用户名: 密码: 验证码:
生物还原耦合化学吸收处理烟气中NO_x的关键因素及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的发展,氮氧化物(NOx)的排放量持续增加,NOx造成的污染问题日益严重,并受到越来越多的关注。现有的烟气脱硝技术尚存在投资运行费用高、产生二次污染或者处理效率低等缺陷,为此,研究和开发具有处理效果好、投资及运行费用低、无二次污染等优点的新型烟气脱硝技术已经成为亟待解决的重大课题。
     化学吸收-生物还原技术(CABR)处理烟气中NOx具有处理效果好、投资运行成本低等特点,因此在烟气脱硝领域具有广阔的应用前景。CABR技术的研发主要基于三方面:1)络合吸收剂选择和再生;2)络合态NO还原效率的提高;3)反应装置和工艺体系的研究。本文研究了CABR体系中一些关键因素如碳源的消耗及利用情况,氮元素在体系中的转化途径,并分析了该系统中各反应过程的限制性因素和生物膜中菌群结构分布特征,最后得到了最适合本系统的络合吸收体系。论文取得以下一些有价值的结果:
     在化学吸收-生物还原技术中,采用葡萄糖作为碳源。Fe(Ⅲ)EDTA的还原过程需要足够的碳源来保证。葡萄糖代谢产物研究发现铁还原反应和络合态NO还原反应均受到乙酸积累的抑制。碳元素的平衡分析显示:典型的试验条件(670mg·m3NO,0-10%O2)下,化学吸收-生物还原体系中经过约240h的运行,超过一半的碳以气体的形式排出,生物相和液相中分别有19%和17%碳的积累。液相中的碳主要以VFA(乙酸)的形式存在,尾气中的碳主要以CO2的形式存在,且在低O2浓度条件下尾气中有少量的CH4生成。
     化学吸收-生物还原体系中经过约90h的运行后,约66%的氮以气体的形式排出,生物相和液相中分别有18%和4%的氮的积累。液相中的氮主要以NO3-的形式存在,尾气中的氮主要以N2的形式存在,且尾气中没有发现N20的存在,只检测出少量的氮以N02的形式存在。有约5%的氮元素以其它形式存在或为试验误差。
     在吸收-还原双塔中对生物还原耦合化学吸收净化烟气中NOx体系的过程反应速率分别进行研究。实验结果表明,Fe(Ⅱ)EDTA-NO生物还原反应速率>Fe(Ⅱ)EDTA氧化反应速率>Fe(Ⅲ)生物还原反应速率>NO络合吸收反应速率,在本系统中NO络合吸收反应和Fe(II)EDTA氧化反应是影响生物反应器高效脱除NO的限制性因素。
     利用PCR-DGGE技术对生物填料塔稳态运行期间不同填料层微生物群落结构进行了初步分析。结果表明:生物填料塔内还原络合态NO的菌株主要属于假单胞菌(Pseudomonas sp.)。在整个O2浓度负荷提高的过程中,Escherichia coli在CABR系统中占据绝对的优势地位。
     对稳定运行条件下不同吸收体系进行研究,考察模拟烟气中NO、O2、SO2浓度、气体流量、吸收液流量等参数对NO去除效率影响,通过处理效果等方面的比较获得了最优的络合吸收体系。实验结果表明:Fe(II)EDTA/Fe(II)Cit的混合配基体系具有最佳的技术参数。
With the development of the national economy and the increasing emission amount of NOx, the pollution caused by NOx becomes more serious and receive increasing attention of more people. Current technologies for NOx removal from flue gas have associated with some problems, such as high cost on investment and operation, producing secondary pollutant and low removal efficiency. So, to exploit a new technology which has advantages of low cost environment-friendly and high efficiency for NOX removal from flue gas is becoming an extremely urgent issue, presently.
