用户名: 密码: 验证码:
太阳能光合生物连续产氢自控系统与装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家自然科学基金项目“超微化秸秆类生物质光合连续产氢过程及代谢热研究”(项目编号:50976029)和国家“863”计划项目“生物制氢关键技术研究及示范”(项目编号:2012AA051502)的资助下完成的。
     能源是社会经济持续发展的重要物质基础。当前在面临能源紧张和环境污染两大危机下,开发绿色清洁型能源,建立新的可再生能源开发利用体系,为人类创造一个良好的生存环境是社会进步的必然选择。氢能作为一种环境友好型的清洁能源,受到世界各个国家的高度关注。而生物制氢既可以利用有机废弃物作为原料减少环境污染,又能获取洁净的氢能,已成为制取氢气的重要途径之一。尤其是高效利用太阳能的光合生物制氢技术能实现有机废弃物的清洁化能量高效转换,具有广阔的发展潜力。但太阳能光合生物制氢对温度、酸碱度、光照强度等环境因素要求较高,研究设计环境因素可控的自控系统与装置实现光合产氢过程的稳定、连续、高效进行,对于光合生物制氢技术的产业化、规模化具有重要的意义。
     本文结合光合生物制氢工艺过程的影响因素分析,将自动控制技术应用到太阳能光合生物连续制氢系统中,依据工艺技术流程要求建立反应装置的可控参数体系,实现光合生物产氢过程的自动连续化检测与调控,保证光合微生物在最佳的生长环境条件下稳定高效产氢,为太阳能光合生物连续制氢技术的研究与开发提供可靠的基础数据和实验平台。主要研究结果:
     1.针对光合生物制氢的环境因素分析及产氢反应器的特点,结合过程自动控制技术,建立一个自动化的太阳能光合生物连续产氢试验平台,为深入研究其运行规律提供设备条件。系统采用单片机开发技术,成本低,可实时显示,方便在线实时测试。一方面可以通过单片机键盘或者软件设定变量的预想值,经控制器判断进行调控,满足不同的测试条件,增强系统的实用性;另一方面能够对单个控制参数提前进行在线调试,确定其可行性,大大减少了系统设计的重复性和复杂性。控制设备具有人工和自动两种工作模式,而且具备自动操纵、自动调整和自动保护功能,保障产氢过程的可靠性和连续性。系统结构上采用模块化设计及冗余优化处理,不仅保证每个子系统相对独立,一个系统瘫痪不会影响其它系统的运行,而且预留接口方便进行功能扩充和数据移植。
     2.运用太阳能热交换温度补偿的方式,制定基于数学模型的在线自适应控制算法,采用PT100铂电阻三线制桥接方法检测反应器的温度参数,由单片机PID控制方式实现了整体系统温度自动化的调控。温度补偿采用的是太阳能热水直接加热和光伏电辅助加热相结合的模式,不需外部能源,连续运行成本较低。
     3.PH控制系统中合理设计了自搅拌功能的碱液分配器,建立了自控模型,利用双回路PID模糊控制规则对PH调控的非线性进行了优化,使PH值保持在适宜范围内。设计的流量控制系统可在并联“短路径”模式下使流量保持在0.072m3/h,在串联“长路径”模式下使流量保持在0.144m3/h左右,两种模式均能满足最佳滞留时间的运行要求。
     4.针对室外聚光器内冷却光导纤维的直角导管设计了液位开关,当水分自然蒸发后,自动进行换水,既减少了温度过热对光纤的烧灼,又避免了导管的混蚀影响透光性。同时针对反应器长时间运行后供光管表面出现的附着物遮光现象,设置光敏电阻起到自动预警作用,提示需要人工拆卸清洗。
     5.通过太阳能光合生物连续产氢自控装置的运行试验表明:各个系统功能齐备,调控良好,达到了设计目标和稳定运行要求。从产氢情况分析,温度因素的提升率最大,达到了10-15%;PH因素的提升率次之,在8-10%之间;而流量因素的提升率较小,只有3-5%。这说明在太阳能光合连续产氢过程中,保持适宜的温度是提高产氢量的重要条件。而流量不是主要的考虑因素,只要能保持最佳的水力滞留时间即可。太阳能光合生物连续产氢自控装置在经系统调控的30±2℃温度、7±1PH、36h水力滞留时间的环境下,连续运行40天,工作状态稳定,且对太阳能光合生物连续产氢量的提升率达到了20-30%,产氢效率的提升率达到20%,起到了明显的促进作用,为太阳能光合生物连续制氢技术的进一步研究与开发提供了科学参考。
This study was supported by National Natural Science Foundation“Research onmetabolic heat and continuous photohydrogen production from straw biomassultrafine powder”(NO.50976029) and National863High Technology Research andDevelopment Projects“Key technology research and demonstration of biologicalhydrogen production”(NO.2012AA051502).
