用户名: 密码: 验证码:
PPO(MePEG)-b-PLLA嵌段共聚物的结晶行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过柔性聚乙二醇(MePEG)或低不饱和度聚醚多元醇(PPO)与左旋聚乳酸(PLLA)进行共聚改性,合成了一系列不同分子量的线型结晶-结晶MePEG-b-PLLA嵌段共聚物或三枝链非晶-结晶PPO-b-PLLA嵌段共聚物。在PEG晶态或PPO非晶态等受限条件下,研究了PLLA链段的结晶机制及结晶动力学和晶体形貌。基于聚合物成核-生长结晶理论,对可结晶PLLA链段在三枝链非晶态PPO链段受限作用下的结晶行为进行了研究。探讨嵌段共聚物的复杂结晶行为。从材料的微观凝聚态结构、结晶热力学、动力学等角度研究新型可降解PLLA基聚合物功能材料结构与性能的关系。并在此基础上,开发了新型环境友好可降解PPO-b-PLLA聚醚酯形状记忆新材料,对这类新型绿色可降解的聚醚酯形状记忆材料的性能进行了试验研究和理论初探。在下述几个方面,文中着重进行了系统的理论和实验研究:
     选择MePEG为大分子起始剂,通过与L-丙交酯开环聚合,合成了不同PLLA链段序列长度的MePEG-b-PLLA线型嵌段共聚物。通过实验温度的控制,可得到单组分结晶或双结晶的不同受限条件下聚合物凝聚态结构。在PEG结晶的条件下,PLLA链段生长的晶粒与PLLA均聚物的晶型相同,属于正交晶系。但是,PLLA晶粒的侧向尺寸远低于PLLA均聚物晶粒的侧向尺寸。通过精心设计双结晶层膜样品的制备和测试,减少线型MePEG-b-PLLA嵌段共聚物链间缠结,人为调控聚合物链的受限程度。与本体样品相比,双层膜PLLA晶体的侧向尺寸比本体样品中PLLA晶体的侧向尺寸大。
     在分子受限状态条件设计中,以PPO大分子起始剂,引发L-丙交酯开环聚合,分别合成了不同组成的三枝链PPO-b-PLLA嵌段共聚物。同时,设计合成了三枝链PLLA均聚物和线型PPO-b-PLLA嵌段共聚物为对比研究对象。对PPO-b-PLLA嵌段共聚物的冷结晶行为和晶体结构进行了测试研究。测试结果表明聚合物链构型对PPO-b-PLLA嵌段共聚物的结晶行为有着显著的影响。当PPO链段序列长度一定,三枝链PPO-b-PLLA嵌段共聚物的冷结晶峰值温度、熔点及熔融焓随PLLA链段序列长度的减小而降低。当PLLA链段序列长度一定,随着PPO链段序列长度的增加,共聚物的熔点及熔融焓增加,晶体完善度提高。再者,三枝链PPO-b-PLLA嵌段共聚物中PLLA链段冷结晶的晶体仍归属于正交晶系。
     文中详细地研究了聚合物链构型及链段序列长度对PPO-b-PLLA嵌段共聚物结晶热力学和动力学的影响。采用Lauritzen-Hoffman理论分析了PLLA链段序列长度对三枝链PPO-b-PLLA嵌段共聚物结晶动力学上的影响。发现三枝链PPO-b-PLLA嵌段共聚物的Regime II与Regime III的转变温度与链段的组成和序列长度有关,不同样品的转变温度发生在111℃-125℃之内。再者,三枝链PPO-b-PLLA嵌段共聚物的等温结晶活化能、成核参数、端表面折叠自由能及表面折叠功均高于三枝链PLLA均聚物的相应值,说明三枝化链构型聚合物结晶的的复杂性。实验揭示了非晶态PPO链段对PLLA链段的晶体生长具有增塑作用,对PLLA链段的成核具有一定的受限作用。对三枝链和线型PPO-b-PLLA嵌段共聚物的熔体非等温结晶行为及熔融行为进行了研究,分别采用Jeriorny理论、Ozawa方法和Mo方法对PPO-b-PLLA共聚物非等温结晶动力学过程进行了理论处理,并采用Arrhenius方程计算得到熔体非等温结晶表观活化能,验证了等温结晶实验现象与结论。
     在形态学方面,采用热台偏光显微镜(POM)观察了三枝链PPO-b-PLLA嵌段共聚物的熔体结晶形貌。不同序列长度的PLLA链段对共聚物结晶形貌有显著影响,且有很强的温度依赖性,在不同过冷度下先后生成了环带球晶。采用原子力显微镜(AFM)观察了环带球晶中片晶的堆砌方式。环带球晶表面凸起部分呈现为纤维状堆积,凹陷部分呈现为螺旋位错状堆积。由此推测该环带球晶是由于片晶的不同取向造成的。对蚀刻后球晶的扫描电镜(SEM)观察表明球晶以"branching"(枝化)模式生长。此外,还采用AFM观察了共聚物在几何空间受限条件下的结晶行为的影响,即研究超薄膜厚度样品的晶体形貌。在薄膜厚度约为1μm时,结晶形成由扩散控制生长机制的树枝状晶体。且树枝状晶体形貌具有强烈的结晶温度依赖性,在105℃和110℃结晶温度下分别呈现出向日葵晶体和六方状晶体。当薄膜厚度降低为200 nm时,晶体形态则呈树枝状发散、束状堆砌。进一步降低薄膜厚度为100 nm时,晶体则呈现为具有一定方向性和有序性片晶堆砌排列的堆积形态,呈“岛”状分布。揭示了聚合物薄膜低维受限条件下晶体的分布与尺寸。
     作为一种具有很强潜在应用前景的新型生物可降解嵌段共聚物材料,文中采用异氰酸酯(TDI)为交联剂制备了PPO-b-PLLA聚醚酯形状记忆材料。在形状记忆性能方面,研究了结晶对材料形状记忆性能的影响,揭示了此类形状记忆材料的结构与性能的内在联系。通过对PLLA链段结晶过程和晶体结构的控制,可得到不同结构和不同形状记忆性能的新型可生物降解形状记忆聚醚酯材料。
A series of linear crystalline-crystalline and triarm amorphous-crystalline diblock copolymers with various molecular weight were synthesized by ring-opening polymerization of L-lactide (L-LA) using monomethoxy poly(ethylene glycol) (MePEG) or low unsaturated poly(propylene oxide) (PPO) as macromolecular initiator. The crystallization processes and crystallization kinetics of the PLLA blocks were investigated under different confined condition formed by crystalline PEG or amorphous PPO of copolymers samples. Based on the polymer nucleation-growth theory, the crystallization behaviors of PLLA block was investigated under the confinement condition formed by triarm amorphous PPO, in which the complicated crystallization behaviors was discussed. From the viewpoint of the condensed structure of polymers, thermodynamics and crystallization kinetics, the relationships between the structure and properties of novel PLLA matrix copolymers functional materials were investigated. The newly environmentally friendly and biodegradable shape memory materials (SMP) of PPO-b-PLLA poly (ether-ester) were developed. The properties of poly (ether-ester) SMP were investigated from the aspect of experiment results. The main contents of the thesis are as follows:
     Linear MePEG-b-PLLA copolymers with various PLLA block lengths were synthesized by ring-opening polymerization of L-lactide in the presence of MePEG macroinitiator, using Sn(Oct)2 as catalyst. The condensed structure formed with the crystallization of one block or two blocks can be obtained by controlling the experimental temperatures. The crystals of the PLLA blocks under crystalline PEG corresponded to a form crystal with the orthorhombic unit cell, which is as same as that of PLLA homopolymer. However, the lateral sizes of the PLLA crystals were much smaller than that of PLLA homopolymer. The entanglements between MePEG-b-PLLA copolymers chains decreased by preparation the bilayer films. The lateral sizes of the PLLA crystals from the bilayer films were much larger than values of the bulk samples.
