用户名: 密码: 验证码:
对苜蓿中华根瘤菌c-di-GMP合成及分解酶的功能和LuxR家族转录调控蛋白ExpR的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气中含有约80%的氮气,然而它们并不能为高等动物、植物所直接利用。生物固氮指固氮微生物具有在化合态氮素缺乏时将氮气转化为能被植物吸收利用的氨类化合物的能力,在农业生产中发挥着举足轻重的作用。根瘤菌与豆科植物之间形成的共生体系由于其固氮作用的天然、无污染和高效率,始终是生物固氮研究的焦点之一。同时根瘤菌与豆科植物之间的信号识别、传递及基因的顺序性表达和调控对根瘤的形成、发育和固氮作用的效率等有着复杂的联系。因此以根瘤菌为主要研究对象,以根瘤菌和豆科植物的相互关系作为研究微生物——植物相互作用的模式将是我们研究的主要目标,对于降低农业生产成本、保持农业和环境的可持续发展有着重要的科学价值。
     鸟苷酸环化酶和磷酸二酯酶是分别含有GGDEF或EAL结构域的蛋白质,可合成或分解细菌二级信号分子——环二鸟苷酸(c-di-GMP)。基因组DNA序列分析表明这些蛋白质分布于几乎所有的细菌当中。但是,对于可以进行共生固氮作用的土壤细菌——根瘤菌而言,其GGDEF/EAL蛋白的研究仍是空白。本研究通过生物信息学方法在苜蓿中华根瘤菌(Sinorhizbium meliloti)中鉴定到19个GGDEF和EAL蛋白基因,其中编码GGDEF蛋白的基因5个,编码EAL蛋白的基因4个,同时编码GGDEF和EAL双结构域蛋白的基因10个。通过质粒插入失活的方法成功构建到14个基因突变菌株。所有14个基因的突变株在基本培养基中均表现出生长缺陷和运动性缺陷的表型,其中11个基因的突变株可以合成较多的胞外多糖,但其在紫花苜蓿上的竞争结瘤能力有所降低。进一步的研究发现,这些基因突变影响了根瘤菌对碳源和氮源的利用。我们的研究表明,GGDEF和EAL蛋白参与调节根瘤菌的多种生理过程,其催化产物——c-di-GMP在根瘤菌与宿主豆科植物相互作用过程中发挥了重要作用。
     此外,我们发现具有完整expR基因的苜蓿中华根瘤菌在四倍体紫花苜蓿(Medicago sativa)和二倍体蒺藜苜蓿(M. truncatula)上具有不同的结瘤固氮表型,即该菌在紫花苜蓿结瘤固氮与野生型没有差别,但是在蒺藜苜蓿上却只能诱导低效固氮根瘤。我们对引起这种现象的原因进行了初步的探讨,发现该菌携带一个新的突变位点,其机制有待进一步研究。
About80%of the atmosphere is the nitrogen, but it can not be used by higher animals and plants directly. Biological nitrogen fixation affords the most part of nitrogen input.It is a hotspot in current study. Establishing this symbiosis requires a response of molecular signals, gene expression and nutrient exchange between the legumes and the rhizobia. Therefore, analyse the rhizobia and the relationship between rhizobia and legumes will be the main goal of our study, which has important scientific value in reducing agricultural production costs, maintaining the sustainable development of agriculture and environment.
     A new bacterial secondary messenger, bis (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), is usually synthesized or decomposed by proteins containing a GGDEF or EAL domain. These proteins often act as a cyclase or phosphodiesterase of c-di-GMP, and their genes are distributed among almost all bacteria according to known genomic DNA sequences. However, the systematic identification of GGDEF and EAL protein genes remains unclear in rhizobia, soil bacteria that interact with compatible legumes to form nitrogen-fixing nodules. In this study,19putative GGDEF and EAL protein genes were identified in a model rhizobium, Sinorhizobium meliloti, by bioinformatic analysis (encoding5GGDEF proteins,4EAL proteins, and10GGDEF and EAL double-domain proteins). Null mutants of14genes were constructed through systematic plasmid insertion. All14gene mutants showed deficient growth in minimal medium and defective motility, and11gene mutants produced a lot more exopolysaccharide and displayed less competitive nodulation on the host plant, alfalfa. We also find that these mutants had different capacity to utilize sugars and amino acids as carbon and nitrogen sources respectively. Our results suggest that GGDEF and EAL proteins may play different roles in the control of S. meliloti physiology, although they contain conserved catalytic (GGDEF or EAL) domains. Our finding also implies that c-di-GMP may play an important role in the interactions between this rhizobium and its host plants to establish efficient symbiosis.