     A chemical absorption-biological reduction integrated approach is employed to achieve the removal of nitrogen monoxide (NO) from the simulated flue gas with the advantages of low cost, completely reduction of NO and high removal efficiency. The development of the integrated technologies includes two aspects:1) complex absorbent regeneration;2) NO bioreactor process control. In this dissertation, the key factors and mechanism of Fe(II)EDTA-NO reduction was investigated; the effects of carbon source, nitrogen cycle on this system were discussed; the feasibility of biological packed column with the integrated process was studied; through the analysis of biological reduction rates and NO absporption rates of NO process, the kinetic model was established. The main original conclusions of this dissertation are:
     Glucose is suitable for the heterotrophic bacteria as the carbon source and electron donor to remove NO from simulated flue gas by the integrated chemical absorption-biological reduction system. In the range of0-10%oxygen concentration, the reactor can achieve long-term stable operation, and the removal efficiency of NO can be maintained above86%. The reduction of Fe(Ⅲ)EDTA mainly depends on the carbon source supplied. The studies on carbon source metabolites showed that the concentration of the accumulative acid determines whether the reduction of NO and Fe (Ⅲ) EDTA was inhibited. However, long-term stable operation of bioreactor could be achieved when there is acetic acid accumulation under aerobic conditions. The distribution of the carbon source degradation was also examined here with17%existed in the form of VFA, while50%total carbon source was consumed in the form of CO2. In addition, it was also found that glucose added into bioreactor within a certain range of oxygen concentrations will not be accumulated in the reactor, which keeps the operation stable.
     After a run of93hours operation by chemical absorption-biological reduction integrated approach, about66%of the nitrogen discharged in the form of N2. The accumulation of nitrogen in the biological and liquid phases was18%and4%, respectively. The nitrogen in the liquid phase is mainly present in the form of NO3-, and there is no N2O presence of in the exhaust gas. Only a small amount of nitrogen present in the form of NO2and CH4. About5%of the nitrogen is in the form of other types or experimental error.
     The reaction rate of NO absorption capacity by ferrous EDTA (Fe(II)EDTA) solution and reduction by microorganism were studied in an scrubber-bioreactor system.The results show that the order of the four reaction rates in reactor is as follow: Fe(II)EDTA-NO reduction rate> Fe(II)EDTA oxidation rate>Fe(III)EDTA reduction rate> NO absorption rate,so the NO absorption process and Fe(III)EDTA reduction are key steps for NO removal efficiency in this integrated system.
     The microbial community structure in the biological packed tower was analyses with the PCR-DGGE technology. The microbial species at the top of the tower was least due to water erosion, while the bottom layer had the largest micro-organisms and less species. The similarity of microbial community structure increased with the increase height of packed bed. The preliminary analysis results indicated that the microorganisms in the biofilm belonged to β-Proteobacterium and Pseudomonas. The denitrifier was dominanted in the biofilm.
     Investigate the influence on the NO removal efficiency of some elements such as the concentration of O2, NO, SO2, flow rate of inlet gas and absorbents. that the result of the influence on NO removal efficiency of the concentration of O2, NO, SO2, flow rate of inlet gas and absorbents was obtained. The results showed that the Fe(II)EDTA /Fe(Ⅱ)Cit mixed system has the best technical parameters and economic benefits.
引文
1.吴晓青.我国大气氮氧化物污染控制对策.环境保护,2009,16,9-11.
    2. Richter, A.; Burrows, J. P.; Nuss, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005,437 (7055),129-132.
    3. Solomon, S.; Portmann, R. W.; Sanders, R. W.; Daniel, J. S.; Madsen, W.; Bartram, B.; Dutton, E. G. On the role of nitrogen dioxide in the absorption of solar radiation. J. Geophys. Res.1999,104 (D10),12047-12058.
    4. Galloway, J. N. Acidification of the world-Natural and anthropogenic. Water Air Soil Poll.2001,130 (1-4),17-24.
    5. Barman, S.; Philip, L. Integrated system for the treatment of oxides of nitrogen from flue gases. Environ. Sci. Technol.2006,40 (3),1035-1041.