     Energy is an important material foundation for social economic sustainabledevelopment. In the face of the current energy tension and environmental pollution,building a new renewable energy development and utilization system with green cleanenergy and creating a good living environment for mankind is an inevitable choice forsocial progress.As a friendly environmental clean energy, hydrogen gains highattentions by all the countries in the world. Bio-hydrogen production not only can useorganic wastes as raw materials to reduce the pollution of the environment,but alsocan get clean hydrogen energy, it has become one of the most important methods toproduce hydrogen. Especially the hydrogen production by PSB(photosyntheticbacteria) with efficient utilization of solar energy can achieve efficienttransformation,so it has a broad potential. However, hydrogen production by PSBwith solar is impaired by kinds of environmental factors such as temperature, Ph, lightintensity, the research of environmental factors controllable system and equipmentto enable the photosynthetic hydrogen production continuous and stable has importantsignificance for industrial and scale hydrogen production by PSB.
     This paper in the base of analysis the influence factors of biological hydrogenproduction process applied automatic control technology to the continuous hydrogenproduction system by PSB with solar, established controllable parameters of thereaction system based on the requirements of technological process, realized theautomatic continuous inspection and control of photosynthetic hydrogen productionsystem to ensure stable and efficient hydrogen production of PSB in the bestenvironment for the growth conditions, provided a basic data and reliableexperimental platform for the research and development of continuous hydrogen production technology of PSB with solar energy.The main research results of this paper are as following:
     1.Based on the analysis of environmental factors of biological hydrogen productionand characteristics of photosynthetic bioreactor, combined with process automaticcontrol technology, an experimental platform of automatic continuous hydrogenproduction of PSB with solar was established, provided an equipment conditionfor the in-depth study of the operating laws. The system used microprocessortechnology to make low cost, real-time display for easily online test. Firstly, thesystem can set the expected value of the variable by the microcontroller keyboardor software and regulate them decided by the controller to meet the different testconditions and to enhance its usefulness. Secondly, the system can pre-regulate theon-line single parameter to determine its feasibility, so the repeatability andcomplexity was reduced greatly. The controller devices have two modes ofoperation: automatic mode and manual mode, the devices also have the function asfollows: automatic operation, automatic adjustment and automatic protection andso on, and ensure the reliability and continuity of the hydrogen production. In thestructure,this system used modular design and redundant optimization, not only toensure relatively independent of the each subsystem which can make a crash haveno effect on the operation of other system, but also to have the excess interface tofacilitate the functional expansion and data migration.
     2.The automatic temperature control system was established by using solar heatexchange temperature compensation, utilizing adopting on-line automaticregulation based on mathematical model, adopting the three-wire PT100platinumresistance bridge to detect the temperature of the photobioreactor and adopting themicrocontroller PID control mode to realize the auto-regulation. By using thecombination of solar hot water heating and photovoltaic electric auxiliary heatingwithout external energy,the cost of continuous operation was reduced.
     3.In the Ph value control system,a self-mixing lye dispenser was designed and theself-control model was established by using double-loop PID fuzzy control rules tokeep the Ph value within an appropriate range after its nonlinear effect wasoptimized. The flow control system can keep the flow at0.072m3/h in parallel"short path" mode, and0.144m3/h in the serial "long path" mode, the two modescan meet the best retention run time requirement.
     4.An automatic level switch for the right angles cooling catheter of optical fiber condenser outdoor was designed.The water was changed automatically after thenatural evaporation,thus the device can not only avoid temperature overheating tothe fiber, but also avoid mixed pitting in catheter affecting light transmission. Forthe problem of the surface of the obscuring attachments in light tubes, anautomatic early warning device was setted to prompt its need of manuallyknocking down and cleaning.
     5.The results of automation equipment of photobioreactor for continuous hydrogenproduction with solar energy show that each system has perfect function and goodregulation to meet the design goals and the stable operating requirements.Temperature factors enhance the hydrogen production was obvious, which reached10-15%; PH factors follows, in the range of8-10%; and the flow factors effect wassmaller, only3-5%.It shows that in the process of continuous photosynthetichydrogen production with solar maintaining,an appropriate temperature is animportant condition to improve the hydrogen production. The flow is not a majorinfluencing factor as long as it maintains a optimal hydraulic retention time. Theautomation equipment of photobioreactor for continuous hydrogen productionwith solar energy runs continuously for40days in the controlled environment of30±2℃temperature、7±1Ph and36h hydraulic retention time.The overall systemwas continuous and stable.It enhanced the hydrogen production rate of20-30%and the efficiency of hydrogen production rate of20%and played a significantrole in promoting continuous hydrogen. The research of automation system andequipment provided a scientific reference for further research and development ofphotobioreactor for continuous hydrogen production with solar energy.
引文
[1]中国的能源状况与政策白皮书,国务院新闻办公室,2007.12.
    [2]谢晶莹.新能源:世界各国拉动经济增长的新引擎[J].农业工程技术·新能源产业,2010(1):12-14.
    [3]郭金瑞,许华明.世界能源一次消费分析[J].资源与产业,2010,12(1):28-32.