     For the samples confined by configuration of polymer chains, triarm PPO-b-PLLA copolymers with different compositions were synthesized by ring-opening polymerization of L-lactide in the presence of PPO macroinitiator, using Sn(Oct)2 as catalyst. Meanwhile, triarm PLLA homopolymer and linear PPO-b-PLLA copolymers were also synthesized for experiments. The crystallization behaviors from glass states and the crystal structure of PPO-b-PLLA copolymers were investigated. The results indicated that the segment structure had obvious effect on the cold crystallization behaviors of PPO-b-PLLA copolymers. The cold crystallization peak temperatures, melting temperatures and melting enthalpy of triarm PPO-b-PLLA copolymers with fixed PPO block length decreased with decreasing the PLLA block length. Meanwhile, the melting temperatures, melting enthalpy of triarm PPO-b-PLLA copolymers with fixed PLLA block length increased with increasing the PPO block length. In addition, crystals formed in the cold crystallization behavior corresponding to the a form crystals with the orthorhombic unit cell.
     The effects of the segment structure and the block lengths on the crystallization kinetics and thermodynamics of PPO-b-PLLA copolymers were investigated. The effect of various PLLA block lengths on the crystallization kinetics of triarm PPO-b-PLLA copolymers was investigated and analyzed with nucleation and growth theory by Lauritzen-Hoffman. The crystallization kinetics of triarm copolymers indicated that the regime transition temperature from regime II to regime III depended on the compositions and various block length of copolymers. The transition temperatures of different samples were in the range of 111℃-125℃, respectively. The calculated values of isothermal crystallization activation energy, nucleation constant and the fold surface free energy of triarm copolymers were higher than that of triarm PLLA homopolymer, which suggested the complication of the crystallization behavior in the polymers with star shape structure. The result implies that the amorphous PPO block not only had effect on the plasticization but also the confined effect on the nucleation and crystals growth of triarm copolymers. Furthermore, nonisothermal crystallization behaviors and subsequent melting behavior of triarm and linear of PPO-b-PLLA copolymers were also investigated. Nonisothermal crystallization kinetics was analyzed with Jeriorny, Ozawa and Mo method, respectively. The values of nonisothermal activation energy of triarm PPO-b-PLLA copolymers were obtained by Arrhenius equation and exhibited the same trend with the analysis of melt isothermal crystallization, which results further demonstrated the isothermal crystallization experiments and conclusions.
     In the morphological researches, the spherulite morphologies of triarm PPO-b-PLLA copolymers were observed by polarized optical microscopy (POM) with hot-stage. Different PLLA block lengths and the crystallization temperature had obvious effect on the crystals morphologies of triarm PPO-b-PLLA copolymers. The spherulites with concentric extinction banded textures were observed under various supercooling degrees. The clusters of the lamella in the banded spherulites were observed using atomic forced microscope (AFM). The protrude part of the banded spherulites was built up with fiber-orientation lamella, while the depressed part built up with the stacks of lamellae with screw dislocations. From such phenomenon, it can be speculated that the formation of the banded spherulites were attributed to different orientation of the lamella. The spherulites after etching were observed with scanning electron microscope (SEM), which growth obeyed the mechanisms of "branching" model. In addition, the crystals morphologies of triarm PPO-b-PLLA copolymer in the ultra thin films under geometrical confined environment were investigated by AFM. With the film thickness of 1μm, the dendrite can be observed, of which the crystal growth was controlled by diffusion mechanism. Moreover, the morphology of the dendrite strongly depended on the crystallization temperatures. The crystals of sunflower-shape and hexagonal-shape were observed at 105℃and 110℃, respectively. As the thickness of the film decreased to 200 nm, the crystal morphology exhibited the dendritic shape, which was built up with the stacks of micro-bind lamella. As the thickness of the film decreased to 100 nm, crystals with oriented lamellas can be observed and exhibited "island" distributing. The results indicated the distribution and the size of crystals in the thin films under low dimensional confinement.
     As one of the novel biodegradable diblock copolymers materials, the shape memory (SMP) materials of crosslinked PPO-b-PLLA copolymers were synthesized using Sn(oct)2 as a catalytic and isocyanate (TDI) as a crosslink agent. The effect of the crystallization on the shape memory parameters was investigated, which results elucidated the relationships between the structure and properties of such SMP materials. A series of novel biodegradable poly(ether-ester) SMP materials with different molecular configuration and shape memory properties can be obtained by adjusting the crystallization process and the crystal structures of PLLA segments.
引文
[1]Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications:a comparative study [J]. Biomaterials,1991,12(3):292-304.
    [2]Leenslag J W, Pennings A J, Bos R R M, Rozema F R, Boering G. Resorbable materials of poly(L-lactide) Ⅶ. In vitro degradation [J]. Biomaterials,1987,8(4): 311-314.
    [3]Langer R, Chasin M, Eds., Marcell Dekker. Biodegradable Polymers as Drug Delivery Systems [M]:New York,1982.
    [4]Pistner H, Stallforth H, Gutwald R, et al. Poly(l-lactide):a long-term degradation study in vivo:Part Ⅱ:physico-mechanical behaviour of implants [J]. Biomaterials, 1994,15(6):439-450.
    [5]Kim J K, Park D J, Lee M S, Ihn K J. Synthesis and crystallization behavior of poly(L-lactide)-block-poly(s-caprolactone) copolymer [J]. Polymer,2001,42(17): 7429-7441.
    [6]Qian H, Bei J, Wang S. Synthesis, characterization and degradation of ABA block copolymer of L-lactide and ε-caprolactone [J]. Polymer Degradation and Stability, 2000,68(3):423-429.
    [7]Vainionpaa S, Pentti R, Tormala P. Surgical applications of biodegradable polymers in human tissues [J]. Progress in Polymer Science,1989,14(5):679-716.
    [8]Ajami-Henriquez D, Rodriguez M, Sabino M, Castillo R V, Muller A J, Boschetti-de-Fierro A, et al. Evaluation of cell affinity on poly(L-lactide) and poly(ε-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces [J]. Journal of Biomedical Materials Research Part A,2008,87A(2):405-417.
    [9]Penning J P, Dijstra H, Pennings A J. Preparation and Properties Absorbable Fibres from L-lactide Copolymers [J]. Polymer,1993,34(5):942-951.
    [10]Shyamroy S, Garnaik B, Sivaram S. Structure of poly(L-lactic acid)s prepared by the dehydropolycondensation of L-lactic acid with organotin catalysts [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(10):2164-2177.
    [11]Takasu A, Narukawa Y, Hirabayashi T. Direct dehydration polycondensation of lactic acid catalyzed by water-stable Lewis acids [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(18):5247-5253.
    [12]Moon S I, Lee C W, Taniguchi I, et al. Melt/solid polycondensation of L-lactic acid:an alternative route to poly(L-lactic acid) with high molecular weight [J]. Polymer,2001,42(11):5059-5062.
    [13]Moon S I, Taniguchi I, Miyamoto M, et al. Synthesis and properties of high-molecular-weight poly(L-lactic acid) by melt/solid polycondensation under different reaction conditions [J]. High Performance Polymers,2001,13(2): S189-S196.
    [14]杨革生,沈新元,杨庆.聚乳酸及其共聚纤维的制备和应用[J].合成技术及应用,1999,14(2):23-26.
    [15]Hoogsteen W, Postema A R, Pennings A J, et al. Crystal-Structure, Conformation, and Morphology of Solution-Spun Poly(L-Lactide) Fibers [J]. Macromolecules,1990, 23(2):634-642.
    [16]Sasaki S, Asakura T. Helix distortion and crystal structure of the alpha-form of poly(L-lactide) [J]. Macromolecules,2003,36(22):8385-8390.
    [17]Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(L-lactide) [J]. Polymer,2000,41(25):8921-8930.
    [18]Cartier L, Okihara T, Ikada Y, et al. Epitaxial crystallization and crystalline polymorphism of polylactides [J]. Polymer,2000,41(25):8909-8019.
    [19]Auras R, et al. An Overview of Polylactides as Packaging Materials [J]. Macromolecular Bioscience,2004,4(9):835-864.
    [20]杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社,2007.
    [21]Nair L S, Laurencin C T. Biodegradable polymers as biomaterials [J]. Progress in Polymer Science,2007,32(8-9):762-798.