    6. Streets, D. G.; Waldhoff, S. T. Present and future emissions of air pollutants in China:SO2, NOx, and CO. Atmos. Environ.2000,34 (3),363-374.
    7. Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C. P.; Hao, J. M. Soil Acidification in China:Is Controlling SO2 Emissions Enough? Environ. Sci. Technol. 2009,43(21),8021-8026.
    8.刘孜;易斌;高晓晶;井鹏;岳涛;庄德安.我国火电行业氮氧化物排放现状及减排建议.环境保护,2008,16,7-10.
    9. Nguyen, T. D. B.; Kang, T. H.; Lim, Y. I.; Eom, W. H.; Kim, S. J.; Yoo, K. S. Application of urea-based SNCR to a municipal incinerator:On-site test and CFD simulation. Chem. Eng. J.2009,152 (1),36-43.
    10. Gao, X.; Jiang, Y.; Zhong, Y.; Luo, Z. Y.; Cen, K. F. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. J. Hazard. Mater.2010,174 (1-3),734-739.
    11. Hirama, A.; Yamaguchi, D.; Mizuguchi, J. Removal of NOX Using the Reductive Properties of TiOx (0< x< 2). Mater. Trans.2009,50 (11),2699-2701.
    12. Maisuls, S. E.; Seshan, K.; Feast, S.; Lercher, J. A. Selective catalytic reduction of NOx to nitrogen over Co-Pt/ZSM-5-Part A. Characterization and kinetic studies. Appl. Catal. B-Environ.2001,29 (1),69-81.
    13. Mhadeshwar, A. B.; Winkler, B. H.; Eiteneer, B.; Hancu, D. Microkinetic modeling for hydrocarbon (HC)-based selective catalytic reduction (SCR) of NOx on a silver-based catalyst. Appl. Catal. B-Environ.2009,89 (1-2),229-238.
    14. Kennes, C.; Rene, E. R.; Veiga, M. C. Bioprocesses for air pollution control. J. Chem. Technol. Biot.2009,84 (10),1419-1436.
    15. Flanagan, W. P.; Apel, W. A.; Barnes, J. M.; Lee, B. D. Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams. Fuel 2002,81(15),1953-1961.
    16. Niu, H. J. Y.; Leung, D. Y. C. A review on the removal of nitrogen oxides from polluted flow by bioreactors. Environ. Rev.2010,18,175-189.
    17. Jin, Y. M.; Veiga, M. C.; Kennes, C. Bioprocesses for the removal of nitrogen oxides from polluted air. J. Chem. Technol. Biot.2005,80 (5),483-494.
    18. Mateju, V.; Cizinska, S.; Krejci, J.; Janoch, T. Biological Water Denitrification-a Review. Enzyme. Microb. Tech.1992,14 (3),170-183.
    19. Jiang, R.; Huang, S. B.; Yang, J.; Deng, K.; Liu, Z. H. Field applications of a bio-trickling filter for the removal of nitrogen oxides from flue gas. Biotechnol. Lett. 2009,31 (7),967-973.
    20. Chen, J. M.; Ma, J. F. Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters. J. Air Waste Manage 2006,56(1),32-36.
    21. Yang, W. F.; Hsing, H. J.; Yang, Y. C.; Shyng, J. Y. The effects of selected parameters on the nitric oxide removal by biofilter. J. Hazard. Mater.2007,148 (3), 653-659.
    22. Balint, I.; Miyazaki, A.; Aika, K. NO reduction by CH4 over well-structured Pt nanocrystals supported on gamma-Al2O3. Appl. Catal. B-Environ.2002,37 (3),217-229.
    23. Zhu, H. S.; Mao, Y. P.; Yang, X. J.; Chen, Y.; Long, X. L.; Yuan, W. K. Simultaneous absorption of NO and SO2 into Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon. Sep. Purif. Technol.2010,74 (1),1-6.
    24. Li, W.; Wu, C. Z.; Zhang, S. H.; Shao, K.; Shi, Y. Evaluation of microbial reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system. Environ. Sci. Technol.2007,41 (2),639-644.