    [4]马赛.解决能源问题需要全球共同努力[N].光明日报,2007.11.7.
    [5]纪占武,郑文范.关于发展生物能源化解能源危机的思考[J].东北大学学报(社会科学版),2009,11(6):117-121.
    [6]邓成.环境污染造成的全球气候变暖及应变措施[J].西部大开发:中旬刊,2012(8):64-64.
    [7]张同志.浅议世界土壤酸化及其影响[J].安徽农学通报,2012,18(7):110-111.
    [8]冉丹,李燕群,张丹,等.论中国水污染物排放标准的现状及特点[J].环境科学与管理,2012,37(12):38-42.
    [9]李萌.中国低碳经济中可再生能源持续发展问题研究[J].华中科技大学学报(社会科学版),2010,24(4):91-94.
    [10]韩晓琳.水资源现状分析及保护对策[J].科技信息,2011(7): I0374-I0374.
    [11]王北星.美国的能源战略及其启示[J].中外能源,2010,15(6):12-17.
    [12]董小君.低碳经济的丹麦模式及其启示[J].国家行政学院学报,2010(3):119-123.
    [13]周茂荣,祝佳.欧盟新能源政策:动因分析与前景展望[J].世界经济研究,2007(12):67-70.
    [14]张玉臣,彭建平.欧盟新能源产业政策的基本特征及启示[J].科技进步与对策,2011,28(12):101-105.
    [15]吴学安.日本能源战略启示录[J].资源与人居环境,2010(1):14-17.
    [16]杜祥琬,黄其励,李俊峰,等.我国可再生能源战略地位和发展路线图研究[J].中国工程科学,2009,11(8):49-51.
    [17]陈庆修.中国能源战略大视野[J].经济研究参考,2010(29):5-9.
    [18]国家发展和改革委员会.可再生能源中长期发展规划[J].可再生能源,2007,25(5):1-5.
    [19]中国新能源与可再生能源网.2010,http://www.crein.org.cn/view/viewnews.aspx?id=20100613171045109.
    [20]崔奕,郝寿义,王银平.低碳经济引发的可再生能源思考[J].生态经济,2010(5):64-67.
    [21] Zhou XP,Wang F,Hu H.W.et al. Assessment of sustainable biomass resource for energy usein china[J]. Biomass and Bioenergy,2011,35(1):1-11.
    [22] Chauhan S K,Gupta N,Walia R,et al. Biomass and Carbon Sequestration Potential ofPoplar-Wheat Inter-cropping System in Irrigated Agro-ecosystem in India[J]. Journal ofAgricultural Science and Technology A,2011(4):575-586.
    [23]冯晨辉,沈力成.中国生物质能产业的现状及其未来发展前景[J].能源研究与管理,2011(4):9-12.
    [24] Magdalena R,Vicente S. Challenges on the Quality of Biomass Derived Products for BringingThem into the Fuels Market[J]. Journal of Enerhy and Power Engineering,2012,6(3):321-328.
    [25]赵军,王述洋.我国生物质能资源与利用[J].太阳能学报,2008,29(1):90-94
    [26]中华人民共和国可再生能源法.可再生能源,2005.2:1-3.
    [27] Midilli A, Dogru M, Howarth C, et, al. Hydrogen production from hazelnut shell by applyingair-blown downdraft gasification technique[J]. Int J Hydrogen Energy,2001,26(1):29-37
    [28] Committee on Alternatives and Strategies for Future Hydrogen Production and Use, NationalResearch Council, National Academy of Engineering. The Hydrogen Economy:Opportunities, Costs, Barriers, and R&D Needs[M]. Washington DC.2004.http://www.nap.edu/catalog.php?record_id=10922.
    [29] Ramachandran R, Menon R K. An overview of industrial uses of hydrogen [J]. InternationalJournal of Hydrogen Energy,1998,23(7):593-598.
    [30] Grietus Mulder,Jens Hetland,Guido lenaers.Towards a sustainable hydrogen economy:hydrogen pathways and infrastructure[J]. International Journal of Hydrogen Energy,2007(32):1324-1331.
    [31]高清慧.制氢技术的研究与发展趋势[J].中国高新技术企业,2008(15):57-58.
    [32]李鑫,李安定,李斌,等.太阳能制氢研究现状及展望[J].太阳能学报,2005,26(1):127-133.
    [33] Rosen M A,Scott D S. Comparative efficiency assessments for a range of hydrogenproduction processes[J]. International Journal of Hydrogen Energy,1998,23(7):653-659.
    [34]尤希凤,郭新勇.生物制氢技术的研究现状及发展趋势.河南化工,2003(10):4-6.
    [35]申翔伟,周雪花,杜金宇,等.生物制氢技术发展历程及其特征[J].太阳能,2010(1):22-25.
    [36] Ilgi Karpinar K, Fikret k. Bio-hydrgoen production from waste materials[J].Enzyme andMicrobial Technology.2006(38):569-582.