     Additionally, S. meliloti strain carrying an intact expR gene induced the same efficiently nitrogen-fixing nodules on Medicago sativa as the wild type strain; however, it only induced lower efficient nodules on M. truncatula. And a now mutation locus was proposed, and the detail will be elucidated in the future.
引文
[1]Cavalcante VA, Pobereiner J.1988.A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil,108:23-31.
    [2]CaPela D, Barloy-Hubler F, GouZy J, et al. Analysisis of the chromosome sequenee of the legume symbiont Sinorhizobium meliloti strain1021.Proc. Natl. Acad. Sci. USA,2001,98(17):9877-9882.
    [3]Hungria M, Pueppke SG Molecular signals exehanged between host Plants and rhizobia:basic aspects and potential application in agriculture. Soil Bio.Biochem., 1997,29:819-832.
    [4]Fish RF, Long SR. Rhizobium-plant signal exchange. Nature,1992,357(6380): 655-660.
    [5]Perret X, Staehelin C, Broughton WJ. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev.,2000,64(1):180-201.
    [6]Norbert CA, Ruijter D, Bisseling T, et al. Rhizobium Nod factors induce an increase in sub-apical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol. Plant-Microbe. Interact.,1999,12(9):829-832.
    [7]Ruijter NCA, Rook MB, Bisseling T, et al. Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the tip. Plant J.,1998,13(3):341-350.
    [8]Ridge RW. A model of legume root hair growth and rhizobium infection. Symbiosis,1993,14:359-373.
    [9]Pawlowski K, Bisseling T. Rhizobial and actinorhizal symbioses:What are the shared features. Plant Cell,1996,8(10):1899-1913.
    [10]Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Annu. Rev. Genet.,1998, (32):33-57.
    [11]Spaink HP. The Molecular Basis of Infection and Nodulation by Rhizobia:the Ins and Outs of Sympathogenesis. Annu. Rev. Phytopathal.,1995,33:345-368.
    [12]Denarie D, Debelle F. RhizobiumLipo-chitooligosaccharide Nodulation Factors: Signaling Moleculars Mediating recognition and Morphogenesis. Annu. Rev. Biochem.,1996,65:305-335.
    [13]Kondorosi A, Kondorosi E, John M. The Role of Nodulation Genes in Bacterium-Plant Communication. Genetic Engineering Vol.13, Shtlow J K eds, Plenum Press, New York,1996,115-136.
    [14]Hong GF, Burn JE, Johnston AWB. Evidence that DNA Involved in the Expression of Nodulation (nod) Genes in Rhizobium Binds to the Produce of the Regulation Gene nodD. Nucleic Acids Res.,1987,15:9677-9690.
    [15]Schiaman HRM, Okker RJH, Lugtenberg BJJ. Regulation of Nodulation Genes Expression by nodD in Rhizobium. J. Bacteriol.,1992,5177-5182.
    [16]Gyorgypal Z, Kiss GB, Kondorsi A. Transduction of plant signal molecules by the Rhizobium nodD proteins. Bioessays,1991,13:575-581.
    [17]Le Strange KK, Bender GL, Djordjevic MA, et al. The Rhizobium strain NGR234 nodD 1 gene product responds to activation by the simple phenolic compounds vanillin and isovanillin present in wheat seeding extracts. J. Bacteriol.,1990,3: 214-220.
    [18]Fellay R, Rochepeau P, Relic B, et al. Signals to and emanating from Rhizobium largely control symbiotic specificity. In:Singh U S, Singh R P, Kohmo to K, eds. Pathogensis and Host Specificity in Plant Diseases. Oxfo rd:Pergamono Elsevier Science Ltd,1995,(1):199-220.
    [19]Bolanos-Vasquez MC, Werner D. Effects of Rhizobium tropici, R. etli and R. leguminosarum bv. phaseoli on nod gene inducing flavonoids in root exudates of Phaseolus vulgaris. MPMI,1997,10(3):339-346.
    [20]Kondorosi E, Buire M, Cren M. Involvement of the syrM and nodD 3 Genes of Rhizobium meliloti in nod gene activation and in optimal nodulation of the plant host. Mol. Microbiol,1991,5:3035-3048.
    [21]Vasse J, Billy De F, Camut S, et al.. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol., 1990,172:4295-4306.
    [22]Goodchild DJ, Bergersen FJ. Electron microscopy of the infection and subsequent development of soybean nodule cells. J. Bacteriol.,1966,22:204-213.
    [23]Mergaert P, Uchiumi T, Alunni B, et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. USA,2006,103:5230-5235.