    25. Zhang, L. L.; Wang, J. X.; Sun, Q.; Zeng, X. F.; Chen, J. F. Removal of nitric oxide in rotating packed bed by ferrous chelate solution. Chem. Eng. J.2012,181, 624-629.
    26. Shi, Y.; Littlejohn, D.; Chang, S. G. Integrated tests for removal of nitric:Oxide with iron thiochelate in wet flue gas desulfurization systems. Environ. Sci. Technol. 1996,30 (11),3371-3376.
    27. Shi, Y.; Wang, H.; Chang, S. G. Kinetics of NO absorption in aqueous iron(II) thiochelate solutions. Environ. Prog.1997,16 (4),301-306.
    28. Liu, N.; Lu, B. H.; Zhang, S. H.; Jiang, J. L.; Cai, L. L.; Li, W.; He, Y Evaluation of Nitric Oxide Removal from Simulated Flue Gas by Fe(II)EDTA/Fe(II)citrate Mixed Absorbents. Energ. Fuel 2012,26 (8),4910-4916.
    29. Li, W.; Wu, C. Z.; Shi, Y Metal chelate absorption coupled with microbial reduction for the removal of NOX from flue gas. J. Chem. Technol. Biot.2006,81 (3), 306-311.
    30. Li, W.; Shi, Y.; Jing, G. H.; Ma, B. Y. A novel approach for simultaneous reduction of Fe Ⅱ (EDTA)NO and Felll(EDTA) using microorganisms. J. Chem. Indust. Eng. (China) 2003,54 (9),1340-1342.
    31. van der Maas, P.; van de Sandt, T.; Klapwijk, B.; Lens, P. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions. Biotechnol. Progr.2003,19 (4),1323-1328.
    32. Littlejohn, D.; Chang, S. G. Kinetic-Study of Ferrous Nitrosyl Complexes. J. Phys. Chem.1982,86 (4),537-540.
    33. Zhang, S. H.; Shi, Y.; Li, W. Biological and chemical interaction of oxygen on the reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOX removal system. Appl. Microbiol. Biot.2012,93 (6),2653-2659.
    34. Ogden, J. E.; Moore, P. K. Inhibition of Nitric-Oxide Synthase-Potential for a Novel Class of Therapeutic Agent. Trends Biotechnol.1995,13 (2),70-78.
    35.许春丽;李保新.日本大气污染控制对策及现状.环境科学动态,2001,3,33-36.
    36. Hamada, H.; Haneda, M. A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon monoxide. Appl. Catal. a-Gen.2012,421,1-13.
    37.张楚莹;王书肖;刑佳;赵瑜;郝吉明.中国能源相关的氮氧化物排放现状与发展趋势分析.环境科学学报,2008,28(12),2470-2479.
    38.岳涛;庄德安;杨明珍;邓九兰;张迎春.我国燃煤火电厂烟气脱硫脱硝技术发展现状.能源研究与信息,2008,24(3),125-130.
    39.郝吉明;马广大.大气污染控制工程(第二版).北京:高等教育出版社,2002.
    40.沈丹.选择性催化还原法(SCR)脱硝系统主要技术问题研究,硕士学位论文.南京:东南大学,2007.
    41. Zheng, L. G.; Zhou, H.; Cen, K. F.; Wang, C. L. A comparative study of optimization algorithms for low NOx combustion modification at a coal-fired utility boiler. Expert Syst. Appl.2009,36 (2),2780-2793.
    42. Maly, P. M.; Zamansky, V. M.; Ho, L.; Payne, R. Alternative fuel reburning. Fuel 1999,78(3),327-334.
    43. Kustov, A. L.; Hansen, T. W.; Kustova, M.; Christensen, C. H. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts:An option for automotive applications. Appl. Catal. B-Environ.2007,76 (3-4),311-319.
