003) 2053-2059
    3.Yoshito Ikada,Hideto Tsuji.Biodegradable polyesters for medical and ecological applications.Macromol.Rapid Commun.21,117-132,2000
    4.Emo Chiellini and Roberto Solaro.Biodegradable polymeric materials.Advanced Materials 1996.8.No,4,305-313
    5.Yunhua Hu,David W.Grainger,Shelley R.Winn and Jeffrey O.Hollinger Fabrication of poly(α-hydroxy acid) foam scaffolds using multiple solvent systems.Journal of Biomedical Material Research.59,563-573,2002
    6.Janine F.Bridge,Margaret Critchlow,Michael P.Irving et al.Radiolabeling,stability and body distribution in rats,of low molecular weight polylactide homopolymer and polylactide-polyethyleneglycol copolymer.Biomaterials 21(2000) 199-209
    7.Francoise M.Audibert and Luc D.Lise.Adjuvants:current status,clinical perspective and future prospects.Immunology Today Vol.14 No.6,1993.281-284
    8.Robert U Hunter Overview of vaccine adjuvants:present and future.Vaccine 20(2002) S7-S12
    9.Jeffery Bonadio Tissue engineering via local gene delivery:Update and future prospects for enhancing the technology.Advanced Drug Delivery Reviews 44(2000) 185-194
    10.王浩,侯惠民 多肽与蛋白质类药物给药系统的研究现状 中国医药工业杂志 25(9),1994,421-426
    11.Omathanu Pillai,Anand Badu Dhanikula and Ramesh Panchagnula.Drug delivery:an odyssey of 100 years.439-436 Next Geueration Therapeutics.
    12.Hirofumi Takeuchi,Hiromitsu Yamamoto,Yoshiaki Kawashima.Mucoadhesive nanoparticulate systems for peptide drug delivery.Advanced Drug Delivery Reviews 47(2001) 39-54
    13.Yukiko Nishioka,Hiroyuki Yoshino.Lymphatic targeting with nanoparticulate system.Advanced Drug Delivery Reviews 47(2001) 55-64
    14.Juan Wang,Barbara M.Wang,Steven P.Schwendeman.Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(D,L-lactide-co-glycolide) microspheres.Biomaterials 25(2000) 1919-1927
    15.Kuk Young Cho,Seung Ho Choi,Chang-Hyeon Kim et al.Protein release microparticles based on the blend of poly(D,L-lactic-co-glycolic acid) and oligo-ethylene glycol grafted poly(L-lactide).Journal of Controlled Release 76(2001) 275-284
    16.E.C.Lavelle,M.-K Yeh,A.G.A.Coombes,S.S.Davis.The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol.Vaccine 17(1999)512-529
    17.Yi-Yan Yang,Tai-Shung Chung,Ngee Ping Ng.Morphology,drug distribution,and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method.Biomaterials 22(2001) 231-241
    18.Weijun Luo,Suming Li,Jianzhong Bei,Shenguo Wang.Synthesis and characterization of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers.Journal of Applied Polymer Science,Vol.84,1729-1736(2002)
    19.Yongming Chen,Giinter Wulff.ABA and star amphiphilic block copolymers composed of polymethacrylate bearing a galactose fragment and poly(ε-caprolactone).Macromol.Rapid Commun.2002,23,59-63
    20.Zhenhua Li,Leaf Huang.Sustained delivery and expression of plasmid DNA based on biodegradable polyester,poly(D,L-lactide-co-4-hydroxyl-L-proline).Journal of Controlled Release 98(2004) 43 7-446
    21.Delphine Rutot,Emmanuel Duquesne,Isabelle Ydens et al.Aliphatic polyester-based biodegradable materials:new amphiphilic graft copolymers.Polymer Degradation and Stability 73(2001) 561-566
    22.Ioannis Arvanitoyannis,Atsuyoshi Nakayama,Eleni Psomiado,Norioki Kawasaki and Noboru Yamamoto.Synthesis and degradability of novel aliphatic polyester based on L-lactide and sorbitol:3.Polymer Vol.3 7 No.4 pp3651-660,1996
    23.Eun Sub Kim,Byoung Chui Kim,Soo Hyun Kim.Structural effect of linear and star-shaped poly(L-lactic acid) on physical properties.Journal of Polymer Science:Part B:olymer Physics,Vol.42,939-946(2004)
    24.Armin Breitenbach and Thomas Kissel.Biodegradable comb polyesters:part ⅠSynthesis,characterization and structural analysis of poly(lactic acid) and poly(lactic-co-glycolic acid) grafted onto water-soluble poly(vinyl alcohol) as backbone.Polymer Vol.39 No.14 pp3261-3271,1998
    25.A.Breitenbach,K.F.Pistel and T.Kissel.Biodegradable comb polyesters:part Ⅱ.Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid) Polymer 41(2000) 4781-4792
    26.Karin Frauke,Armin Breitenbach,Regina Zange-Volland and Thomas Kissel.Brush-like branched biodegradable polyesters,part Ⅲ Protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-co-glycolic acid).Journal of Controlled Release 73(2001) 7-20