    [24]Becker A, Puhler A. Production of exopolysaccharides. In Rhizobiaceae Edited by:Spaink HP, Kondorosi A, Hooykaas PJJ. Kluwer Acad Publ. Dordrecht, Boston, London,1998:97-118.
    [25]van Workum WAT, van Slageron S, van Brussel AAN, et al. Role of exopolysaccharide of Rhizobium leguminosarum bv. Viciae as host plant-specific molecules required for infection thread formation during nodulation of Vicia sativa. Mol. Plant Microbe Interact,1998,11:1233-1241.
    [26]Fraysse N, Couderc F, Poinsot V. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur. J. Biochem.,2003,270: 1365-1380.
    [27]Glucksmann MA, Reuber TL, Walker GC. Family of glycosyltransferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J. Bacteriol.,1993,175: 7033-7044.
    [28]Battisti L, Lara JC, Leigh JA. Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc. Natl. Acad. Sci. USA,1992,89:5625-5629.
    [29]Gonzalez JE, Reuhs BL, Walker GC. Low molecular weight EPSⅡ of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA, 1996,93:8636-8641.
    [30]Leigh JA, Reed JW, Hanks JF, et al. Rhizobium melifoti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell,1987,51:579-587.
    [31]Tolmasky ME, Staneloni RJ, Leloir LF. Lipid bound saccharides in Rhizobium meliloti. J. Biol. Chem.,1982,257:6751-6757.
    [32]Finnie C, Hartley NM, Findlay KC, et al. The Rhizobium leguminsarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Mol. Microbiol.,1997,25:135-146.
    [33]York GM, Walker GC. The Rhizobium meliloti exoK gene and prsD/prsE/exsH genes are components of independent degradative pathways which contribute to production of low-molecular-weight succinoglycan. Mol. Microbiol.,1997,25: 117-134.
    [34]Finnie C, Zorreguieta A, Hartley NM, et al. Characterization of Rhizobium leguminosarum exo-polysaccharide glycanases that are secreted via a type lexporter and have a novel heptapeptide repeat motif. J. Bacteriol.,1998,180: 1691-1699.
    [35]York GM, Walker GC. The succinyl and acetyl modifications of succinoglycan influence susceptibility of succinoglycan to cleavage by the Rhizobium meliloti glycanases ExoK and ExsH. J. Baeteriol.,1998,180:4184-4191.
    [36]Doherty D, Leigh JA, Glazebrook J, et al. Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluorbinding exopolysaccharide. J. Bacteriol.,1988,170:4249-4256.
    [37]Riiberg S, Puhler A, Becker A. Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR. Microbiol.,1999,145:603-611.
    [38]Spaink HP. Root nodulation and infection factors produced by rhizobial bacteria. Ann. Rev. Microbiol.,2000,54:257-288.
    [39]Yao SY, Luo L, Har KJ, et al. Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J. Bacteriol.,2004,18: 6042-6049.
    [40]Spaink HP, Kondorosi A, Hooykaas PJJ. The Rhizobiaceae:molecular biology of model plant-associated bacteria. Dordreeht:KluwerAcad,1998, P566.
    [41]Glenn SA, Gurich N, Feeney MA, et al. The ExpR/Sin Quorum-Sensing System Controls Succinoglycan Production in Sinorhizobium meliloti. J. Bacteriol.,2007, 189:7077-7088.
    [42]Keshavan ND, Chowdhary PK, Haines DC, et al. L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J. Bacteriol.,2005,187:8427-8436.
    [43]Arrighi JF, Barre A, Ben Amor B, et al. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol.,2006,142:265-279.
    [44]黄大昉,林敏.农业微生物基因工程.北京:科学出版社,2001,11-174.
    [45]宋鸿遇.共生固氮的分子基础.余叔文,汤章城.植物生理与分子生物学(第2版).北京:科学出版社,1998.296-306.
    [46]Schwintzer CR, Tjepkema JD. The Biology of Frankia and Actinorhizal Plants. USA:Academ is Press lnc,1990.196-211.
    [47]Earl CD, Ronson CW, Ausubel FM. Genetic and structural analysis of the Rhizobium meliloti fixA、fixB、fixC and fixX genes. J. Bacterial.,1987,169:1127-1136.
    [48]郭俊,王子芳.微生物固氮的分子机制.荆玉祥,匡廷云,李德葆.植物分子生物学.北京:科学出版社,1995,155-167.
    [49]王惠贤,尤崇杓.nifA基因的固氮调节作用.尤崇杓.水稻根际联合固氮.北京:农业出版社,1990.
    [50]Martinez-Argudo I, Little R, Shearer N, et al. The NifL-NifA system:a multidomain transcriptional regulatory complex that integrates environmental signals. J. Bacterial.,2004,186:601-610.