    [37] David B L,Lawrence P,Murray L.Biohydrogen production:prospects and limitations topractical application[J]. International Journal of Hydrogen Energy,2004(29):173-185.
    [38]柯水洲,马晶伟.生物制氢研究进展(II):应用与前景[J].化工进展,2006,25(9):1006-1010.
    [39]任南琪,李建政,林明,等.产酸发酵细菌产氢机理探讨[J].太阳能学报,2002,23(1):124-128.
    [40] Hong L,Stephen G,Bruce.Electrochemically Assisted Microbial Production of Hydrogenfrom Acetate[J].Environ.Sei.Teehnol,2005(39):4317-4320.
    [41] Oh Y K,Seol E H,Kim M S,et a1.Photoproduction of hydrogen from acetate byachemoheterotrophic bacterium Rhodopseudomonas palustris a4[J].InternationalJournal ofHydrogen Energy,2004,29(11):1115-1121.
    [42]宫曼丽,任南琪,邢德峰.生物制氢反应系统的启动负荷与乙醇型发酵[J].太阳能学报,2005,26(2):244-247.
    [43]左宜,左剑恶,张薇.利用有机物厌氧发酵生物制氢研究进展[J].环境科学与技术,2004,27(1):97-99.
    [44] Doe U S. A Prospectus for Biological H2Production.2005.http://www1.eere.energy.gov/hydrogenandfuelcells/production/pdfs/photobiological.pdf.
    [45] Kaushik Nath, Debabrata Das. Improvement of fermentative hydrogen production: variousapproaches[J]. Appl. Microbiol Biotechnol.2004(65):520-529.
    [46]李建政,任南琪,林明,等.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2):252-256.
    [47] Hawkes F R,Dinsdale R,Hawkes D L,et al.Sustainable fermentative hydrogen production:challenges for process optimization[J].Interonal Journal Hydrogen Energy,2002(7):1339-1347.
    [48] Gest H,Kamen MD. Photoproduetion of molecular hydrogen by Rhodospirillum rubrum[J].Science,1949,109:558-559.
    [49] Radhey S. Gupta. Evolutionary relationships among photosynthetic bacteria[J]. Discoveriesin Photosynthesis,2005(20):1087-1097.
    [50] Terrance E. Meyer, Michael A.Cusanovich. Discovery and characterization of electrontransfer proteins in the photosynthetic bacteria[J]. Advances in Photosynthesis andRespiration,2005(20):455-470.
    [51] Richard Cogdell, Alastair T.Gardiner. Light harvesting by purple bacteria: a circularargument[J]. Microbiology Today.2001,28(1):120-122.
    [52]张明,史家梁.光合细菌光合产氢机理研究进展[J].应用与环境生物学报,1999(增刊1):25-29.
    [53]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展[J].生物质化学工程,2006,40(1):27-31.
    [54] Nitai Basak, Debabrata Das.The prospect of purple non-sulfur(PNS) phtosynthetic bacteriafor hydrogen production: the present state of the art[J].World J Micobiol Biotechnol.2007,23(1):31-42.
    [55]杨素萍,曲音波.光合细菌生物制氢研究[J].现代化工,2003,23(9):17-22.
    [56] Ooshima H, Takakuwa S. Production of hydrogen by a hydrogenase-deficient mutant ofRhodobacter capsulatus[J]. J Ferment Bioeng.1998,85(5):470-475.
    [57] Lay J J, Lee Y J, Noike T. Feasibility of biological hydrogen production from fraction ofmunicipal solid waste [J]. Water research.1999(33):2579-2586.
    [58]王昶,贾士儒,贾庆竹等.光合细菌生物制氢技术[J].生物加工过程.2005(4):9-13.
    [59] Terrance E,Meyer,Michael A.Cusanovich. Discovery and characterization of electron transferproteins in the photosynthetic bacteria[J]. Photosynthesis Reseach.2003,76:111-126.
    [60] Xian-Yang Shi, Han-Qing Yu. Response surface analysis on the effect of cell concentrationand light intensity on hydrogen production by Rhodopseudomonas capsulate[J]. Processbiochemistry.2005,40:2475-2481.
    [61]师玉忠,张全国,王毅.等.生物质制氢的光合细菌连续培养技术实验研究[J].农业工程学报,2008,24(6):218-221.
    [62] Miyamoto K,Ohta S,Nawa Y,et a1. Hydrogen production by a mixed culture of a greenalga,Chlamydomonas reinhardtii and a photosynthetic bacterium,Rhodospirillumm6mm[J].Agricultural and Biological Chemistry,1987,51:1319-1324.
    [63] Miura Yoshiharu,Tom Akano,Kiyomi Fukatsu,et a1. Hydrogen production by phototsyntheticmicro-organisms[J]. Energy Concers Mgmt,1995,36(6/9):903-906.
    [64] Kondo T,Arakawa M.Enhancement of hydrogen by a photosynthetic bacterium mutants withredcent pigment[J].Jouenal of Bacteriology,2002,93(2):145-150.