    44. Schwidder, M.; Heikens, S.; De Toni, A.; Geisler, S.; Berndt, M.; Bruckner, A.; Grunert, W. The role of NO2 in the selective catalytic reduction of nitrogen oxides over Fe-ZSM-5 catalysts:Active sites for the conversion of NO and of NO/NO2 mixtures. J. Catal.2008,259 (1),96-103.
    45. Uehn, N. D. Retrofit control technology reducing NOx Emissions. Power Eng. 1994,98 (5),23-27.
    46. Ferzatti, P. Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A-Gen.2001,222,221-236.
    47. Ingelsten, H. H.; Skoglundh, M.; Fridell, E. Influence of the support acidity of Pt/aluminum-silicate catalysts on the continuous reduction of NO under lean conditions. Appl. Catal. B-Environ.2003,41 (3),287-300.
    48. Balint, L.; Miyazaki, A.; Aika, K. NO reduction by CH4 over well-structured Pt nanocrystals supported on gamma-Al2O3. Stud. Surf. Sci. Catal.2003,145,239-242.
    49. Sun, Q.; Zhu, A. M.; Yang, X. F.; Niu, J. H.; Xu, Y.; Song, Z. M.; Liu, J. Plasma-catalytic selective reduction of NO with C2H4 in the presence of excess oxygen. Chinese Chem. Lett.2005,16 (6),839-842.
    50. Devadas, M.; Krocher, O.; Elsener, M.; Wokaun, A.; Mitrikas, G.; Soger, N.; Pfeifer, M.; Demel, Y.; Mussmann, L. Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR. Catal. Today 2007,119 (1-4),137-144.
    51. Hsieh, M. F.; Wang, J. M. Development and experimental studies of a control-oriented SCR model for a two-catalyst urea-SCR system. Control. Eng. Pract.2011, 19 (4),409-422.
    52. Upadhyay, D.; Van Nieuwstadt, M. Model based analysis and control design of a urea-SCR deNOx aftertreatment system. J. Dyn. Syst-T. Asme 2006,128 (3),737-741.
    53. Shirahama, N.; Mochida, I.; Korai, Y.; Choi, K. H.; Enjoji, T.; Shimohara, T.; Yasutake, A. Reaction of NO with urea supported on activated carbons. Appl. Catal. B-Environ.2005,57 (4),237-245.
    54. Iwamoto, M.; Hamada, H. Removal of Nitrogen Monoxide from Exhaust Gases through Novel Catalytic Processes. Catal. Today 1991,10 (1),57-71.
    55. Burch, R.; Halpin, E.; Sullivan, J. A. A comparison of the selective catalytic reduction of NOX over Al2O3 and sulphated Al2O3 using CH3OH and C3H8 as reductants. Appl. Catal. B-Environ.1998,17 (1-2),115-129.
    56. Pan, H.; Su, Q. F.; Chen, J.; Ye, Q.; Liu, Y. T.; Shi, Y Promotion of Ag/H-BEA by Mn for Lean NO Reduction with Propane at low Temperature. Environ. Sci. Technol. 2009,43 (24),9348-9353.
    57. Tang, X. L.; Hao, J. M.; Yi, H. H.; Li, J. H. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catal. Today 2007, 126 (3-4),406-411.
    58. Wu, Z. B.; Jiang, B. Q.; Liu, Y.; Zhao, W. R.; Guan, B. H. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J. Hazard Mater.2007,145 (3),488-494.
    59. Thirupathi, B.; Smirniotis, P. G Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3:Catalytic evaluation and characterizations. J. Catal.2012,288,74-83.
    60. Kamolphop, U.; Taylor, S. F. R.; Breen, J. P.; Burch, R.; Delgado, J. J.; Chansai, S.; Hardacre, C.; Hengrasmee, S.; James, S. L. Low-Temperature Selective Catalytic Reduction (SCR) of NOx with n-Octane Using Solvent-Free Mechanochemically Prepared Ag/Al2O3 Catalysts. Acs Catal.2011,1 (10),1257-1262.