    [51]Fischer HM. Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends in Microbiol.,1996,4:317-320.
    [52]Kim CH, Helinski DR, Ditta G. Overlapping transcription of the nifA regulatory gene in Rhizobium meliloti. Gene,1986,50:141-148.
    [53]朱玉贤,李毅.现代分子生物学.北京:高等教育出版社,1997.285-295.
    [54]van den Bos RC, Schetgens TMP,尤崇杓,等.根瘤菌-豆科植物共生固氮的分子生物学.原子能农业研究,1986,4:1—8.
    [55]尤崇杓.固氮生化遗传.马缘生,方喧钧,林敏.固氮生物化学与遗传研究.北京:中国科学技术出版社,1995.
    [56]Fuqua WC, Winans S, Greenberg EP. Quorum-sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol.,1994, 176:269-275.
    [57]温晓芳,黄俊生.细菌的群体感应及其信号分子.华南热带农业大学学报,2005,11(1):31-35.
    [58]Ansaldi M, Marolt D, Stebe T, et al. Specific activation of the Bacillus quorum sensing systems by isoprenylated pheromone variants. Mol. Microbiol.,2002,44: 1561-1573.
    [59]Booth MC, Bogie CP, Sahl HG, et al. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol. Microbial., 1996,21:1175-1184.
    [60]Mayville P, Ji G, Beavis R, et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA,1999,96:1218-1223.
    [61]Nakayama J, Cao y, Horii T, et al. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol. Microbial.,2001,41:145-154.
    [62]Nealson KH, Hastings JW. Bacteria bioluminescence:its control and ecological significance. Microbiol. Rev.,1979,43:496-518.
    [63]Eberhard A, Burlingame AL, Eberhard C, et al. Structural identification of autoinducer of Pbotobacterium fiscberi luciferase. Biochemistry,1981,20: 2444-2449.
    [64]Gebrecht J, Silverman M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA,1984,81:4154-4158.
    [65]Plan HB, Greenberg EP. Diffusion of autoinducer is involved in regulation of the Vibrio fiscberi luminescence system. Bacterol.,1985,163:1210-1214.
    [66]Nsaldi M, Marolt D, Stebe T, et al. Specific activation of the Bacillus quorum sensing systems by isoprenylated pheromone variants. Mol. Microbiol.,2002,44: 1561-1573.
    [67]Booth MC, Bogie CP, Sahl HG, et al. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol. Microbiol., 1996,21:1175-1184.
    [68]Yville P, Ji G, Beavis R, et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA,1999,96:1218-1223.
    [69]Akayama J, Cao Y, Horii T, et al. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol. Microbial.,2001,41:145-154.
    [70]Lithgow J K, Wilkinson A, Hardman A, et al. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol.,2000,37:81-97.
    [71]Tun-Garrido C, Bustos P, Gonzalez V, et al. Conjugative transfer of p42a from Rhizobium etli CFN42, which is equired for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J. Barcteriol.,2003,185:1681-1692.
    [72]He X, Chang W, Pierce DL, et al. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J. Bacteriol,2003,185:809-822.
    [73]Marketon MM, Gonzalez JE. Identification of two quorum-sensing systems in Sinorhizobium meliloti. J. Bacteriol.,2002,184:3466-3475.
    [74]Zhu J, Winans SC. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Nat. Acad. Sci. USA,2001,98:1507-1512.
    [75]Loh J, Stacey G Nodulation gene regulation in Bradyrhizobium japonicum:a unique integration of global regulatory circuits. Appl. Environ. Microbiol.,2003, 69:10-17.
    [76]Wisniewski-Dye F, Jones J, Chhabra SR, et al. raiIR genes are part of a quorum-sensing network controlled by cinl and cinR in Rhizobium leguminosarum. J. Bacteriol.,2002,184:1597-1606.
    [77]Rosemeyer V, Michiels J, Verreth C, et al. luxI-and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol.,1998,180:815-821.
    [78]Daniels R, De Vos DE, Desair JG, et al. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc. Nat. Acad. Sci. USA,2002,99: 14446-14451.
    [79]Ochoa De Alda JA, Ajlani G, Houmard J. Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J. Bacteriol.,2000,182: 3839-3842.
    [80]Rauch A, Leipelt M, RusswurmM, et al.. Crystal structure of the guanylyl cyclase Cya2. Proc. Natl. Acad. Sci. USA,2008,105:15720-15725.
    [81]Witte G, Hartung S, Buttner K, et al. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell,2008,30:167-178.
    [82]Paul BJ, Berkmen MB, Gourse RL. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA,2005,102:7823-7828.