    [65] Ike A,Toda N,Tsuji N, Hirata K, Miyamoto K. Hydrogen Photoproduction from CO2-FixingMicroalgal Biomass: Application of Halotolerant Photosynthetic Bacteria. Fermentation andBioengineering,1997,84(6):606-609
    [66] Miura Y. Hydrogen production by photosynthetic microorganisms. Energy Convers.Mgmt,1995,36(6):903-906.
    [67] Bockris JO’M. The origin of ideas on a hydrogen environment [J]. Int J Hydrogen Energy,2002,27:731-740
    [68] Yokoi H,Saitsu,H.Uchida,et a1. Microbial hydrogen production from sweet potato starchresidue[J]. Journal of Bioscience and Bioengineering,2001,91(1):58-63.
    [69]李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展[J].生物技术通报,2003(4):1-5.
    [70] Yokoi H,Mori S,Hirose J,et al.H2production from starch by a mixed culture of Clostridiumbutyricum and Rhodobacter sp M-19[J].Biotechnol Lett,1998,20:890-895.
    [71] Zabut B,Kahlout KE,Yücel M,Gündüz U,Türker L,Eroɡ lu l.Hydrogen gas production bycombined systems of Rhodobacter sphaeroides O.U.001and Halobacterium salinarum in aphoto bioreactor.Int J Hydrogen Energy,2006,31(11):1553-1562.
    [72] Zhang L,Happe T,Meles A. Biochemistry and morphological characterization ofsulfur-deprived amd H2-producting Chlamydomonas reinhardtii(green alga)[J].Planta,2002,214(4):552-561.
    [73] Reith J H, WijffelsR H, H Barten. Bio-methane&Bio-hydrogen: Status and perspective ofbiological methane and hydrogen production[M]. Dutch Biological Hydrogen Foundation2003. http://www.biohydrogen.nl/everyone/20804.
    [74]吴永强,宋鸿遇.光合细菌固氮分子生物学研究进展[J].植物生理学通讯.1991,27(3):161-166.
    [75]刘源,高金鹏,徐春和.紫细菌捕光色素蛋白复合体及光化学反应中心的研究进展[J].植物生理与分子生物学学报,2005,31(6):567-574.
    [76] Walz T, Ghosh R. Two-dimensional crystallization of the light-harvesting I-reaction centrephotounit from rhodospirillum rubrum[J]. J Mol Biol,1997,265:107-111.
    [77] MacDermott G S M, Prince A, Freer A, et al. Crystal structure of an integral membranelight-harvesting complex from photosynthetic bacteria[J]. Nature,1995,374:517-521.
    [78] Papiz1Z M, Prince S M, Howard T,et al. The structure and thermal motion of the B800-850LH2complex from Rhodopseudomonas acidophila at2.0resolution and100K: newstructural features and functionally relevant motions[J]. J Mol Biol,2003,326:1523-1538.
    [79] Deisenhofer J, Epp O, Miki K, et al. Structure of the protein subunits in the photosyntheticreaction centers of the Rhodopseudomonas viridis at3resolution[J]. Nature,1985,318:618-624.
    [80] Taylor D P, Cohen S N, Clark W G,et al. Alignment of genetic and restriction maps of thephotosynthesis region of the Rhodopseudomonas capsulata chromosome by aconjugation-mediated marker rescue technique[J]. J Bacteriol,1983,154(2):580-590.
    [81]尤崇灼,姜通明,宋鸿遇.生物固氮[M].北京:科学出版社,1987.
    [82] Postgate J R.The Fundamentals of Nitrogen Fixation[M].Cambridge University Press.1982.
    [83]李季伦,王友绍.固氮酶催化机制及化学模拟生物固氮研究进展[J].自然科学进展,2000,10(6):481-490.
    [84] Ludden PW,Madden MS,Paustian TD and Shah VK. Effects of homocitrate, homocitratelactone, and fluorohomocitrate on nitrogenase in NifV-mutants of Azotobacter vinelandii[J].J Bacteriol,1991,173(17):5403–5405.
    [85]吴永强,陈秉俭,仇哲.浑球红假单胞菌在暗处发酵生长时的固氮酶、吸氢酶、以及放氢机制的研究[J].微生物学通报,1991,18(2):71-74.
    [86]任南琪,李永峰,郑国香,等.生物制氢理论研究进展[J].地球科学进展,2004(19):537-541.
    [87]龙敏南,苏文金,Albracht S P,等.光合细菌Chromatium vinosum可溶性氢酶的EPR研究[J].高等学校化学学报,2001,22(7):178-181.
    [88]刘晶晶,龙敏南.氢酶结构及催化机理研究进展[J].生物工程学报,2005,21(3):348-353.
    [89]龙敏南,苏文金,S P J Albracht.光合细菌Chromatium vinosum可溶性氢酶小亚基基因的克隆[J].厦门大学学报(自然科学版),2000(2):247-252
    [90]吴健民. Chromatiumvinosum氢酶基因文库的构建和膜结合态氢酶小亚基基因的克隆[D].厦门大学硕士论文,2000.