    27.K.F.Pistel,B.Bittner,H.Koll,G.Winter,T.Kissel.Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers:influence of encapsulation technique and polymer composition on particle characteristics.Journal of Controlled Release 59(1999) 309-325
    28.童林荟 环糊精化学-基础与应用 科学出版社
    29.A.Miro,F.Quaglia,U.Sorrentino,M.I.La Rotonda et al.Improvement of gliquidone hypoglycaemic effect in rats by cyclodextrin formulations.European Journal of Pharmaceutical Sciences 23(2004) 57-64
    30.Jianshu Li,Huining Xiao,Jiehua Li,Yinping Zhong.Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers.International Journal of Pharmaceuticals 278(2004) 329-342
    31.吴文娟,梁月迎,关玉群 β-环糊精聚合物与药物包合作用的研究 西北药学杂志2002年4月 第17卷 第2期71-72
    32.T.Kissel,Z.Brich,S.Bantle,I.Lancranjan,F.Nimmerfall and P.Vit.Parenteral depot-systems on the basis of biodegradable polyesters.Journal of Controlled Release 16(1991)2 7-42
    33.Zhiyuan Zhong,Pieter J.Dijkstra and Jan Feijen.New development in polylactide chemistry.Contemporary topics in advanced polymet science and technology 405-429(高分子科学与技术前沿课题)
    34.M.Hiljanen-vainio,T.Karjalainen and J.Sepp(a|¨)l(a|¨).Biodegradable lactone copolymers.I.Characterization and mechanical behavior of ε-caprolactone and lactide copolymers.Journal of Applied Polymer Science,Vol.59,1281-1288(1996)
    35.Fumio Sands,Hidetsugu Sanada,Yuji Shibasaki and Takeshi Endo.Star Polymer Synthesis from ε-caprolactone utilizing polyol/protonic Acid Initiator.Macromolecules 2002,35,680-683
    36.Ding Rong and Valerian T.D'Souza.A convenient method for functionalization of the 2-position of cyclodextrins.Tetrahedron Letters,Vol.31,No.30,pp4275-4278,1990
    37.Shengping Tian and Valerian T.D'Souza.Selective protection of the secondary side of β-cyclodextrin.Tetrahedron Letters,Vol.35,No.50,pp9339-9342,1990
    38.Joziasse CAP,Grablowitzh,Pennings A J.Macromol Chem.Phys.2000;201:107-12
    1.D.Lemoine,C.Francois,F.Kedzierewicz,et al.Stability of nanoparticles of poly(ε-caprolactone),poly(D,L-lactide) and poly(D,L-lactide-co-glycolide).Biomaterials 1996,Vol.17 No.22,2192-2197
    2.M.M.Jimenez,J.Pelletier,M.F.Bobin et al.Poly(ε-caprolactone) nanoparticles containing octyl methoxycinnamate:Preparation and characterization.Pharmaceutical development and technology.Vol.9.No.3.329-339,2004
    3.Cristina Iojoiu,Thierry Hamaide,Valeria Harabagiu et al.Modified poly(ε-caprolactone) and their use for drug-encapsulating nanoparticles.Journal of polymer science:Part A:Polymer Chemistry,Vol.42,689- 700,2004
    4.V.R.Sinha,K.Bansal,R.Kaushik et al.Poly-ε-caprolactone microspheres and nanoparticles:an overview.International Journal of Pharmaceutics.278(2004) 1-23
    5.Norioki Kawasaki,Atsuyoshi Nakayama,Takashi Higashi et al.Studies on poly[acrylamide-co-((ε-caprolactone)]:synthesis,characterizayion and biodegradability.Macromol.Chem.Phys.2001,202,2231-2238
    6.Chulhee Kim and Sang Cheon Lee.Complexation of poly(2-ethyl-2-oxazoline)-block-poly (ε-caprolactone) micells with multifunctional carboxylic acids.Macromolecules 2002,35,193-200
    7.Minglong Yuan,Yahui Wang,Xiaohong Li et al.Polymerization of lactides and lactones.10.Synthesis,Characterization and application of amino-terminated poly(ethylene glycol)-co-poly(ε-caprolactone) block copolymers.Macromolecules 2000,33(5),1613-1617
    8.Young-H Jeong,Myung-Ki Kang,Heung-Suk Sun et al.All-trans-retinoic acid release from core-shell type nanoparticlesb of poly(ε-caprolactone)/poly(ethylene glycol) diblock copolymer.International Journal of Pharmaceutics.273(2004)95-107
    9.T.Shiomi,K.Imai,K.Takenaka et al.Appearance of double spherulites like concentric circles for poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly (ε-caprolactone).Polymer 42(2001)3233-3239
    10.J.M.Bezemer,D.W.Grijpma,P.J.Dijkstra et al.A controlled release system for proteins based on poly(ether ester) block-copolymers:polymer network characterization.Journal of Controlled Release 62(1999) 393-405
    11.Sunny Skaria,Mario Smet,Holger Frey.Enzyme-catalyzed synthesis of hyperbranched aliphatic polyesters.Macromolecular Rapid Communication 2002,23,292-296
    12.Fumio Sanda,Hidetsugu Sanada,Yuji Shibasaki and takeshi Endo.Star polymer synthesis from the ε-caprolactone utilizing polyol/protonic acid initiator.Macromolecules 2002,35,680-683.
