用户名: 密码: 验证码:
用于发酵床养殖的细菌分离鉴定及应用效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着养殖业的发展,畜禽粪尿污染问题日益严重,发酵床垫料养殖技术的应运而生。筛选具有除臭功能的细菌,将其应用于畜禽的发酵床养殖中,从而达到健康养殖、提高动物产品质量和产量的目的。
     本研究从土壤、堆肥样品中分离纯化获得105株细菌,筛选获得7株菌不产生氨气和硫化氢的菌株。对其生长pH值、温度、惟一碳、氮源利用,蛋白酶、淀粉酶活性,对动物的毒性试验等特性进行了分析,进而探讨了菌株的遗传特性。
     在此基础上,进行了发酵床垫料处理,接种供试菌株后,进行了15d发酵处理。分别测定了垫料发酵过程中的温度、pH值,垫料中铵态氮和硝态氮的含量;细菌、放线菌、真菌数量的变化;最后,利用DGGE技术检测了不同发酵时间垫料中微生物群落动态。结果如下:
     1.筛选获得7个菌株,菌属于革兰氏阳性芽孢杆菌,有耐高温、不耐低温的特点,在4℃和10℃不生长,全部菌株能够在45℃生长,其中4个菌株可在60℃生长。供试菌株在初始pH8-pH10培养基生长,不耐酸性,在初始pH4环境中不生长。
     2.供试菌株理化特性分析表明,供试菌株均能水解淀粉,能够以甘露醇和蔗糖为惟一碳源;能够以大多数供试氨基酸为唯一氮源,能够利用铵态氮和硝态氮。
     3. BOXAIR-PCR分析表明,菌株间遗传差异明显;在16S rDNA PCR-RFLP分析结果中,供试菌株分成了5个遗传群;代表菌株的16S rDNA基因序列比对结果显示,菌株B1是枯草芽孢杆菌(Bacillus stubtlis),菌株B5是栗褐芽孢杆菌(Bacillus badius),菌株B7是地衣芽孢杆菌(Bacillus licheniformis)。
     4.毒性试验中,饲喂菌株B5的小白鼠生长正常,无死亡;通过解剖观察,肉眼未见任何器质性病变,表明供试菌株对小白鼠无致病性。
     5.接种菌株B5的垫料发酵实验中,24h内垫料温度迅速升高至45℃左右,最高达70℃;发酵结束时,发酵床料温保持在50℃。发酵过程中,垫料中铵态氮和硝态氮含量迅速下降,由发酵初期的108.6mg/kg和138.72 mg/kg降至第8d的44.6mg/kg和52.32 mg/kg;随后,其含量略有上升。
     6.对垫料细菌的PCR-DGGE分析表明,发酵过程中,垫料中细菌种群多样性变化不大,群落稳定。
Along with the development of livestock and poultry industry in China, the livestock and poultry manure pollution is becoming more and more serious, and the deep-litter system was introduced and applied. It is important to screen deodorizing bacteria and use in the local deep-litter system that can build a healthy livestock breeding system, and improve the quality and yield of animal products.
     In this experiment,105 bacterial strains were isolated and purified, and seven strains which don not produce NH3 and H2S were screened. The original growth pH range, growth temperature, utilization of carbon and nitrogen sources, protease activity and amylase activity, toxicity test was done; furthermore, the genetic aspects of the strains were analyzed.
     Base on the results, one deep-litter system was built, and the ferment time was 15d. During the course of fermentation, we detected variation of the temperature, pH value, ammonium and nitrate content, and the number of bacteria, fungi and actinomycetes. Finally, PCR-DGGE technique was used to reveal the microbial dynamics during the fermentation process. The results were as the follows:
     1. Seven bacteria screened belong to gram-positive, can grow at high temperature, but can't grow at low temperature. These strains couldn't grow at 4℃and 10℃, however, they grew well at 45℃, and four of those can even grow at 60℃. These strains can also grow at original pH 8.0 to pH 10.0, but couldn't grow at original pH 4.0, which showed that these strains had low tolerant to acid environment.
     2. Analysis of physiological and biochemical tests showed that, all the strains could digest starch, and used mannitol, glucose as sole carbon sources. These strains could use most tested ammonium acid, and NH4+-N, NO2-N as sole nitrogen source.