    61. Valanidou, L.; Theologides, C.; Zorpas, A. A.; Savva, P. G.; Costa, C. N. A novel highly selective and stable Ag/MgO-CeO2-Al2O3 catalyst for the low-temperature ethanol-SCR of NO. Appl. Catal. B-Environ.2011,107 (1-2),164-176.
    62. Lyon, R. K. Methodfor the reduction of the concentration of NO in combustion eXuents using ammonia.US Patent,1975, No.3,900,554.
    63. Kim, H. S.; Shin, M. S.; Jang, D. S.; Ohm, T. I. Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex. Appl. Therm. Eng.2004,24 (14-15),2117-2129.
    64. Shin, M. S.; Kim, H. S.; Jang, D. S. Numerical study on the SNCR application of space-limited industrial boiler. Appl. Therm. Eng.2007,27 (17-18),2850-2857.
    65. Han, X. H.; Wei, X. L.; Schnell, U.; Hein, K. R. G. Detailed modeling of hybrid reburn/SNCR processes for NOx reduction in coal-fired furnaces. Combust. Flame 2003,132(3),374-386.
    66. Javed, M. T.; Irfan, N.; Gibbs, B. M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manage.2007,83 (3),251-289.
    67. Bradford, M.; Grover, R.; Paul, P. Environmental protection-controlling NOx emissions Part 2. Chem. Eng. Prog.2002,98 (4),38-42.
    68. Stuble, W. E. Controlling NOx emissions. Chem. Eng. Prog.2002,98 (6),10-10.
    69. Lee, G. W.; Shon, B. H.; Yoo, J. G.; Jung, J. H.; Oh, K. J. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process. J. Ind. Eng. Chem. 2008,14 (4),457-467.
    70. Oliva, M.; Alzueta, M. U.; Millera, A.; Bilbao, R. Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data. Chem. Eng. Sci.2000,55 (22),5321-5332.
    71. Kobayashi, H.; Takezawa, N.; Niki, T. Removal of Nitrogen-Oxides with Aqueous-Solutions of Inorganic and Organic-Reagents. Environ. Sci. Technol.1977, 11 (2),190-192.
    72. Rota, R.; Antos, D.; Zanoelo, E. F.; Morbidelli, M. Experimental and modeling analysis of the NOXOUT process. Chem. Eng. Sci.2002,57 (1),27-38.
    73. Bae, S. W.; Roh, S. A.; Kim, S. D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process. Chemosphere 2006,65 (1), 170-175.
    74. Nguyen, T. D. B.; Lim, Y. I.; Kim, S. J.; Eom, W. H.; Yoo, K. S. Experiment and Computational Fluid Dynamics (CFD) Simulation of Urea-Based Selective Noncatalytic Reduction (SNCR) in a Pilot-Scale Flow Reactor. Energ. Fuel.2008,22 (6),3864-3876.
    75. Muzio, L. J.; Quartucy, G. C.; Cichanowicz, J. E. Overview and status of post-combustion NOx control:SNCR, SCR and hybrid technologies. Int. J. Environ. Pollut.2002,17 (1-2),4-30.
    76. Zanoelo, E. F. A lumped model for thermal decomposition of urea. Uncertainties analysis and selective non-catalytic reduction of NO. Chem. Eng. Sci.2009,64 (5), 1075-1084.
    77. Lee, S.; Park, K.; Park, J. W.; Kim, B. H. Characteristics of reducing NO using urea and alkaline additives. Combust. Flame 2005,141 (3),200-203.
    78. Abul Hossain, K.; Jaafar, M. N. M.; Mustafa, A.; Appalanidu, K. B.; Ani, F. N. Application of selective non-catalytic reduction of NOx in small-scale combustion systems. Atmos. Environ.2004,38 (39),6823-6828.
    79. Wendt, J. O. L.; Linak, W. P.; Groff, P. W.; Srivastava, R. K. Hybrid SNCR-SCR technologies for NOx control:Modeling and experiment. Aiche J.2001,47 (11), 2603-2617.