    [22]Mothe C G, Drumond W S, Wang SH. Phase behavior of biodegradable amphiphilic poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) [J]. Thermochimica Acta,2006,445(1):61-66.
    [23]Muller A J, Balsamo V, Arnal M L. Nucleation and crystallization in diblock and triblock copolymers [J]. Advances in Polymer Science,2005,190:1-63.
    [24]Nagahama K, Nishimura Y, Ohya Y, et al. Impacts of stereoregularity and stereocomplex formation on physicochemical, protein adsorption and cell adhesion behaviors of star-shaped 8-arms poly(ethylene glycol)-poly(lactide) block copolymer films [J]. Polymer,2007,48(9):2649-2658.
    [25]Lemmouchi Y, Perry M C, Amass A J, et al. Novel synthesis of biodegradable star poly(ethylene glycol)-block-poly(lactide) copolymers [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(17):3966-3974.
    [26]Stefani M, Coudane J, Vert M. In vitro ageing and degradation of PEG-PLA diblock copolymer-based nanoparticles [J]. Polymer Degradation and Stability,2006, 91(11):2554-2559.
    [27]Sawhney A S, Hubbell J A. Rapidly Degraded Terpolymers of DL-Lactide, Glycolide, and Epsilon-Caprolactone with Increased Hydrophilicity by Copolymerization with Polyethers [J]. Journal of Biomedical Materials Research Part A,1990,24(10):1397-1411.
    [28]Perego G, Vercellio T, Balbontin G. Copolymers of L-Lactide and D,L-Lactide with s-Caprolactone-Synthesis and Characterization [J]. Macromolecular Chemistry and Physics,1993,194(9):2463-2469.
    [29]Grijpma D W, Vanhofslot R D A, Super H, et al. Rubber Toughening of Poly(Lactide) by Blending and Block Copolymerization [J]. Polymer Engineering and Science,1994,34(22):1674-1684.
    [30]Cai Q, Bei J, Wang S. Synthesis and properties of ABA-type triblock copolymer of poly(glycolide-co-caprolactone) (A) and poly(ethylene glycol) (B) [J]. Polymer, 2002,43(13):3585-3591.
    [31]Sakurai K, Nakada Y, Nakamura T, et al. Preparation and characterization of polylactide-poly(ethylene glycol)-polylactide triblock polymers and a preliminary in vivo examination of the blood circulation time for the nanoparticles made therefrom [J]. Journal of Macromolecular Science Part A-Pure and Applied Chemistry,1999, 36(12):1863-1877.
    [32]Rashkov I, Manolova N, Li SM., Espartero J L, Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains [J]. Macromolecules,1996,29(1):50-56.
    [33]Sunder A, Mulhaupt R, Frey H. Hyperbranched polyether-polyols based on polyglycerol:Polarity design by block copolymerization with propylene oxide [J]. Macromolecules,2000,33(2):309-314.
    [34]Sunder A, Bauer T, Mulhaupt R, et al. Synthesis and thermal behavior of esterified aliphatic hyperbranched polyether polyols [J]. Macromolecules,2000,33(4): 1330-1337.
    [35]Chisholm M H, Navarro-Llobet D, Simonsick W J. A comparative study in the ring-opening polymerization of lactides and propylene oxide [J]. Macromolecules, 2001,34(26):8851-8857.
    [36]Aubrecht K B, Grubbs R B. Synthesis and characterization of thermo responsive amphiphilic block copolymers incorporating a poly(ethylene oxide-stat-propylene oxide) block [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(21): 5156-5167.
    [37]Choi N Y, Kelch S, Lendlein A. Synthesis, shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates [J]. Advanced Engineering Materials,2006,8(5):439-445.
    [38]Jabbari E, He XZ, Valarmathi M T, et al. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds [J]. Journal of Biomedical Materials Research Part A,2009,89A(1): 124-137.
    [39]Stevanovic M, Uskokovic D. Poly(lactide-co-glycolide)-based Micro and Nanoparticles for the Controlled Drug Delivery of Vitamins [J]. Current Nanoscience, 2009,5(1):1-14.
    [40]Iwata T, Doi Y. Morphology and Enzymatic Degradation of Poly(L-lactic acid) Single Crystals [J]. Macromolecules,1998,31(8):2461-2467.
    [41]Shiomi T, Imai K, Takenaka K, et al. Appearance of double spherulites like concentric circles for poly(s-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone) [J]. Polymer,2001,42(7):3233-3239.
    [42]Huang CI, Tsai SH, Chen CM. Isothermal crystallization behavior of poly(L-lactide) in poly(L-lactide)-block-poly(ethylene glycol) diblock copolymers [J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(17):2438-2448.
    [43]Kim K S, Chung S, Chin I J, Kim M N, Yoon J S. Crystallization behavior of biodegradable amphiphilic poly(ethylene glycol)-poly(L-lactide) block copolymers [J]. Journal of Applied Polymer Science,1999,72(3):341-348.
    [44]Li SM, Rashkov I, Espartero J L, Manolova N, Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks [J]. Macromolecules,1996,29(1):57-62.
    [45]Hamley W, Castelletto V, Castillo R V, Muller A J, Martin C M, Pollet E, et al. Crystallization in poly(L-lactide)-b-poly(ε-caprolactorie) double crystalline diblock copolymers:a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy [J]. Macromolecules,2005,38(2):463-472.
    [46]Hamley I W, Parras P, Castelletto V, Castillo R V, Muller A J, Pollet E, et al. Melt structure and its transformation by sequential crystallization of the two blocks within poly(L-lactide)-block-Poly(s-caprolactone) double crystalline diblock copolymers [J]. Macromolecular Chemistry and Physics,2006,207(11):941-953.
    [47]Nojima S, Akutsu Y, Akaba M, Tanimoto S. Crystallization behavior of poly(s-caprolactone) blocks starting from polyethylene lamellar morphology in poly(ε-caprolactone)-block-polyethylene copolymers [J]. Polymer,2005,46(12): 4060-4067.
    [48]Muller A J, Castillo R V, Hillmyer M. Nucleation and crystallization of PLDA-b-PE and PLLA-b-PE diblock copolymers [J]. Macromolecular Symposia, 2006,242(1):174-181.
    [49]Muller A J, Lorenzo A T, Castillo R V, et al. Crystallization kinetics of homogeneous and melt segregated PE containing diblock copolymers [J]. Macromolecular Symposia,2006,245(1):154-160.
    [50]Albuerne J, Marquez L, Muller A J, et al. Nucleation and Crystallization in Double Crystalline Poly(p-dioxanone)-b-poly(s-caprolactone) Diblock Copolymers [J]. Macromolecules,2003,36(5):1633-1644.
    [51]Sun L, Liu Y, Zhu L, Hsiao BS, Avila-Orta C A. Self-assembly and crystallization behavior of a double-crystalline polyethylene-block-poly(ethylene oxide) diblock copolymer [J]. Polymer,2004,45(24):8181-8193.
    [52]Bogdanov B, Vidts A, Schacht E, Berghmans H. Isothermal crystallization of poly(caprolactone-ethylene glycol) block copolymers [J]. Macromolecules,1999, 32(3):726-731.
    [53]Bogdanov B, Vidts A, Van Den Bulcke A, Verbeeck R, Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(s-caprolactone) copolymers [J]. Polymer,1998,39(8-9):1631-1636.
    [54]Lee S Y, Chin I J, Jung J S. Crystallization behavior of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers [J]. European Polymer Journal,1999, 35(12):2147-2153.
    [55]Huang MH, Li S, Coudane J, Vert M. Synthesis and Characterization of Block Copolymers of ε-Caprolactone and DL-Lactide Initiated by Ethylene Glycol or Poly(ethylene glycol) [J]. Macromolecular Chemistry and Physics,2003,204(16): 1994-2001.
    [56]Sun J, Chen X, He C, Jing X. Morphology and structure of single crystals of poly(ethylene glycol)-poly(s-caprolactone) diblock copolymers [J]. Macromolecules, 2006,39(11):3717-3719.
    [57]阳军亮,赵婷,崔继军,刘雷静,周云春,李杲,周恩乐,陈学思.聚左旋乳酸-聚乙二醇二嵌段共聚物的非等温结晶行为研究[J].高等学校化学学报,2006,27(6):1162-1166.