    [91]朱瑞艳,孟永宏,李季伦.深红红螺菌吸氢酶缺失突变株放氢的研究[D].第八届全国氢能学术会议论文,2007.
    [92]王中康,田远明,廖强,等.沼泽红假单胞菌phbC-hupL双突变株构建及产氢测定[J].中国环境科学,2010,30(10):1395-1401.
    [93]张全国,安静,王毅,等.可见光谱对混合光合细菌产氢和生长特性的影响[J].太阳能学报,2010,31(3):391-395.
    [94]李刚,周雪花,岳建芝,等.添加消泡剂对光合细菌生长和产氢量的影响[J].农业工程学报,2009(11):278-281.
    [95] Koku H, Eroglu L U, Gunduz,et a1. Aspects of the metabolism of hydrogen production byRhodobacter sphaeroides[J].International Journal of Hydrogen Energy,2002,27(11-12):1315-1329.
    [96]朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子实验研究[J].应用生态学报,1997,8(2):194-198.
    [97]徐向阳,俞秀娥,郑平,等.固定化光合细菌产氢过程的基质利用动力学[J].生物工程学报,1995,11(1):51-57.
    [98]杨素萍,赵春贵,曲音波,等.铁和镍对光合细菌生长和产氢的影响[J].微生物学报,2003,43(2):257-263.
    [99]张全国,荆艳艳,周雪花,等.吸附法固定光合细菌技术产氢能力的研究[J].农业工程学报,2008,24(9):199-202.
    [100]张军合,张全国,师玉忠,等.光合细菌高效产氢菌群在猪粪污水中产氢量的研究[J].农业工程学报,2006,40(2):177-180.
    [101]张全国,杨群发,李随亮,等.猪粪沼液中氨态氮含量的影响因素实验研究[J].农业工程学报,2005,21(6):114-117.
    [102] Zhu H,Ueda S,Asada Y,et a1. Hydrogen production as a novel process of wastewatertreatment-studies on tofu wastewater with entrapped R.sphaeroides and mutagenesis[J].International Journal ofHydrogen Energy,2002,27(11-12):1349-1357.
    [103]刘双江,孙燕.固定化光合细菌处理豆制品废水产氢研究[J].环境科学,1995,16(1):42-44.
    [104]卢怡,张无敌,宋洪川,等.猪粪发酵产氢潜力的研究[J].可再生能源,2003(2):11-13.
    [105] Eroglu E,Gunduz U,Yucel M,et a1. Photobiological hydrogen production by using olivemillwastewater as a sole substrate source[J]. International Journal ofHydrogen Energy,2004,29(2):163-171.
    [106] Yetis M, Gunduz U, Eroglu L,et a1. Photoproduction of hydrogen from sugar refinerywastewater by Rhodobacter sphaeroides0.U.001[J]. International Journal of HydrogenEnergy,2000,25(11):1035-1041.
    [107] Kim S H,Han S K,Shin H S. Feasibility of biohydrogen production by anaerobicco-digestion of food waste and sewage sludge[J]. International Journal of HydrogenEnergy,2004,29(15):1607-1616.
    [108]汤桂兰,孙振钧,李玉英.微生物发酵法制氢与产氢微生物的研究进展[J].农业工程学报,2007,23(12):285-290.
    [109]赵青玲,杨继涛,李遂亮,等.畜禽粪便资源化利用技术的现状及展望[J].河南农业大学学报,2003,37(2):184-187.
    [110] Taguchi E,hang JD,Taldguchi S,et a1. Efficient hydrogen production from starch by abacterium isolated from termites[J]. Journal of Fermentation and Bioengineering,1992,73(3):244-245.
    [111]张全国,尤希风,雷廷宙,等.太阳能光合生物制氢光转化效率的影响因素研究[J].河南农业大学学报,2004,38(1):96-99.
    [112]张全国,师玉忠,张军合,等.太阳光谱对光合细菌生长和产氢特性的影响研究[J].太阳能学报,2007,28(10):1135-1139.
    [113]张全国,王素兰,尤希凤,等.光合菌群产氢量影响因素的研究[J].农业工程学报,2006,22(10):182-185.
    [114]张军合,张全国,杨群发,等.光照度对猪粪污水条件下红假单胞菌光合产氢的影响[J].农业工程学报,2005,21(9):134-136.
    [115] Laurinavichene T,Tolstygina I,Tsygankov A.The effect of light intensity on hydrogenproduction by sulfur-deprived Chlamydomonas reinhardtii[J]. Biotechnol,2004,114:143-151.
    [116]田鑫,廖强,张攀,等.光合细菌生物膜制氢反应器的产氢特性[J].太阳能学报,2008,29(12):1553-1557.