    80. Nguyen, T. D. B.; Lim, Y. I.; Eom, W. H.; Kim, S. J.; Yoo, K. S. Experiment and CFD simulation of hybrid SNCR-SCR using urea solution in a pilot-scale reactor. Comput. Chem. Eng.2010,34 (10),1580-1589.
    81. Lee, G. W.; Shon, B. H.; Jung, J. H.; Choi, W. J.; Oh, K. J. Effect of mixing on NO removal in the selective noncatalytic reduction reaction process. J. Mater. Cycles Waste 2010,12 (3),204-211.
    82. Jeong, S. M.; Kim, S. D. NOx removal by selective noncatalytic reduction with urea solution in a fluidized bed reactor. Korean J. Chem. Eng.1999,16 (5),614-617.
    83. Ma, L. W.; Liu, P.; Fu, F.; Li, Z.; Ni, W. D. Integrated energy strategy for the sustainable development of China. Energy 2011,36 (2),1143-1154.
    84. Deshwal, B. R.; Lee, H. K. Mass transfer in the absorption of SO2 and NOx using aqueous euchlorine scrubbing solution. J. Environ. Sci-China 2009,21 (2),155-161.
    85. Pradhan, M. P.; Joshi, J. B. Absorption of NOx gases in aqueous NaOH solutions: Selectivity and optimization. Aiche J.1999,45 (1),38-50.
    86. Chu, H.; Chien, T. W.; Twu, B. W. Simultaneous absorption of SO2 and NO in a stirred tank reactor with NAClO2/NAOH solutions. Water Air Soil Poll.2003,143 (1-4),337-350.
    87. Chu, H.; Chien, T. W.; Twu, B. W. The absorption kinetics of NO in NaClO2/ NaOH solutions. J. Hazard Mater.2001,84 (2-3),241-252.
    88. Chen, L.; Hsu, C. H.; Yang, C. L. Oxidation and absorption of nitric oxide in a packed tower with sodium hypochlorite aqueous solutions. Environ. Prog.2005,24 (3),279-288.
    89. Byun, Y.; Ko, K. B.; Cho, M.; Nammung, W.; Lee, K.; Shin, D. N.; Koh, D. J. Reaction Pathways of NO Oxidation by Sodium Chlorite Powder. Environ. Sci. Technol.2009,43 (13),5054-5059.
    90. Chien, T. W.; Chu, H.; Li, Y. C. Absorption kinetics of nitrogen oxides using sodium chlorite solutions in twin spray columns. Water. Air. Soil. Poll.2005,166 (1-4),237-250.
    91. Jin, D. S.; Deshwal, B. R.; Park, Y. S.; Lee, H. K. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. J. Hazard. Mater. 2006,135 (1-3),412-417.
    92. Yih, S. M.; Lii, C. W. Absorption of NO and SO2 in Fe(II)-EDTA Solutions 1. Absorption in a Double Stirred Vessel. Chem. Eng. Commun.1988,73,43-53.
    93. Zhu, H. S.; Mao, Y. P.; Yang, X. J.; Chen, Y; Long, X. L.; Yuan, W. K. Simultaneous absorption of NO and SO2 into FeⅡ-EDTA solution coupled with the FeⅡ-EDTA regeneration catalyzed by activated carbon. Sep. Purif. Technol.2010,74 (1),1-6.
    94. Wang, L.; Zhao, W. R.; Wu, Z. B. Simultaneous absorption of NO and SO2 by FeⅡEDTA combined with Na2SO3 solution. Chem. Eng. J.2007,132 (1-3),227-232.
    95. Kumaraswamy, R.; Sjollema, K.; Kuenen, G.; van Loosdrecht, M.; Muyzer, G. Nitrate-dependent [Fe(II)EDTA]2-oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Syst. Appl. Microbiol.2006,29 (4),276-286.
    96. Ma, L. F.; Tong, Z. Q.; Zhang, J. F. Removal of NOx from flue gas with iron filings reduction following complex absorption in ferrous chelates aqueous solutions. J. Air Waste Manage.2004,54 (12),1543-1549.