    [58]Loo Y L, Register R A, Ryan A J. Modes of Crystallization in Block Copolymer Microdomains:Breakout, Templated, and Confined [J]. Macromolecules,2002, 35(6):2365-2374.
    [59]Castillo R V, Miiller A J, Lin MC, et al. Confined crystallization and morphology of melt segregated PLLA-b-PE and PLDA-b-PE diblock copolymers [J]. Macromolecules,2008,41(16):6154-6164.
    [60]Flory P J, Schaefgen J R. Synthesis of Multichain Polymers and Investigation of Their Viscosities [J]. Journal of the American Chemical Society,1948,70(8): 2709-2718.
    [61]Choi Y K, Bae Y H, Kim S W. Star-shaped poly(ether-ester) block copolymers: synthesis, characterization, and their physical properties [J]. Macromolecules,1998, 31(25):8766-8774.
    [62]Zhao YL, Cai Q, Jiang J, et al. Synthesis and thermal properties of novel star-shaped poly(L-lactide)s with starburst PAMAM-OH dendrimer macroinitiator [J]. Polymer,2002,43(22):5819-5825.
    [63]Aoi K, Hatanaka T, Tsutsumiuchi K, Okada M, Imae T. Synthesis of a novel star-shaped dendrimer by radial-growth polymerization of sarcosine N-carboxyanhydride initiated with poly(trimethyleneimine) dendrimer [J]. Macromolecular Rapid Communications,1999,20(7):378-382.
    [64]罗丽华,王兰洁.星型聚合物的合成方法综述[J].精细石油化工进展,2006,7(8):45-47.
    [65]Frauenrath H. Dendronized polymers-building a new bridge from molecules to nanoscopic objects [J]. Progress in Polymer Science,2005,30(3-4):325-384.
    [66]Hao QH, Li FX, Li QB, et al. Preparation and Crystallization Kinetics of New Structurally Well-Defined Star-Shaped Biodegradable Poly(L-lactide)s Initiated with Diverse Natural Sugar Alcohols [J]. Biomacromolecules,2005,6(4):2236-2247.
    [67]Arvanitoyannis I, Nakayama A, Psomiadou E, Kawasaki N, Yamamoto N. Synthesis and degradability of a novel aliphatic polyester based on L-lactide and sorbitol:3 [J]. Polymer,1996,37(4):651-660.
    [68]Arvanitoyannis I, Nakayama A, Kawasaki N, Yamamoto N. Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst:1. Synthesis, characterization and study of their biodegradability [J]. Polymer,1995, 36(15):2947-2956.
    [69]Wang L, Dong CM. Synthesis, Crystallization Kinetics, and Spherulitic Growth of Linear and Star-Shaped Poly(L-lactide)s with Different Numbers of Arms [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(7):2226-2236.
    [70]Wang JL, Dong CM. Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(3-caprolactone)s with different arms [J]. Polymer,2006, 47(9):3218-3228.
    [71]Wang JL, Wang L, Dong CM. Synthesis, Crystallization, and Morphology of Star-Shaped Poly(ε-caprolactone) [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(22):5449-5457.
    [72]Mya KY, Pramoda K P, He CB. Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core [J]. Polymer,2006, 47(14):5035-5043.
    [73]Wang JL, Dong CM. Sequential Crystallization and Morphological Evolution of Well-Defined Star-Shaped Poly(ε-caprolactone)-b-poly(L-lactide) Block Copolymer [J]. Macromolecular Chemistry and Physics,2006,207(5):554-562.
    [74]Lu CF, Guo SR, Zhang Y, Yin M. Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers [J]. Polymer International, 2006,55(6):694-700.
    [75]Hua C, Dong CM. Synthesis, characterization, effect of architecture on crystallization of biodegradable poly(ε-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof [J]. Journal of Biomedical Materials Research Part A,2007,82(3):689-700.
    [76]Cai C, Wang L, Dong CM. Synthesis, characterization, effect of architecture on crystallization, and spherulitic growth of poly(L-lactide)-b-poly(ethylene oxide) copolymers with different branch arms [J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(6):2034-2044.
    [77]Lang MD, Wong RP, Chu CC. Synthesis and Structural Analysis of Functionalized Poly(ε-caprolactone)-Based Three-Arm Star Polymers [J]. Journal of Polymer Science Part A:Polymer Chemistry,2002,40(8):1127-1141.
    [78]Tsuji H, Miyase T, Tezuka Y, Saha S K. Physical Properties, Crystallization, and Spherulite Growth of Linear and 3-Arm Poly(L-lactide)s [J]. Biomacromolecules, 2005,6(1):244-254.
    [79]洪春雁,潘才元.非线形嵌段共聚物的合成[J].化学通报,2004,6:408-417.
    [80]Kricheldorf H R, Ahrensdorf K, Rost S. Star-Shaped Homo-and Copolyesters Derived from ε-Caprolactone, L-Lactide and Trimethylene Carbonate [J]. Macromolecular Chemistry and Physics,2004,205(12):1602-1610.
    [81]Koutsopoulou E, Tsitsilianis C. Amorphous-Crystalline PSnPEOn Heteroarm Star Copolymers:Crystallinity and Crystallization Kinetics [J]. Macromolecular Chemistry and Physics,2004,205(15):2116-2123.
    [82]Mareau V H, Prud'homme R E. In-Situ Hot Stage Atomic Force Microscopy Study of Poly(ε-caprolactone) Crystal Growth in Ultrathin Films [J]. Macromolecules, 2005,38(2):398-408.
    [83]Zhu DS, Liu Y, Shi AC, Chen EQ. Morphology evolution in superheated crystal monolayer of low molecular weight poly(ethylene oxide) on mica surface [J]. Polymer,2006,47(15):5239-5242.
    [84]Miyaji H, Izumi K, Hashino A, Miyamoto Y, Kokawa R. Growth shape of isotactic polystyrene crystals in thin films [J]. Polymer,2001,42(17):7443-7447.
    [85]Godovsky Y, Magonov S. Atomic Force Microscopy Visualization of Morphology and Nanostructure of an Ultrathin Layer of Polyethylene during Melting and Crystallization [J]. Langmuir,2000,16(7):3549-3552.
    [86]Zhang F, Liu J, Huang H, Du B, He T. Branched crystal morphology of linear polyethylene crystallized in a two-dimensional diffusion-controlled growth field [J]. European Physical Journal E-Soft Matter,2002,8(3):289-297.
    [87]孔祥明,何书刚,王震,陈宙,谢续明.AFM研究PCL薄膜的结晶形态[J].高分子学报,2003,(4):571-576.
    [88]Kressler J, Wang C. Structure formation in thin Poly(ε-caprolactone) films [J]. Langmuir,1997,13(16):4407-4412.
    [89]朱光明.形状记忆聚合物及其应用[M].北京:化学工艺出版社,2002:10.
    [90]Cho J W, Kim J W, Jung Y C, Goo N S. Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes [J]. Macromolecular Rapid Communications,2005,26(5):412-416.
    [91]Lendlein A, Kelch S. Shape-memory polymers [J]. Angewandte Chemie International Edition,2002,41(12):2034-2057.
    [92]Cho JW, Jung YC, Chung YC, Chun BC. Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement [J]. Journal of Applied Polymer Science,2004,93(5): 2410-2415.
    [93]Mondal S, Hu JL. Thermal degradation study of functionalized MWCNT reinforced segmented polyurethane membrane [J]. Journal of Elastomers and Plastics, 2007,39(1):81-91.
    [94]Jeong HM, Lee SY, Kim BK. Shape memory polyurethane containing amorphous reversible phase [J]. Journal of Materials Science,2000,35(7):1579-1583.
    [95]Chun BC, Cho TK, Chung YC. Blocking of soft segments with different chain lengths and its impact on the shape memory property of polyurethane copolymer [J]. Journal of Applied Polymer Science,2007,103(3):1435-1441.
    [96]Yang B, Huang WM, Li C, Li L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer [J]. Polymer,2006,47(4): 1348-1356.