    [117] Deliang He,Yann Bultel,Jean-Pierre Magnin,et a1.Kinetic analysis of photosynthetic growthand photohydrogen production of two strains of rhodobacter capsulayus[J].Enzyme andmicrobial technol,2006,38:253-259.
    [118]张全国,申翔伟,周雪花,等.光合细菌制氢工艺参数对产热量的影响[J].河南农业大学学报,2009,49(5):567-571.
    [119]荆艳艳,周雪花,李刚,等.光合细菌产氢系统累积热量对酶活性的影响[J].太阳能学报,2009,30(4):407-411
    [120]王素兰,于鲁冀.光合产氢菌群生长特性的研究[J].安徽农业科学,2008,36(31):13508-13510.
    [121]孙琦,徐向阳,焦杨文.光合细菌产氢条件的研究[J].微生物学报,1995,35(1):65-73.
    [122]李勤生,卫翔.混合培养对光合细菌生长量的影响[J].水生生物学报,1998,22(2):101-105.
    [123]林明,任南琪,王爱杰,等.混合菌种在发酵法生物产氢中的协同作用[J].环境科学,2003,24(2):54-59.
    [124]韩向红,黄循吟,何滨,等.几株红假单胞菌混菌培养条件的探讨[J].海南师范学院学报(自然科学版),2004,17(3):274-277.
    [125] Kondo T M,Arakawa T,Wakayama,et a1. Hydrogen production by combining two types ofphotosynthetic bacteria with different characteristics[J]. International Journal of HydrogenEnergy,2002,27(11-12):1303-1308.
    [126]李刚,岳建芝,周雪花,等.反应器顶部气体成分对光合细菌生长和产氢量的影响[J].河南农业大学学报,2010(1):69-73.
    [127]朱灵峰,程萌,苏彩丽,等.IC反应器发酵产氢的启动特性试验研究[J].河南农业大学学报,2012,46(5):567-570.
    [128]龙敏南,史继祥,徐惠娟,等.UASB生物制氢反应系统生物强化作用研究[J].厦门大学学报(自然科学版),2008,47(5):620-623.
    [129] Minnan L,Jinli H,Xiaobin W,et al.Isolation and characterization of a high H2-producing strainKlebsiella oxytoca HP1from a hot spring[J].Research in Microbiology,2005,156(1):76-81.
    [130]王璐.UASB生物制氢反应器的启动与运行参数的研究[D].哈尔滨:东北林业大学硕士学位论文,2011.
    [131]吴占松,赵满成.生物质能利用技术-太阳能生物制氢系统的构建[M].北京:化学工业出版社,2010.
    [132]王博.CSTR生物制氢反应器流场数值模拟[D].哈尔滨工业大学工学硕士学位论文,2009.
    [133]吴占松,赵满成.生物质能利用技术-利用工业有机废水生物制氢[M].北京:化学工业出版社,2010.
    [134]吴占松,赵满成.生物质能利用技术-有机废水发酵法生物制氢技术生产性示范工程[M].北京:化学工业出版社,2010.
    [135]廖强,张川,朱恂,等.光合细菌生物制氢反应器研究进展[J].应用与环境生物学报,2008,14(6l):871-876.
    [136]李德峰,周雪花,李刚,等.光合细菌制氢试验装置及其技术研究进展[J].生物质化学工程,2009,43(4):56-61.
    [137] Bernado Ruggeri. Bio-routes to hydrogen production[会议].Hydrogen&fuel celltechnologies.bardonecchia.2007,1.http://www.flamesofc.org/public/hyschool-bardonecchia/presentations/15_Ruggeri.pdf.
    [138] European commission. Non-Thermal Production of Pure Hydrogen from Biomass,HYVOLUTION-019825[会议].Brussel.2007.
    [139] E Nakada, S.Nishikat, Y. Asada, J. Miyake. Photosynthetic bacterial hydrogen productioncombined with a fuel cell[J].International Journal of Hydrogen Energy,1999,24:1053-1057.
    [140] Jun M,Masato M,Yasuo A.Biotcchnological hydrogen production:Research for efficientlight energy conversion[J]. Journal of Biotechnology,1999,70(1):89-101.
    [141] Wakayama T,Asada Y, Miyake J. Effect of light/dark cycle on bacterial hydrogenproduction by Rhodobacter sphaeroides RV from hour to second range[J]. Appiled biochembiotech,2000,84-86:431-440.
    [142] Pietro C,Benjamin P,Alessandro D,et al. Growth characteristics of Rhodopseudomonaspalustris cultured outdoors, in an underwater tubular photobioreactor, and investigation onphotosynthetic efficiency[J]. Appl Microbiol Biotechnol,2006,73:789–795.
    [143]徐斐,何定兵,何耀宗,等.用于产氢的管道光生物反应器设计及实验研究[J].太阳能学报2008,29(8):950-954.
    [144] Chimeil,Kuo T H. Hydrogen production using Rhodopseudomonas palustries WP3-5withhydrogen fermentation reactor effluent[C].16th World Hydrogen Energy Conference(WHEC16),Lyon France,2006.