     3. BOXAIR-PCR revealed that the genetic differentiation was existed, and 16S rDNA PCR-RFLP divided these strains into 5 genotypes,16S rDNA sequences of 3 representatives showed that, stain B1, B5 and B7 belonged to Bacillus stubtlis, Bacillus badius, and Bacillus licheniformis.
     4. The results of mouse toxicity tests showed that mouse feed with strain B5 grew well, and there was no dead mouse, anatomic observation showed that no organic lesion was observed, which suggested that the tested strain had no pathogenicity to the trial mouse.
     5. During the fermentation process, after inoculation of bacterial strain B5, the temperature in the fermenting bed increased to 45℃rapidly within 24h, and the highest was 70℃, when fermentation process completed, the temperature in the fermenting bed remained 50℃. At the same time, the content of ammonium nitrogen and nitrate nitrogen decreased quickly, and changed from 108.6mg/kg and 138.72 mg/kg at beginning to 44.6 mg/kg and 52.32 mg/kg on the 8th days, and then increased a little.
     6. PCR-DGGE analysis showed that the bacterial communities in the litter material in the course of fermentation had little changes, and was stable.
引文
[1]李远.畜禽养殖业污染防治不容忽视[J].环境经济,2007,(Z1):61-64.
    [2]程辉彩,王增利,张丽萍,等.微生物菌剂在鸡粪发酵中的作用[J].今日畜牧兽医,2008,4:61.
    [3]李兆华,张志彬,王巍,等.解析发酵床养猪技术[J].吉林畜牧兽医,2010,(01):5-7.
    [4]邱俊,李丹,姜树林,刘小兰.规模化猪场清洁生产的途径和建议[J].江西畜牧兽医杂志,2010,(04):61-66.
    [5]周玉刚,许百年,张怀平,潘磊,柳卫国,韩磊.发酵床养猪土著菌种的制备技术[J].畜牧兽医科技信息,2008,(11)20-21
    [6]日本的快速养猪技术[J].武汉工业学院学报,2000,(03):50-51.
    [7]王建华,彭君,朱建明.新型发酵床养猪技术介绍[J].畜禽业,2005,(06):21-22.
    [8]李燕萍.浅谈发酵床养猪技术[J].广西轻工业,2011,(01):77.
    [9]施光发,甘友保,朱冠元,何柏水,丁正金.土壤微生物发酵床养猪技术[J].畜牧与兽医,2006,(03):59.
    [10]孙晓华,罗安程.家禽养殖场废弃物处理技术的研究进展[J].环境污染治理技术与设备,2003,(07):18-21.
    [11]周玉刚,许百年,张怀平,潘磊,柳卫国,韩磊.发酵床养猪的圈舍场地的优化选择[J].畜牧兽医科技信息,2008,(11):62.
    [12]王远孝,李娜,李雁等.基于畜禽废弃物管理的发酵床技术研究:Ⅲ高湿热季节养殖效果评价[J].农业环境科学学报,2008,27(1):354-358.
    [13]Deininger A, T amm M, Krause R, et al. Penetration resist ance and water-holding capacity of dierently conditioned straw for deep litter housing systems [J]. Agric E ngng Res,2000,77(3): 335-342.
    [14]国家环境保护总局自然生态保护司.全国规模化畜禽养殖业污染情况调查及防治对策[M].北京:中国环境科学出版社,2002,1-3.
    [15]孙晓华,罗安程.家禽养殖场废弃物处理技术的研究进展[J].环境污染治理技术与设备,2003,4(7):18-21.
    [16]吴买生.推广发酵床生态养猪技术实现生猪产业可持续发展[J].河南畜牧兽医,2009,30(5):27-29.
    [17]王立贤.正确看待发酵床养猪[J].猪业科学,2009,9:48-49.
    [18]盛清凯,武英,王成,等.发酵床养猪技术的优势与推广中存在的问题[J].猪业科学,2008,3:80-81.
    [19]滕建标,范绪和,柯荣峰.发酵床生态养猪技术探讨[J].畜禽业,2005,6:21.