    [83]Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature,1987,325:279-281.
    [84]Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science, 2006,311:1113-1116.
    [85]Savery NJ, Lloyd GS, Busby SJW, et al. Determinants of the C-terminal domain of the Escherichia coli RNA polymerase a subunit important for transcription at class I CRP-dependent promoters. J. Bacteriol.,2002,184:2273-2280.
    [86]Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature,1987,325:279-281.
    [87]Amikam D, Benziman M. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol.,1989,171:6649-6655.
    [88]Urs J, Jacob M. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet,2006,40:385-407.
    [89]Galperin MY, Nikolskaya AN, Koonin EV. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett.,2001,203: 11-21.
    [90]Chan C, Paul R, Samoray D, et al. Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA,2004,101: 17084-17089.
    [91]Ryan RP, Fouhy Y, Lucey JF, et al. Cyclic di-GMP signaling in bacteria:recent advances and new puzzles. J. Bacteriol.,2006,188:8327-8334.
    [92]Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling inbacteria. Annu. Rev. Genet.,2006,40:385-407.
    [93]Tamayo R, Pratt JT, Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol.,2007,61:131-148.
    [94]Tarutina M, Ryjenkov DA, Gomelsky M. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J. Biol. Chem.,2006,281:34751-34758.
    [95]Ferreira RB, Antunes LC, Greenberg EP, et al. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J. Bacteriol.,2008,190:851-860.
    [96]Kumar M, Chatterji D. Cyclic di-GMP:a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology,2008,154:2942-2955.
    [97]Galperin MY, Nikolskaya AN, Koonin EV. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett.,2001,203: 11-21.
    [98]Weber H, Pesavento C, Possling A, et al. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol. Microbiol.,2006,62: 1014-1034.
    [99]Kader A, Simm R, Gerstel U, et al. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol. Microbiol.,2006,60:602-616.
    [100]Pesavento C, Becker Q Sommerfeldt N, et al. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev.,2008,22: 2434-2446.
    [101]Sommerfeldt N, Possling A, Becker G, et al. Expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL genes in Escherichia coli. Microbiology,2009,155:1318-1331.
    [102]Galperin MY. Bacterial signal transduction network in a genomic perspective. Environ. Microbiol.,2004,6:552-567.
    [103]Shenroy AR, Visweswariah SS. Class III nucleotide cyclases in bacteria and archaebacteria:lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases. FEBS Lett.,2004,561:11-21.
    [104]Tschowri N, Busse S, Hengge R. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue light response of Escherichia coli. Genes Dev.,2009,23: 522-534.
    [105]Suzuki K, Babitzke P, Kushner SR, et al. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev.,2006,20:2605-2617.
    [106]Holland LM, O'Donnell ST, Ryjenkov DA, et al. A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J. Bacteriol.,2008,190:5178-5189.
    [107]Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics,2006,22:3-6.
    [108]Ryjenkov DA, Simm R, Romling U, et al. The PilZ domain is a receptor for the second messenger c-di-GMP:the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem.,2006,281:30310-30314.
    [109]Christen M, Christen B, Allan MG, et al. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA,2007,104:4112-4117.
    [110]Pratt JT, Tamayo R, Tischler AD, et al. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem., 2007,282:12860-12870.
    [111]Merighi M, Lee VT, Hyodo M, et al. The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domaincontaining receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol.,2007,5: 876-895.
    [112]Benach J, Swaminathan SS, Tamayo R, et al. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J.,2007,26:5153-5166.
    [113]Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol.,2008, 69:376-389.
    [114]Lee VT, Matewish JM, Kessler JL, et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol.,2007,65:1474-1484.
    [115]Duerig A, Folcher M, Abel S, et al. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev.,2009,23:93-104.
    [116]Sudarsan N, Lee ER, Weinberg Z, et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science,2008,321:411-413.
    [117]Kirillina O, Fetherston JD, Bobrov AG, et al. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia Pestis. Mol. Microbiol.,2004,54:75-88.
    [118]Chung IY, Choi KB, Heo YJ, et al. Effect of PEL exopolysaccharide on the wspF mutant phenotypes in Pseudomonas aeruginosa PA14. J. Microbiol. Biotechnol.,2008,18:1227-1234.
    [119]Newell PD, Monds RD, OToole GA. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc. Natl. Acad. Sci. USA,2009,106:3461-3466.
    [120]Yan W, Qu T, Zhao H, et al. The effect of c-di-GMP(3'-5'-cyclic diguanylic acid) on the biofilm formation and adherence of Streptococcus mutans. Microbiol. Res., 2010,165:87-96.