    [97]Li FK, Hou J, Zhu W, et al. Crystallinity and morphology of segmented polyurethanes with different soft-segment length [J]. Journal of Applied Polymer Science,1996,62(4):631-638.
    [98]Ma ZL, Zhao WG, Liu YF, Shi JR. Synthesis and properties of intumescent, phosphorus-containing, flame-retardant polyesters [J]. Journal of Applied Polymer Science,1997,63(12):1511-1515.
    [99]Yasuo S. Shape memory biodegradable and absorbable material [P]. US 6281262. Aug.28.2001.
    [100]Wang WSh, Ping P, Chen XS, Jing XB. Shape memory effect of poly(L-lactide)-based polyurethanes with different hard segments [J]. Polymer International,2007,56(7):840-846.
    [101]Wang WS, Ping P, Chen XS, Jing XB. Polylactide-based polyurethane and its shape-memory behavior [J]. European Polymer Journal,2006,42(6):1240-1249.
    [1]Garlotta D. A literature review of poly lactic acid [J]. Journal of Polymers and the Environment,2001,9(2):63-84.
    [2]Lemmouchi Y, Perry M C, Amass A J, et al. Novel synthesis of biodegradable star poly(ethylene glycol)-block-poly(lactide) copolymers [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(17):3966-3974.
    [3]Perego G, Vercellio T, Balbontin G. Copolymers of L-Lactide and D, L-Lactide with s-Caprolactone-Synthesis and Characterization [J]. Macromolecular Chemistry and Physics,1993,194(9):2463-2469.
    [4]Wei W, Shang BK, Hu ShQ, et al.The study of PEG stability and the selection of antioxidants for PEG [J]. Chemical Propellant & Polymeric Materials,2004,2(5): 39-41.
    [5]Fang Y, Kang H, Zhang Z, Gao X. Review of polyethylene glycol for energy storage [J]. Chemical industry and engineering progress,2007,26(8):1063-1067.
    [6]Liu Y, Hong C, Cui X, Xu S, Zhang N. Research of Thermal Characters of Different Molecular Weight Polyethylene Glycol in Phase Change Process [J]. Journal of Changchun University of Science and Technology,2005,28(1):98-99.
    [7]Rashkov I, Manolova N, Li SM, Espartero J L, Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains [J]. Macromolecules,1996,29(1):50-56.
    [8]Sakurai K, Nakada Y, Nakamura T. Preparation and characterization of polylactide-poly(ethylene glycol)-polylactide triblock polymers and a preliminary in vivo examination of the blood circulation time for the nanoparticles made therefrom [J]. Journal of Macromolecular Science Part A:Pure and Applied Chemistry,1999, 36(12):1863-1877.
    [9]Ying JD, Lemstra P J, Nijenhuis A J. ABA Type Copolymers of Lactide with Poly(ethylene glycol). Kinetic, Mechanistic, and Model Studies [J]. Macromolecules, 1995,28(7):2124-2132.
    [10]Vert M, Schwach G, Coudane J. Present and future of PLA polymers [J]. Journal of Macromolecular Science, Pure and Applied Chemistry,1995, A32(4):787-796.
    [11]Vert M, Li SM, Spenlehauer G, Guerin P. Bioresorbability and biocompatibility of aliphatic polyesters [J]. Journal of Materials Science:Materials in Medicine,1992, 3(6):432-446.
    [12]Iwata T, Doi Y. Crystal structure and biodegradation of aliphatic polyester crystals [J]. Macromolecular Chemistry and Physics,1999,200(11):2429-2442.
    [13]Gogolewski S. Resorbable polymers for internal fixation [J]. Clinical Materials, 1992,10:13-20.
    [14]Vasanthakumari R, Pennings A J. Crystallisation kinetics of poly (L-lactic acid) [J]. Polymer,1983,24(2):175-178.
    [15]Miyata T, Masuko T. Crystallization behavior of poly (L-lactide) [J]. Polymer, 1998,39(22):5515-5521.
    [16]Ohtani Y, Okumura K, Kawaguchi A. Crystallization behavior of amorphous poly L lactide [J]. Journal of Macromolecular Science Part B:Physics,2003,42(3-4): 875-888.
    [17]Iannace S, Nicolais L. Isothermal crystallization and chain mobility of poly lactide [J]. Journal of Applied Polymer Science,1997,64(5):911-919.
    [18]Kovacs A J, Gonthier A, Straupe C. Isothermal growth, thickening, and melting of poly(ethylene oxide) single crystals in the bulk [J]. Journal of Polymer Science: Polymer Symposia,1975,50:283-325.
    [19]Cheng ZD, Bu HS, Wunderlich B. Molecular segregation and nucleation of poly(ethylene oxide) crystallized from the melt. III. Morphological study [J]. Journal of Polymer Science Part B:Polymer Physics,1988,26(9):1947-1964.
    [20]Cheng SZD, Wu SS, Chen J, et al. Isothermal thickening and thinning processes in low-molecular-weight poly(ethylene oxide) fractions crystallized from the melt.4. End-group dependence [J]. Macromolecules,1993,26(19):5105-5117.
    [21]Shin D, Shin K, Aamer K A, et al. A morphological study of a semicrystalline poly(L-lactic acid-bethylene oxide-b-L-lactic acid) triblock copolymer [J]. Macromolecules,2005,38(1):104-109.
    [22]Sun JR, Hong ZK, Yang LX, Tang ZH, Chen XS, Jing XB. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer [J]. Polymer, 2004,45(17):5969-5977.
    [23]Kim K S, Chung S, Chin I J, Kim M N, Yoon J S. Crystallization behavior of biodegradable amphiphilic poly(ethylene glycol)-poly(L-lactide) block copolymers [J]. Journal of Applied Polymer Science,1999,72(3):341-348.
    [24]Tuominen J, Kylma J, Kapanen A, et al. Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact [J]. Biomacromolecules,2002,3(3):445-455.
    [25]Maglio G., Migliozzi A, Palumbo R. Thermal properties of di-and triblock copolymers of poly(L-lactide) with poly(oxyethylene) or poly(ε-caprolactone) [J]. Polymer,2003,44(2):369-375.
    [26]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2007:118.
    [27]Pan PJ, Kai WH, Zhu B, Dong T, Inoue Y. Polymorphous Crystallization and Multiple Melting Behavior of Poly(l-lactide):Molecular Weight Dependence [J]. Macromolecules,2007,40(19):6898-6905.
    [28]De Santis P, Kovacs A J. Molecular conformation of poly(S-lactic acid) [J]. Biopolymers,1968,6(3):299-306.
    [29]Pitt C G., Vert M. Biodegradable Polymers and Plastics [M]. London:Royal Society of Chemistry,1992:7-19.
    [30]阳军亮,赵婷,崔继军,等.聚左旋乳酸-聚乙二醇二嵌段共聚物的非等温结晶行为研究[J].高等学校化学学报,2006,27(6):1162-1166.
    [31]Patterson A L. The Scherer Formula for X-Ray Particle size Determination [J]. Physical Review,1939,56(15):978-982.
    [32]Hoffman J D. The kinetic substrate length in nucleation-controlled crystallization in polyethylene fractions [J]. Polymer,1985,26(6):803-810.
    [33]Avrami M. Kinetics of phase change. Ⅱ. Transformation-time relations for random distribution of nuclei [J]. Journal of Chemical Physics,1940,8:212-224.
    [34]Huang CI, Tsai SH, Chen CM. Isothermal crystallization behavior of poly(L-lactide) in poly(L-lactide)-block-poly(ethylene glycol) diblock copolymers [J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(17):2438-2448.
    [35]Cebe P, Hong SD. Crystallization behaviour of poly(ether-ether-ketone) [J]. Polymer,1986,27(8):1183-1192.
    [36]Peterlin A. Chain Folding and Free Energy Density in Polymer Crystals [J]. Journal of Applied Physics,1960,31(11):1934-1938.
    [37]Hoffman J D, Miller R L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited:theory and experiment [J]. Polymer,1997, 38(13):3151-3212.
    [38]Abe H, Kikkawa Y, Inoue Y, Doi Y. Morphological and Kinetic Analyses of Regime Transition for Poly[(S)-lactide] Crystal Growth [J]. Biomacromolecules,2001, 2(3):1007-1014.