    [20]刘素梅,刘丽.实用发酵床的养猪技术[J].北方牧业,2007,10:16.王建华,彭君,朱建明.新型发酵床养猪技术介绍[J].畜禽业,2005,6:21.
    [21]盛清凯,武英,王成立,等.发酵床养猪建筑设计中存在的一些问题与解决方案[J].猪业科学,2008,9:45.
    [22]闫运民.浅谈发酵床养猪关键技术[J].安徽农学通报(下半月刊),2010,(16):31-56.
    [23]Kennydy AC, Smith KL. Soil microbial diversity and the sustainability of a cultural soils [J]. Plant and Soil,1995,170:75-86
    [24]Mccaig A E, Grayston S J, Prosser J I. Impact of cultivational characterization of species composition of soil bacterial communities[J]. FEMS Microbiology Ecology,2001,35(1):37-48
    [25]Roose-Amsaleg C L, Gamier -Sillam E, Harry M. Extraction and purification of microbial DNA from soil and sediment samples[J]. Applied Soil Ecology,2001,18:47-60
    [26]Gerard M, Ellen C, Waal D, et al. Profiling of complex microbial populations by denaturing Gradien tgel electrophoresis analysis of polymer chain reaction-amplified genes coding for 16SrDNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700
    [27]Carysc, giovannoni sj. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting Deep-sea hydrothermalvents and cold seeps[J]. PNAS,1993,90:5695-5699
    [28]Williams G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research.1990,58:1-9
    [29]胡桦,陈强,李登煜.紫色土硅酸盐细菌的遗传多样性研究[J].土壤学报,2007,44(2):380-383
    [30]尹燕妮,陈永芳,李师默.植物病原棒形细菌的RAPD分析[J].微生物学报,2005,45(6):838-841
    [31]Stern M J, Smith H. Repetitive extrogenic palindrome sequences:A major component of the bacterial genome [J]. Cell,1980,37:1015-1026
    [32]Janssen P, Huys G. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy [J]. Microbiology,1996,142:1881-1893
    [33]Sharples G. J, Lloyd R G. A novel repeated DNA sequence located in the intergenic onviability and cell distortion in Rhizobium [J].Appl. Bacteriol.1990,43:287-293
    [34]Hulton C S, Higgins. ERIC sequences:a novel family of repetitive element in the genomes of Escherichia coli, Salminella typhimurium and other bacteria [J]. Mol. Microbiol.1991,5:825-834
    [35]Schneider M, Brujin F J. REP-PCR mediated genomic fingerprinting of rhizobia and multi-assisted hyogenetic pattern analysis[J]. Microbiol. Biotechnol.,1996,12:163-174
    [36]Gurtle V, Wilson V A, ayall B C. Classification of medically important clostridia using restriction endonuclease site differences of PCR amplified 16S rDNA[J]. Microbiol.1991,137:2673-2679
    [37]姚竹云,陈文新.多相分类技术在根瘤菌分类中的应用[J].农业生物技术学报,1998,6(2):161-165
    [38]Laguerre G, Allard M R, Revoy F. Rapid identification Rhizobium by restriction fragment length polymorphism analysis of PCR-amplified 16SrRNA genes[J]. Appl. Environ. Microbiol.1994, 60:56-63
    [39]Moyer C L, Tiedje J M, Dobbs FC, Kar D M. A computer simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes:efficacy of selected tetrameric enzymes for studies of microbial diversity in nature [J]. Appl. Environ. Microbiol.1996,62: 2501-2507
    [40]Nick G. polyphasic Taxonomy of Rhizobium isolated from Tropical Tree Legumes[J]. University of Helsinki Finland[D].1998,1254-1260
    [41]康凯,徐艳,李友国.花生根瘤菌遗传多样性的RFLP分析[J].湖北农业科学,2007,46(5):677-680
    [42]Fisher SG, Lerman LS. DNA fragment differing by single base-pair substitutions are separated in denaturing gradient gels:Correspondence with melting theory[J]. Proceeding of the National Academy of Sciences of the USA,1983, (80):127-141
    [43]Muyzer G, De Waal EC, UitterlindenAG. Profiling of complex microbial population by denaturing gradientgele ectrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700
    [44]James J B, Sherman T D, DevereuX R. Analysis of bacterial communities in seagrass bed sediments by double-gradientdenaturing gradient gelelectrophoresis of PCR-Amplified 16S rRNA Genes[J]. Microbial Ecology,2006,52(4):655-661
    [45]Sekiguchi H, Tomioka N, Najagarat. A single band does not always represent single bacterial strains in denaturing gradientgel electrophoresis analysis[J]. Biotechnology Letters,2001,23(15): 1205-1208.