    [121]Christen M, Christen B, Folcher M, et al. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem.,2005,280:30829-30837.
    [122]Kader A, Simm R, Gerstel U, et al. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol. Microbiol.,2006,60:602-616.
    [123]Weinhouse H, Sapir S, Amikam D, et al. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett.,1997, 416:207-211.
    [124]Simm R, Fetherston JD, Kader A, et al. Phenotypic convergence mediated by GGDEF-domaincontaining proteins. J. Bacteriol.,2005,187:6816-6823.
    [125]Simm R, Morr M, Kader A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol., 2004,53:1123-1134.
    [126]Tischler AD, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol.,2004,53:857-869.
    [127]Kovacikova G, Lin W, Skorupski K. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol. Microbiol.,2005,57:420-433.
    [128]Tischler AD, Camilli A. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun.,2005,73:5873-5882.
    [129]Tamayo R, Tischler AD, Camilli A. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem.,2005,280:33324-33330.
    [130]Gyorgypal Z, Iyer N, Kondorosi A. Three regulatory nodD alleles of diverged flavonoid-specificity are involved in host-dependent nodulation by Rhizobium meliloti. Mol. Gen. Genet,1988,212:85-92.
    [1]Long SR. Rhizobium Symbiosis:Nod factors in perspective, Plant Cell,1996,8: 1885-1898.
    [2]Macchiavelli RE, Brelles-Marino G. Nod factor-treated Medicago truncatula roots and seeds show an increased number of nodules when inoculated with a limiting population of Sinorhizobium meliloti. J. EXP. BOT.,2004,55:2635-2640.
    [3]Schultze M, Quiclet-Sire B, Kondorsi E, et al. Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc. Nati. Acad. Sci. USA,1996,89:192-196.
    [4]Oldroyd GED, Downie JA. Coordinating nodule morphogenesis with rhizobial Infection in legumes. Annu. Rev. Plant Biol.,2008,59:519-546.
    [5]Zahran HH. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. R.,1999,63:968-989.
    [6]Hardarson G Methods for enhancing symbiotic nitrogen fixation, Plant Soil,1993, 152:1-17.
    [7]Colnaghi R, Green A, He LH, et al. Strategies for increased ammonium production in free-living or plant associated nitrogen fixing bacteria, Plant Soil,1997,194: 145-154.
    [8]Tuckerman JR, Gonzalez G, Gilles-Gonzalez M. Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti. J. Mol. Biol.,2001,308:449-455.
    [9]Al-niemi TS, Summers ML, Elkins JG, et al. Regulation of the phosphate stress response in Rhizobium meliloti by PhoB. Appl. Environ. Microb.,1997,63: 4978-4981.
    [10]Ryan RP, Fouhy Y, Lucey JF, Maxwell Dow J. Cyclic di-GMP signaling in bacteria:recent advances and new puzzles. J. Bacteriol.,2006,188:8327-8334.
    [11]Hengge R. Principles of c-di-GMP signaling in bacteria. Nat. Rev. Microbiol., 2009,7:263-273.
    [12]Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signaling. Nat. Rev. Microbiol.,2009,7:724-735.
    [13]Kumar M, Chatterji D. Cyclic di-GMP:a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiol.,2008,154:2942-2955.
    [14]Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature,1987,325:279-281.
    [15]Tal R, Wong HC, Calhoon R, et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum:genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol.,1998,180:4416-4425.
    [16]Simm R, Morr M, Kader A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol., 2004,53:1123-1134.
    [17]Monds RD, Newell PD, Gross RH, et al. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol.,2007,63:656-679.
    [18]Steinberger O, Lapidot Z, Ben-Ishai Z, et al. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3'-5'-cyclic diguanylic acid. FEBS Lett.,1999,444: 125-129.
    [19]D'Argenio DA, Miller SI. Cyclic di-GMP as a bacterial second messenger. Microbiology,2004,150:2497-2502.
    [20]Cotter PA, Stibitz S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol.,2007,10:17-23.
    [21]Aldridge P, Paul R, Goymer P, et al. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol. Microbiol.,2003,47:1695-1708.
    [22]Pierce DL, O'Donnol DS, Allen RC, et al. Mutations in DivL and CckA Rescue a divJ Null Mutant of Caulobacter crescentus by Reducing the Activity of CtrA. J. Bacteriol.,2006,188:2473-2482.
    [23]Wolfe AJ, Visick KL. Get the Message Out:Cyclic-Di-GMP Regulates Multiple Levels of Flagellum-Based Motility. J. Bacteriol.,2008,190:463-475.