    [39]Di Lorenzo M L. Determination of spherulite growth rates of poly(1-lactic acid) using combined isothermal and non-isothermal procedures [J]. Polymer,2001,42(23): 9441-9446.
    [40]Lauritzen J I, Hoffman J D. Extension of theory of growth of chain-folded polymer crystal to large undercoolings [J]. Journal of Applied Physics,1973,44(10): 4340-4352.
    [41]Wu T, He Y, Fan ZY, et al. Investigations on the morphology and melt crystallization of poly(L-lactide)-poly(ethylene glycol) diblock copolymers [J]. Polymer Engineering and Science,2008,48(3):425-433.
    [42]He Y, Fan ZY, Wei J, et al. Morphology and melt crystallization of poly(L-lactide) obtained by ring opening polymerization of L-lacide with zinc catalyst [J]. Polymer Engineering and Science,2006,46(11):1583-1589.
    [43]He Y, Fan ZY, Wei J, et al. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(L-lactide) with different molecular weights [J]. European Polymer Journal,2007,43(10):4431-4439.
    [44]Solarski S, Ferreira M, Devaux E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry [J]. Polymer,2005,46(25): 11187-11192.
    [45]Wunderlich B. Macromolecular Physics [M], vol.3. New York:Academic Press, 1980.
    [1]Hamley I W, Parras P, Castelletto V, Castillo R V, Muller A J, Pollet E, et al. Melt structure and its transformation by sequential crystallization of the two blocks within poly(L-lactide)-block-Poly(s-caprolactone) double crystalline diblock copolymers [J]. Macromolecular Chemistry and Physics,2006,207(11):941-953.
    [2]Huang C-I, Tsai S-H, Chen C-M. Isothermal crystallization behavior of poly(L-lactide) in poly(L-lactide)-block-poly(ethylene glycol) diblock copolymers [J]. Journal of Polymer Science Part B Polymer Physics,2006,44(17):2438-2448.
    [3]Li SM, Rashkov I, Espartero JL, Manolova N, Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks [J]. Macromolecules,1996,29(1):57-62.
    [4]Choi Y K, Bae Y H, Kim S W. Star-shaped poly(ether-ester) block copolymers: synthesis, characterization, and their physical properties [J]. Macromolecules,1998, 31(25):8766-8774.
    [5]Zhao YL, Cai Q, Jiang J, et al. Synthesis and thermal properties of novel star-shaped poly(L-lactide)s with starburst PAMAM-OH dendrimer macroinitiator [J]. Polymer,2002,43(22):5819-5825.
    [6]Aoi K, Hatanaka T, Tsutsumiuchi K, Okada M, Imae T. Synthesis of a novel star-shaped dendrimer by radial-growth polymerization of sarcosine N-carboxyanhydride initiated with poly(trimethyleneimine) dendrimer [J]. Macromolecular Rapid Communications,1999,20(7):378-382.
    [7]洪春雁,潘才元.非线形嵌段共聚物的合成[J].化学通报,2004,6:408-417.
    [8]Arvanitoyannis I, Nakayama A, Psomiadou E, Kawasaki N, Yamamoto N. Synthesis and degradability of a novel aliphatic polyester based on L-lactide and sorbitol:3 [J]. Polymer,1996,37(4):651-660.
    [9]Arvanitoyannis I, Nakayama A, Kawasaki N, Yamamoto N. Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst:1. Synthesis, characterization and study of their biodegradability [J]. Polymer,1995, 36(15):2947-2956.
    [10]Hao QH, Li FX, Li QB, et al. Preparation and Crystallization Kinetics of New Structurally Well-Defined Star-Shaped Biodegradable Poly(L-lactide)s Initiated with Diverse Natural Sugar Alcohols [J]. Biomacromolecules,2005,6(4):2236-2247.
    [11]Wang L, Dong CM. Synthesis, Crystallization Kinetics, and Spherulitic Growth of Linear and Star-Shaped Poly(L-lactide)s with Different Numbers of Arms [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(7):2226-2236.
    [12]Wang JL, Wang L, Dong CM. Synthesis, Crystallization, and Morphology of Star-Shaped Poly(ε-caprolactone) [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(22):5449-5457.
    [13]Wang JL, Dong C M. Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(3-caprolactone)s with different arms [J]. Polymer,2006, 47(9):3218-3228.
    [14]Mya K Y, Pramoda K P, He CB. Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core [J]. Polymer,2006, 47(14):5035-5043.
    [15]Wang JL, Dong CM. Sequential Crystallization and Morphological Evolution of Well-Defined Star-Shaped Poly(s-caprolactone)-b-poly(L-lactide) Block Copolymer [J]. Macromolecular Chemistry and Physics,2006,207(5):554-562.
    [16]Cai C, Wang L, Dong CM. Synthesis, characterization, effect of architecture on crystallization, and spherulitic growth of poly(L-lactide)-b-poly(ethylene oxide) copolymers with different branch arms [J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(6):2034-2044.
    [17]Choi Y K, Bae Y H, Kim S W. Star-shaped poly(ether-ester) block copolymers: synthesis, characterization, and their physical properties [J]. Macromolecules,1998, 31(25):8766-8774.
    [18]Hua C, Dong CM. Synthesis, characterization, effect of architecture on crystallization of biodegradable poly(ε-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof [J]. Journal of Biomedical Materials Research Part A,2007,82(3):689-700.
    [19]Bogdanov B, Vidts A, Van Den Bulcke A, Verbeeck R, Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(s-caprolactone) copolymers [J]. Polymer,1998,39(8-9):1631-1636.
    [20]Lu CF, Guo SR, Zhang Y, Yin M. Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers [J]. Polymer International, 2006,55(6):694-700.
    [21]Sunder A, Mulhaupt R, Frey H. Hyperbranched polyether-polyols based on polyglycerol:Polarity design by block copolymerization with propylene oxide [J]. Macromolecules,2000,33(2):309-314.
    [22]涂建军,王荣伟,张惠明,金晖.低不饱和度聚醚多元醇的制备方法[P].CN 1566184A,2005.
    [23]逯琪,杨冬梅,张宇婷,等.环氧丙烷聚醚三元醇/聚乳酸嵌段共聚物的合成与性能[J].化学学报,2009,67(3):249-254.
    [24]Donald Garlotta. A literature Review of Poly (lactic Acid) [J]. Journal of polymers and the Environment,2001,9(2):63-84.
    [25]Li SM, Rashkov I, Espartero JL, et al. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks [J]. Macromolecules,1996,29(1):57-62.
    [26]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2007:118.
    [27]Pan PJ, Kai WH, Zhu B, Dong T, Inoue Y. Polymorphous Crystallization and Multiple Melting Behavior of Poly(1-lactide):Molecular Weight Dependence [J]. Macromolecules,2007,4():6898-6905.
    [28]De Santis P, Kovacs A J. Molecular conformation of poly(S-lactic acid) [J]. Biopolymers,1968,6(3):299-306.
    [29]Patterson A L. The Scherer Formula for X-Ray Particle size Determination [J]. Physical Review,1939,56(15):978-982.
    [30]Wu T, He Y, Fan ZY, et al. Investigations on the morphology and melt crystallization of poly(L-lactide)-poly(ethylene glycol) diblock copolymers [J]. Polymer Engineering and Science,2008,48(3):425-433.
    [1]Wang JL, Dong CM. Sequential Crystallization and Morphological Evolution of Well-Defined Star-Shaped Poly(ε-caprolactone)-b-poly(L-lactide) Block Copolymer [J]. Macromolecular Chemistry and Physics,2006,207(5):554-562
    [2]Cai C, Wang L, Dong CM. Synthesis, characterization, effect of architecture on crystallization, and spherulitic growth of poly(L-lactide)-b-poly(ethylene oxide) copolymers with different branch arms [J]. Journal of Polymer Science Part B: Polymer Chemistry,2006,44(6):2034-2044.
    [3]Choi Y K, Bae Y H, Kim S W. Star-shaped poly(ether-ester) block copolymers: synthesis, characterization, and their physical properties [J]. Macromolecules,1998, 31(25):8766-8774.