    13.Ruiwen Shi,Helen M.Burt.Amphiphilic dextran-graft-poly(ε-caprolactone)films for the controlled release of paclitaxel.International Journal of Pharmaceutics.271(2004) 167-179
    14.Caiqi Wang,Yuping Dong,Huimin Tan.Biodegradable Brushlike graft polymers.I.Polymerization of ε-caprolactone onto water-soluble hydroxypropyl cellulose as the backbone by the protection of the trimethylsilyl group.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.41,273-280(2003)
    15.Mingxiao Deng,Xuesi Chen,Longhai Piao et al.Synthesis of four-armed poly(ε-caprolactone)-block-poly(ethylene oxide) by diethyzinc catalyst.Journal of Polymer Science:Part A:Polymer Chemistry,Vol.42,950-959(2004)
    16.Yu Liu,Baohang Han,Yumei Li et al.Enantioselective recognition of amino acids by β-cyclodextrin 6-O-monophosphates.J.Chem.Soc.,Perkin Trans.2,1997,1275-1278
    17.Hua Jiao,S.H.Goh and S.Valiyaveettil.Inclusion complexes of perfluorinated oligomers with cyclodextrins.Macromolecules 2003,36,4241-4243
    18.Yoshihisa Inoue,Keiko Yamamoto,Takehiko Wada et al.Inclusion complexation of(cyclo)alkanes and(cyclo)alkanols with 6-O-modified β-cyclodextrin.J.Chem.Soc.,Perkin Trans.2,1998,1807-1816
    19.Sunil Jambhekar,R.Casella,T.Maher.The physicochemical characteristics and bioavailability of indomethacin from β-cyclodextrin,hydroxyethyl-β-cyclodextrin,and hydroxypropyl- β-cyclodextrin complexes.International Journal of Pharmaceutics 270(2004) 149-166
    20.Gheorghe Fundueanu,Marieta Constantin,Alessandro Dalpiaz et al.Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate(Foy~(?)) in allergic rhinitis treatment.Biomaterials 25(2004) 159-170
    21.Kohji Ohno,Benjamin Wong,David M.Haddleton Synthesis of well-defined cyclodextrin-core star polymers Journal of Polymer Science:Part A:Polymer Chemistry,Vol.39,2206-2214
    22.Toyoji Kakuchi,Atsushi Narum etc.Glycoconjugated polymer.4.Synthesis and aggregation property of well-defined end-functionalized polystyrene with β-cyclodextrin.Macromolecules 2003,36,3909-3913
    23.Toyoji Kakuchi,Atsushi Narum etc.Glycoconjugated polymer.5.Synthesis and characterization of a seven-arm polystyrene with a β-cyclodextrin core based on TEMPO-mediated living radical polymerization. Mascromolecules 2003,36,3914-3920
    24.胡晖 范晓东 黄怡 以环糊精为核的星型高分子合成及其温度、pH敏感性研究 高分子学报 第6期2004年12月805-811
    25.T.Kissel,Z.Brich,S.Bantle et al.Parenteral depot-systems on the basis of biodegradable polyesters.Journal of Controlled Release,16(1991) 27-42
    26.Robson F.Storey and John W.Sherman.Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone.Macromolecules 2002,35,1504-1512
    27.Karin Frauke Pistel,Armin Breitenbach,Regina Zange-Volland,Thomas Kissel.Brush-like branched biodegradable polyesters,part Ⅲ:Protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-acid-co-glicolic acid).Journal of Controlled Release 73(2001) 7-200
    28.D.R.Chen,J.Z.Bei,S.G.Wang.Polycaprolactone microparticles and their biodegradation.Polymer Degradation and Stability 67(2000) 455-459
    29.R.C.Mehta,B.C.Thanoo,P.P.DeLuca.Peptide containing microspheres from low molecular weight and hydrophilic poly(D,L-lactide-co-glycolide).Journal of Controlled Release 41(1996) 249-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700