    [24]Jonas K, Tomenius H, Romling U, et al. Identification of YhdA as a regulatorof the Escherichia coli carbon storage regulation system. FEMS Microbiol. Lett., 2006,264:232-237.
    [25]Jonas K, Melefors O, Romling U. Regulation of c-di-GMP metabolism in biofilms. Future Microbiol.,2009,4:341-358.
    [26]Solano C, Garcia B, Latasa C, et al. Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc. Natl. Acad. Sci. USA,2009,106:7997-8002.
    [27]Ryan RP, Fouhy Y, Lucey JF, Crossman LC, et al. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc. Natl. Acad. Sci. USA,2006,103:6712-6717.
    [28]Ausmees N, Jonsson H, Hoglund S, et al. Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. Trifolii. Microbiol.,1999,145:1253-1262.
    [29]Galperin MY. Bacterial signal transduction network in a genomic perspective. Environ Microbiol.,2004,6:552-567.
    [30]Luo L, Yao SY, Becker A, et al. Two New Sinorhizobium meliloti LysR-Type Transcriptional Regulators Required for Nodulation. J. Bacteriol.,2005,187: 4562-4572.
    [31]Yao SY, Luo L, Har KJ, et al. Sinorhizobium meliloti ExoR and ExoS Proteins Regulate both Succinoglycan and Flagellum Production. J. Bacteriol.,2004,186: 6042-6049.
    [32]Morris DL. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science,1948,107:254-255.
    [33]Leigh JA, Signer ER, Walker GC. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA, 1985,82:6231-6235.
    [34]Galibert F, Finan TM, Long SR, et al. The Composite Genome of the Legume Symbiont Sinorhizobium meliloti. Science,2001,293:668-672.
    [35]Wells DH, Chen EJ, Fisher RF, et al. ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol. Microbiol.,2007,64:647--664.
    [36]Navarro MVAS, De N, Bae N, et al. Structural Analysis of the GGDEF-EAL Domain-Containing c-di-GMP Receptor FimX. Structure,2009,17:1104-1116.
    [37]Garcia B, Latasa C, Solano C, et al. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol. Microbiol.,2004, 54:264-277.
    [38]Romling U, Amikam D. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol.,2006,9:218-228.
    [39]Yost CK, Rochepeau P, Hynes MF. Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chernotaxis proteins. Microbiol., 1998,144:1945-1956.
    [40]Bahlawane C, Mcintosh M, Krol E, et al. Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol. Plant. Microbe.. In,2008, 21:1498-1509.
    [41]Sourjik V, Muschler P, Scharf B, et al. VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J. Bacteriol.,2000,182:782-788.
    [42]Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Gebet,2006,40:385-407.
    [43]Pellock BJ, Cheng HP, Walker GC. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J. Bacteriol.,2000,182: 4310-4318.
    [44]Gonzalez JE, Reuhs BL, Walker GC. Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA, 1996,93:8636-8641.
    [45]Qian F, An LJ, He XY, et al. Antibacterial activity of xantho-oligosaccharide cleaved from xanthan against phytopathogenic Xanthomonas campestris pv. Campestris. Process Biochem,2006,41:1582-1588.
    [46]Wang SP, Zhu JB, Yu GQ, et al. Studies on heterologous expression of Rhizobium meliti nifA gene and oxygen sensitivity of its product. Sci. China B.,1991,34: 71-77.
    [1]Wang YP, Kolb A, Buck M, et al. CRP interacts with promoter-bound a54 RNA polymerase and blocks transcriptional activation of the dctA promoter. EMBO J., 1998,17:786-796.
    [2]Tian ZX, Li QS, Buck M, et al. The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in E. coli. Mol. Microbiol.,2001,4: 911-924.
    [3]Engelke T, Jagadish MN, Puhler A. Biochemical and genetical analysis of Rhizobium meliloti mutants defective in C4-dicar-boxylate transport. J. Gen. Microbiol.,1987,133:3019-3029.
    [4]Finan TM, Wood JM, Jordan DC. Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosa-rum. J. Bacteriol.,1983,154: 1403-1413.
    [5]Glenn AR, Poole PS, Hudman JF. Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum. J. Gen. Microbiol.,1980,119:267-271.
    [6]Roson CW, Lyttleton P, Roberson JG C4-dicarboxylate transport mutants of Rhzobium trifolii form ineffective nodules on Trifolium repens. Proc. Natl. Acad. Sci. USA,1981,78:4284-4288.
    [7]Kohl DH, Schubert KR, Cgrter MB, et al. Shearer G. Proline metabolism in N2-fixing root nodules:Energy transfer and regulation of purine synthesis. Proe. Natl. Aead. Sci. USA,1988,85:2036-2040.