    [145] Classen V.Hydrogen from Biomass[M].Wageningen:Agrotechnology and Food SciencesGroup,2007
    [146]张军合,张全国,尤希凤,等.环流型光生物反应器光合产氢运行条件的研究[J].农业环境科学学报2005,24(6):1217-1220.
    [147]师玉忠.光合细菌连续制氢工艺及相关机理研究[D].郑州:河南农业大学博士学位论文,2008.
    [148]屈晓凡,廖强,朱恂,等.鼓泡式光生物制氢反应器中光合细菌的生长及产氢[J].科学通报,2011,56(35):2959-2964.
    [149]张川,廖强.环流型光纤生物膜制氢反应器的连续产氢性能[J].化工学报,2009,62(11):3248-3255.
    [150] Chert C Y,Lee C M,Chang J S. Hydrogen production by indigenous photosyntheticbacteriumRhodopscudomonas palustris WP3-5using optical fiber-illuminating photobioreactors[J].Biochemical Engineering Journal,2006,32(1):33-42.
    [151] Wakayama T,Miyake J. Light shade bands for the improvement of solar hydrogenproduction by Rhodobacter sphacroides RV[J]. International Journal of Hydrogen Energy,2002,27(11-12):1495-1500.
    [152]周汝雁.环流罐式光合生物制氢反应器及能量传输过程研究[D].郑州:河南农业大学博士学位论文,2007.
    [153]李刚.太阳能光合细菌连续制氢试验系统研究[D].郑州:河南农业大学博士学位论文,2008.
    [154] M. Waligorska, M.Moritz, M.Laniecki. Hydrogen generation by Rhodobacter spahaeroidesO.U.001: the effect of photobioreactor construction material. WHEC16, Llyon France.13-16June2006.
    [155]杨健,章非娟,余志荣.有机工业废水处理理论与技术[M].北京:化学工业出版社.2005.
    [156]李先允.自动控制系统-自动控制原理概论[M].北京:高等教育出版社,2003.
    [157]孔凡才.自动控制系统-工作原理、性能分析与系统调试[M].北京:机械工业出版社,2011.
    [158]肖建章.自动控制技术-自动控制的基本概念[M].北京:中国劳动社会保障出版社,2004.
    [159]毛宗强.氢能—21世纪的绿色能源[M].北京:化学工业出版社.2005.1:1,19-20.
    [160] Filret kargi, Ilgi Karapinar Kapdan. Biohydrogen from waste materials[会议].Proceedingsinternational hydrogen energy congress and exhibition IHEC2005. Istanbul, Uurkey.2005,7.
    [161] M Sunita, Chanchal K Mitra. Photoproduction of hydrogen by photosynthetic bacteria fromsewage and waste water[J]. J. Biosci.1993,18(1):155-160.
    [162]方康玲.过程控制系统-过程控制系统特点[M].武汉:武汉理工大学出版社,2007.02
    [163]孟成林,李荣平,李秀金.用于污泥厌氧消化的温室-太阳能热水器组合增温系统[J].农业工程学报,2009(9):210-214.
    [164] B LING J M, SEBORG D E, HESPANHA J P. Mult-imodel Adaptive Control of aSimulated pH Neutralization Process[J]. Control Engineering Practice,2007,15(6):663-672.
    [165]杜智涛,魏洪峰,姜明波,等.提高铂电阻测温仪测量准确度的方法研究[D].第十二届中国科协年会,2010.
    [166] International Electrotechnical Commissionhttp://webstore.iec.ch/webstore/webstore.nsf/Artnum_PK/41712
    [167]张翠莲,杨家强,邓善熙.铂电阻温度传感器的非线性特性及其线性化校正方法[J].微计算机信息,2002(1):43-45.
    [168]薛美盛,陶呈纲,郑涛. PH值控制策略研究[J].化工自动化及仪表,2009,36(5):7-17.
    [169] TAN W W, LU F, LOH A P, et al Modeling and Control of A Pilot pH Plant Using GeneticAlgorithm[J]. Engineering Applications of Artificial Intelligence,2005,18(4):485-494.
    [170]李榕.饮用纯净水PH值测定的影响因素分析及对策[J].江苏食品与发酵,2006(1):32-33.
    [171]何持平.水厂在线PH计的安装、校准及维护[J].城镇供水,2010(4):46-47.
    [172]尤希凤.光合产氢菌群的筛选及其利用猪粪污水产氢因素的研究[D].河南农业大学博士学位论文,2005.
    [173]刘双江,杨惠芳,周陪瑾.产氢非硫光合细菌的分离与筛选[J].微生物学通报,1993,20(5):259-265.
    [174]杨晋辉.光合微生物制氢菌种连续培养系统及其装置研究[D].河南农业大学硕士学位论文,2011.
    [175]杜克铭,姚燕,李景.基于STC89C52的多路温度传感器标定系统[J].电子技术应用,2009(4):152-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700