    [4]Hua C, Dong CM. Synthesis, characterization, effect of architecture on crystallization of biodegradable poly(ε-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof [J]. Journal of Biomedical Materials Research Part A,2007,82(3):689-700.
    [5]Bogdanov B, Vidts A, Van Den Bulcke A, Verbeeck R, Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone) copolymers [J]. Polymer,1998,39(8-9):1631-1636.
    [6]Lu CF, Guo SR, Zhang Y, Yin M. Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers [J]. Polymer International, 2006,55(6):694-700.
    [7]Sunder A, Mulhaupt R, Frey H. Hyperbranched polyether-polyols based on polyglycerol:Polarity design by block copolymerization with propylene oxide [J]. Macromolecules,2000,33(2):309-314.
    [8]余坚,何嘉松.聚合物熔体结晶的方式(Regime)理论[J].高分子通报,2001,(1):25-33.
    [9]Avrami M. Kinetics of phase change. Ⅱ. Transformation-time relations for random distribution of nuclei [J]. Journal of Chemical Physics,1940,8:212-224.
    [10]Iannace S, Nicolais L. Isothermal crystallization and chain mobility of poly lactide [J]. Journal of Applied Polymer Science,1997,64(5):911-919.
    [11]He Y, Fan ZY, Hu YF, Wu T, Wei J, Li SM. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly (L-lactide) with different molecular weights [J]. European Polymer Journal,2007,43(10):4431-4439.
    [12]Cebe P, Hong SD. Crystallization behaviour of poly(ether-ether-ketone) [J]. Polymer,1986,27(8):1183-1192.
    [13]Hao QH, Li FX, Li QB, et al. Preparation and Crystallization Kinetics of New Structurally Well-Defined tar-Shaped Biodegradable Poly(L-lactide)s Initiated with Diverse Natural Sugar Alcohols [J]. Biomacromolecules,2005,6(4):2236-2247.
    [14]Hoffman J D, Miller R L. Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited:theory and experiment [J]. Polymer,1997, 38(13):3151-3212.
    [15]Hoffman J D. Regime III crystallization in melt-crystallized polymers the variable cluster model of chain folding [J]. Polymer,1983,24(1):3-26.
    [16]He Y, Fan ZY, Wei J, Li SM. Morphology and melt crystallization of poly(L-lactide) obtained by ring opening polymerization of L-lacide with zinc catalyst [J]. Polymer Engineering and Science,2006,46(11):1583-1589.
    [17]Abe H, Kikkawa Y, Inoue Y, Doi Y. Morphological and Kinetic Analyses of Regime Transition for Poly[(S)-lactide] Crystal Growth [J]. Biomacromolecules,2001, 2(3):1007-1014.
    [18]Vasanthakumari R, Pennings A J. Crystallisation kinetics of poly (L-lactic acid) [J]. Polymer,1983,24(2):175-178.
    [19]Tsuji H, Miyase T, Tezuka Y, Saha S K. Physical Properties, Crystallization, and Spherulite Growth of Linear and 3-Arm Poly(L-lactide)s [J]. Biomacromolecules, 2005,6(1):244-254.
    [20]Di Lorenzo M L. Crystallization Behavior of Poly(L-lacticacid) [J]. European Polymer Journal,2005,41(3):569-575.
    [21]Miyata T, Masuko T. Crystallization Behaviour of Poly(L-lactide) [J]. Polymer, 1998,39(22):5515-5521.
    [22]Tsuji H, Ikada Y. Properties and morphologies of poly(L-lactide):1. Annealing condition effects on properties and morphologies of poly(L-lactide) [J]. Polymer, 1995,36(14):2709-2716.
    [23]Marega C, Marigo A, DiNoto V, Zannetti R. Structure and crystallization kinetics of poly(L-lactic acid) [J]. Die Makromolekulare Chemie,1992,193(7):1599-1606.
    [24]Mazzullo S, Paganetto G, Celli A. Regime III crystallization in poly-(1-lactic) acid [J]. Progress in Colloid and Polymer Science,1992,87:32-34.
    [25]Migliaresi C, De Lollis A, Fambri L, Cohn D. The effect of thermal history on the crystallinity of different molecular weight PLLA biodegradable polymers [J]. Clinical Materials,1991,8(1-2):111-118.
    [26]Kolstad J J. Crystallization kinetics of poly(L-lactide-co-meso-lactide) [J]. Journal of Applied Polymer Science,1996,62(7):1079-1091.
    [27]Von Oepen R, Michaeli W. Injection moulding of biodegradable implants [J]. Clinical Materials,1992,10(1-2):21-28.
    [28]Kishore K, Vasanthakumari R, Pennings A J. Isothermal melting behavior of poly(L-lactic acid) [J]. Journal of Polymer Science Part B:Polymer Physics,1984, 22(4):537-542.
    [29]Lauritzen J I, Hoffman J D. Extension of theory of growth of chain-folded polymer crystal to large undercoolings [J]. Journal of Applied Physics,1973,44(10): 4340-4352.
    [30]Wu T, He Y, Fan ZY, et al. Investigations on the morphology and melt crystallization of poly(L-lactide)-poly(ethylene glycol) diblock copolymers [J]. Polymer Engineering and Science,2008,48(3):425-433.
    [31]Di Lorenzo M L. Determination of spherulite growth rates of poly(1-lactic acid) using combined isothermal and non-isothermal procedures [J]. Polymer,2001,42(23): 9441-9446.
    [32]Wunderlich B. Macromolecular Physics [M], vol.3. New York:Academic Press, 1980.
    [1]Ozawa T. Kinetics of nonisothermal crystallization [J]. Polymer,1971,12(3): 150-158.
    [2]Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC [J]. Polymer,1978, 19(10):1142-1144.
    [3]Liu TX, MO ZS, Wang S, Zhang HF. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) [J]. Polymer Engineering and Science, 1997,37(3):568-575.
    [4]Yang J, Zhao T, Cui J, et al. Nonisothermal Crystallization Behavior of the Poly(ethylene glycol) Block in Poly(L-lactide)-Poly(ethylene glycol) Diblock Copolymers:Effect of the Poly(L-lactide) Block Length [J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(22):3215-3226.
    [5]Kong XH, Yang XN, Li G, et al. Nonisothermal crystallization kinetics: poly(ethylene terephthalate)-polyethylene oxide) segmented copolymer and poly(ethylene oxide) homopolymer [J]. European Polymer Journal,2001,37(9): 1855-1862.
    [6]Acar I, Durmus A, Ozgumus S. Nonisothermal Crystallization Kinetics and Morphology of Polyethylene terephthalate) Modified with Poly(lactic acid) [J]. Journal of Applied Polymer Science,2007,106(6):4180-4191.
    [7]Wu DF, Wu L, Xu B, et al. Nonisothermal Cold Crystallization Behavior and Kinetics of Polylactide/Clay Nanocomposites [J]. Journal of Polymer Science Part B: Polymer Physics,2007,45(9):1100-1113.
    [8]Wunderlich B. Macromolecular Physics [M] (Vol.2), New York:Academic Press, 2007.
    [9]Di Lorenzo M L, Silvestre C. Non-isothermal crystallization of polymers [J]. Progress Polymer Science,1999,24(6):917-950.
    [10]Xu JW, Shi WF. Synthesis and crystallization kinetics of silsesquioxane-based hybid star poly(ε-caprolactone) [J]. Polymer,2006,47(14):5161-5173.
    [11]Mya K Y, Pramoda K P, He CB. Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core [J]. Polymer,2006, 47(14):5035-5043.
    [12]Hao QH, Li FX, Li QB, et al. Preparation and Crystallization Kinetics of New Structurally Well-Defined Star-Shaped Biodegradable Poly(L-lactide)s Initiated with Diverse Natural Sugar Alcohols [J]. Biomacromolecules,2005,6(4):2236-2247.
    [13]Wang JL, Dong CM. Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(ε-caprolactone)s with different arms [J]. Polymer,2006, 47(9):3218-3228.
    [14]Garlotta D. A literature review of poly lactic acid [J]. Journal of Polymers and the Environment,2001,9 (2):63-84.