    [8]Day DA, Copeland L. Carbon metabolism and compartmentation in nitrogen-fixing legume. Plant Physiol. Biochem.,1991,29:185-201.
    [9]李稚婷,孙义成,毛贤军等.碳代谢总体调控蛋白CRP对肺炎克氏杆菌启动子的抑制作用.科学通报.2002,47:1133-1139.
    [10]李稚婷,张维佳,王忆平.碳代谢总体调控蛋白CRP对nifA启动子的抑制作用不依赖于该启动子上游CRP与nifA竞争的靶位点.科学通报.2002,47:1242-1246.
    [11]Vilchez S, Molina L, Ramos C, et al. Proline catabolism by Pseudo-monas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J. Bacteriol.,2000,182:91-99.
    [12]Felix DD, Donald AP. Root exudates as mediators of mineral acquisi-tion in low-nutrient environments. Plant Soil,2002,245:35-47.
    [13]Leduc JL, Roberts GP. Cyclic di-GMP Allosterically Inhibits the CRP-Like Protein (Clp) of Xanthomonas axonopodis pv. citri. J. Bacteriol.,2009,191: 7121-7122.
    [1]Gonzalez JE, Marketon MM. Quorum sensing in the nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev.,2003,67:574-592.
    [2]Marketon MM, Gonzalez JE. Identification of two quorumsensing systems in Sinorhizobium meliloti. J. Bacteriol.,2002,184:3466-3475.
    [3]Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE. Characterization of the Sinorhizobium meliloti sinR/sinl locus and the production of novel N-acyl homoserine lactones. J. Bacteriol.,2002,184:5686-5695.
    [4]Marketon MM, Glenn SA, Eberhard A, et al. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol.,2003,185: 325-331.
    [5]Gonzalez JE, York GM, Walker GC. Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene,1996,179:141-146.
    [6]Ruberg S, Piihler A, Becker A. Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR. Microbiology,1999,145:603-611.
    [7]Pellock BJ, Teplitski M, Boinay RP, et al. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol.,2002,184:5067-5076.
    [8]Egland KA, Greenberg EP. Quorum sensing in Vibrio fischeri:elements of the luxl promoter. Mol. Microbiol.,1999,31:1197-1204.
    [9]Stevens AM, Dolan KM, Greenberg EP. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA,1994,91:12619-12623.
    [10]Hoang H, Becker A, Gonzalez JE. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J. Bacteriol.,2004,186:5460-5472.
    [11]Meade HM, Long SR, Ruvkun GB, et al. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bacteriol.,1982,149:114-122.
    [12]Leigh JA, Signer ER, Walker GC. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA, 1985,82:6231-6235.
    [13]Glazebrook J, Walker GC. A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell,1989,56:661-672.
    [14]Howieson JG, Ewing MA. Acid tolerance in the Rhizobium meliloti-Medicago symbiosis. Aust. J. Agric. Res.,1986,37:55-64.
    [15]Finan TM, Hartweig E, LeMieux K, et al. General transduction in Rhizobium meliloti.J. Bacteriol.,1984,159:120-124.
    [16]Gage DJ, Bobo T, Long SR. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J. Bacteriol.,1996,178:7159-7166.
    [17]Luo L, Yao SY, Becker A, et al. Two New Sinorhizobium meliloti LysR-Type Transcriptional Regulators Required for Nodulation. J. Bacteriol.,2005,187: 4562-4572.
    [18]Sambrook J, Russell DW. Molecular Cloning:A Laboratory Manual (Third Edition). Cold Spring Harbor Laboratory, Cold Spring harbor, New York.2000.
    [19]Krol E, Becker A. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol. Genet Genomics, 2004,272:1-17.
    [20]Nixon BT, Roson CW, Ausubel FM. Two component regulatory systems responsive to environmental stimuli share strongly con-served domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA, 1986,83:7850-7854.
    [21]Marie A, Gilles-Gonzalez GS, Gary S, et al. A haemoprotein with kinase activity encoded by oxygen sensor of Rhizobium meliloti. Nature,1991,350:170-172.
    [22]Ursula L, Bouzhir-Sima L, Negrerie M, et al. Ultrafast ligand re-binding in the heme domain of the oxygen sensor FixL and Dos:General regulatory implication for heme-based sensors. Proc. Natl. Acad. Sci. USA,2002,99:12771-12776.
    [23]Saito K, Ito E, Nakamura K, et al. The uncoupling of oxygen sensing, phosphorylation signaling and transcriptional activation in oxygen sensor FixL and FixJ mutants. Mol. Microbiol.,2003,48:373-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700