    [46]Norris TB, Wraith JM, Castenholz Rw. Soil microbial community structure across a thermal gradient following a geothermal heating event. Applied an nvironmental[J]. Microbiology,2002, 68:6300-6309
    [47]罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1571-1575
    [48]郭艳;张进良;邓昌彦,等.利用PCR-DGGE技术分析猪粪堆肥细菌群落结构[J].湖南师范大学学报,2010,38(5):159-162
    [49]余明星,郑红艳,汪光.纳氏试剂比色法测定水体中氨氮常见问题与解决办法[J].干旱环境监测,2005,(02):123,126.
    [50]张瑜,孙承业,吴宜群,张寿林.毒物现场快速检测方法的研究进展[J].中国工业医学杂志,2006,(02):106-108.
    [51]肖怀秋.高活力产中性蛋白酶细菌菌株的选育及酶学性质研究[D].湖南农业大学,2006:74-79.
    [52]张晓晖,郭春华,江晓霞,项碧飞,张兴友.饲用木聚糖酶生产菌株的筛选及部分酶学性质的研究[J].饲料工业,2007,(06):23-25.
    [53]林稚兰,黄秀梨.现代微生物学与实验技术[M].北京,科学出版社,2000
    [54]张明丽.乳糖酶产生菌筛选、优化培养及在低乳糖奶中的应用[D].南昌大学,2007:123-157.
    [55]陈守文,喻子牛。微生物生物技术——应用微生物学基础原理[M].北京:科学出版社,2002.169-173.
    [56]肖凯.乌头类中药大鼠胚胎发育毒性体内外试验研究[D].四川大学,2006:69-65.
    [57]Hai-Rong Cheng, Ning Jiang. Extremely rapid extraction of DNA from bacteria and yeasts[J]. Biotechnology Letters.2006,28:55-59
    [58]《科学种养》杂志与招宝农庄联合推广EM菌剂制作技术培训[J].科学种养,2006,(10):62-65.
    [59]刘益仁,刘光荣,李祖章,等.微生物发酵菌剂对猪粪堆肥腐熟的影响[J].江西农业学报,2006,18(5):36-38.
    [60]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983:86-93.
    [61]周礼恺.土壤酶学[M].北京:科学出版社,1987:270-274.
    [62]李阜棣,喻子牛,何绍江等.农业微生物学实验技术[M].北京,中国农业出版社,1996,305-306
    [63]Zhanbei Liang, Rhae A. Drijber,etc. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil[J]. Soil Biology & Biochemistry,2008,40:956-966
    [64]徐晓宇,闵航,刘和,王远鹏.土壤微生物总DNA提取方法的比较[J].农业生物技术学报,2005,(03):377-381.
    [65]Songjinda, P., Nakayama, J., Kuroki, Y. Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japanese infants[J]. Biosci Biotechnol Biochem,2005, 69 (3):638-641.
    [66]江云飞,蔡柏岩.PCR-DGGE技术在细菌多样性研究中的条件优化[J].生物技术,2009,(05):84-87.
    [67]尹红梅,贺月林,张德元,等.发酵床微生物接种试验研究[J].家畜生态学报.2010,31(6):51-53.
    [68]闵钟熳,牛天贵,岳喜庆.益生菌的研究和发展趋势[J].杂粮作物,2007,(01):55-57.
    [69]Hassen A, Belguit h K, J edidi N, Cherif A, Cherif M, Boudabous A. Microbial characterization during composting of municipal solid waste [J]. Bioresource Technology,2001,80:217-225.
    [70]Stentiford E I. Composting cont rol:principles and practice [A]. In:De Bertoldi M, Sequi P, Lemmes B, Papi T (eds.), The Science of Composting[C]. Glasgow:Blackie Academic and Professional,1996:49-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700