    [15]Miyata T, Masuko T. Crystallization Behaviour of Poly(L-lactide) [J]. Polymer, 1998,39(22):5515-5521.
    [16]Avrami M. Kinetics of phase change. Ⅰ. General theory [J]. Journal of Chemical Physics,1939,7:1103-1112.
    [17]Avrami M. Kinetics of phase change. Ⅱ. Transformation-time relations for random distribution of nuclei [J]. Journal of Chemical Physics,1940,8:212-224.
    [18]Avrami M. Granulation, phase change, and microstructure. kinetics of phase change. Ⅲ [J]. Journal of Chemical Physics,1941,9:177-184.
    [19]Mandelkern L. Crystallization of Polymers [M]. New York:McGrawHill,1964.
    [20]Evans U R. The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals [J]. Trans Faraday Soc,1945,41: 365.
    [21]Liu HZ, Yang GS, He AH, et al. Isothermal and nonisothermal crystallization kinetics of a semicrystalline copolyterephthalamide based on poly(decamethylene terephthalamide) [J]. Journal of Applied Polymer Science,2004,94(2):819-826.
    [22]Liu MY, Zhao QX, Wang YD, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212 [J]. Polymer,2003,44(8): 2537-2545.
    [23]Chen QY, Yu YN, Na TN, et al. Isothermal and nonisothermal melt-crystallization kinetics of syndiotactic polystyrene [J]. Journal of Applied Polymer Science,2002,83(12):2528-2538.
    [24]Xiao J, Zhang HL, Wan XH, et al. Crystallization kinetics of new copoly(ethylene terephthalate-imide)s [J]. Polymer,2002,43(13):3683-3690.
    [25]Yang GZ, Chen XL, Wang WZ, Wang M, Liu TX, et al. Nonisothermal crystallization and melting behavior of a luminescent conjugated polymer, poly(9,9-dihexylfluorene-alt-co-2,5-didecyloxy-1,4-phenylene) [J]. Journal of Polymer Science Part B:Polymer Physics,2007,45(8):976-987.
    [26]阳军亮,赵婷,崔继军,等.聚左旋乳酸-聚乙二醇二嵌段共聚物的非等温结晶行为研究.高等学校化学学报[J].2006,27(6):1162-1166.
    [1]Schonherr H, Frank C W. Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon.2. In Situ Study of Crystallization and Melting by Hot Stage AFM [J]. Macromolecules,2003,36:1199-1208.
    [2]Reiter G, Sommer J U. Crystallization of Adsorbed Polymer Monolayers [J]. Physical Review Letters,1998,80(17):3771-3774.
    [3]Imhof A, Pine D J. Imhof A., Pine D. J. Ordered macroporous materials by emulsion templating [J]. Nature,1997,389(6654):948-951.
    [4]Xia Y, Gates B, Li ZY. Self-Assembly Approaches to Three-Dimensional Photonic Crystals [J]. Advanced Materials,2001,13(6):409-413.
    [5]Xia Y, Gates B, Yin Y, Lu Y. Monodispersed Colloidal Spheres:Old Materials with New Applications [J]. Advanced Materials,2000,12(10):693-731.
    [6]Frank CW, Rao V, Despotopoulou M M, et al. Structure in Thin and Ultrathin Spin-Cast Polymer Films [J]. Science,1996,273(5277):912-915.
    [7]He Y, Fan ZY, Wei J, Li SM. Morphology and melt crystallization of poly(L-lactide) obtained by ring opening polymerization of L-lacide with zinc catalyst [J]. Polymer Engineering and Science,2006,46(11):1583-1589.
    [8]Wang JL, Dong CM. Sequential Crystallization and Morphological Evolution of Well-Defined Star-Shaped Poly(ε-caprolactone)-b-poly(L-lactide) Block Copolymer [J]. Macromolecular Chemistry and Physics,2006,207(5):554-562.
    [9]Wu T, He Y, Fan ZY, et al. Investigations on the morphology and melt crystallization of poly(L-lactide)-poly(ethylene glycol) diblock copolymers [J]. Polymer Engineering and Science,2008,48(3):425-433.
    [10]Sun JR, Hong ZK, Yang LX, Tang ZH, Chen XS, Jing XB. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer [J]. Polymer, 2004,45(17):5969-5977.
    [11]Hobbs J K, Bingeeer D R, Keller A, Barham P J. Spiralling optical morphologies in spherulites of poly(hydroxybutyrate) [J]. Journal of Polymer Science Part B: Polymer Physics,2000,38(12):1575-1583.
    [12]Chuang WT, Hong PD, Chuah HH. Effects of crystallization behavior on morphological change in poly(trimethylene terephthalate) spherulites [J]. Polymer, 2004,45(7):2413-2425.
    [13]Jang Y, Zhou JJ, et al. Surface Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Banded Spherulites Studied by Atomic Force Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry [J]. Langmuir,2003,19(18): 7417-7422.
    [14]Xu J, Guo BH, Chen GQ, Zhang ZM. Terraces on banded spherulites of polyhydroxyalkanoates [J]. Journal of Polymer Science Part B:Polymer Physics, 2003,41(15):2128-2134.
    [15]Fischer E W, Sterzel H J, Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions [J]. Colloid& Polymer Science,1973,251(11):980-990.
    [16]Keith H D, Padden F J Jr. A phenomenological theory of spherulitic crystallization [J]. J. Appl. Phys.,1963,34(8):2409-2421.
    [17]Keith H D, Padden F J Jr. Spherulitic crystallization from the melt.Ⅰ. fractionation and impuritiy segregation and their influence on crystalline morphology [J]. J. Appl. Phys.,1964,35(4):1270-1285.
    [18]王震,谢续明,杨睿,王秀凤.聚(ε-己内酯)薄膜结晶形貌及分子取向研究[J].高等学校化学学报,2006,27(1):161-165.
    [19]Vicsek T. Fractal Growth Phenomena [M]. Singapore:World Scientific Publishing Co Pte Ltd,1989,135-137.
    [20]Keith H D, Padden F J. Spherulitic Crystallization from the Melt. Ⅰ. Fractionation and Impuritiy Segregation and Their Influence on Crystalline Morphology [J]. J. Appl. Phys.,1964,35(4):1270-1285.
    [21]Qiao CD, Jiang SC, Ji XL, An LJ, Jiang BZ. Studies on confined crystallization behavior of polycaprolactone thin films [J]. Acta Polymerica Sinica,2006,8: 964-969.
    [1]胡金莲,杨卓鸿.形状记忆高分子材料的研究及应用[J].印染.2004,3:44-47.
    [2]朱光,刘忠让.形状记忆聚合物及其在生物医学工程中的应用[J].生物医学工程学杂志.2005,22(5):1082-1084.
    [3]Kazimoglu C, Bolukabsi S, Kanatli U, et al. A novel biodegradable PCL film for tendon reconstruction:Achilles tendon defect model in rats [J]. International Journal of Artificial Organs,2003,26(9):804-812.
    [4]Yasuo S. Shape memory biodegradable and absorbable material [P]. US 6281262. Aug.28.2001.
    [5]Langer R, Lendlein A, Schmidt A, et al. Biodegradable shape memory polymers [P]. WO 99/42147. Aug.26.1999.
    [6]Maitland DJ, Metzger MF, Schumann D, et al. Photothermal properties of shape memory polymer micro-actuators for treating stroke [J]. Lasers in Surgery and Medicine,2002,30(1):1-11.
    [7]Monkman G J. Advances in shape memory polymer actuation [J]. Mechatronics, 2000,10(4-5):489-498.
    [8]朱光明.形状记忆聚合物及其应用[M].北京:化学工艺出版社,2002:10.
    [9]Arvanitoyannis I, Nakayama A, Kawasaki N, Yamamoto N. Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst:1. Synthesis, characterization and study of their biodegradability [J]. Polymer,1995, 36(15):2947-2956.
    [10]Yasuo S. Shape memory biodegradable and absorbable material [P]. US 6281262. Aug.28.2001.
    [11]Lendlein A, Kelch S. Shape-memory Polymer [J]. Angewandte Chemie (Internationaled. Print),2002,41:2034-2057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700