    97. Chang, S. G.; Littlejohn, D.; Liu, D. K. Use of chelate of SH-containing amino acids and peptides for the removal of NOx and SO2 from flue gas. Ind. Eng. Chem. Res.1988,27 (11),2156-2161.
    98. Shi, Y.; Littlejohn, D.; Chang, S. G Kinetics of NO absorption in aqueous iron(II) bis(2,3-dimercapto-l-propanesulfonate) solutions using a stirred reactor. Ind. Eng. Chem. Res.1996,35 (5),1668-1672.
    99. Brown, E. R.; Mazzarella, J. D. Mechanism of Oxidation of Ferrous Polydentate Complexes by Dioxygen. J. Electroanal. Chem.1987,222 (1-2),173-192.
    100. Bull, C.; Mcclune, G J.; Fee, J. A. The Mechanism of Fe-EDTA Catalyzed Superoxide Dismutation. J. Am. Chem. Soc.1983,105 (16),5290-5300.
    101. Chien, T. W.; Hsueh, H. T.; Chu, B. Y.; Chu, H. Absorption kinetics of NO from simulated flue gas using Fe(II)EDTA solutions. Process Saf. Environ. Protect.2009, 87 (5),300-306.
    102. Travin, S. O.; Skurlatov, Y I. Reaction-Kinetics and Mechanism of Fe2+ Ethylenediaminetetraacetate with O2 in the Presence of Ligands. Zh. Fiz. Khim.1981, 55 (6),1453-1456.
    103. Sada, E.; Kumazawa, H.; Takada, Y. Chemical-Reactions Accompanying Absorption of NO into Aqueous Mixed-Solutions of Fe-II-Edta and Na2SO3. Ind. Eng. Chem. Fund.1984,23 (1),60-64.
    104. Farrington, J.; Bengtsson, S. Citrate Solution Absorbs SO2. Chem. Eng.1980,87 (12),88-89.
    105. Xu, X. H.; Chang, S. G. Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration. Chemosphere 2007,67 (8), 1628-1636.
    106. Griffiths, E. A.; Chang, S. G. Effect of Citrate Buffer Additive on the Absorption of NO by Solutions of Ferrous Chelates. Ind. Eng. Chem. Fund.1986,25 (3),356-359.
    107. Leson, G.; Winer, A. M. Biofiltration-an Innovative Air-Pollution Control Technology for Voc Emissions. J. Air Waste Manage 1991,41 (8),1045-1054.
    108. Liang, W.; Huang, S. B.; Yang, Y. L.; Jiang, R. Experimental and modeling study on nitric oxide removal in a biotrickling filter using Chelatococcus daeguensis under thermophilic condition. Bioresour. Technol.2012,125,82-87.
    109. Devinny, J. S.; Ramesh, J. A phenomenological review of biofilter models. Chem. Eng. J.2005,113(2-3),187-196.
    110. Jin, Y. M.; Guo, L.; Veiga, M. C.; Kennes, C. Optimization of the treatment of carbon monoxide-polluted air in biofilters. Chemosphere 2009,74 (2),332-337.
    111. Chen, J.; Jiang, Y. F.; Chen, J. M.; Sha, H. L.; Zhang, W. Dynamic model for nitric oxide removal by a rotating drum biofilter. J. Hazard Mater.2009,168 (2-3), 1047-1052.
    112. Huang, S. B.; Zhang, J. G.; Hu, H. P.; Situ, Y. A new approach for removal of nitrogen oxides from synthetic gas-streams under high concentration of oxygen in biofilters. Chinese Chem. Lett.2005,16 (4),505-508.
    113. Schmidt, I.; Sliekers, O.; Schmid, M.; Bock, E.; Fuerst, J.; Kuenen, J. G.; Jetten, M. S. M.; Strous, M. New concepts of microbial treatment processes for the nitrogen removal in wastewater. Ferns Microbiol. Rev.2003,27 (4),481-492.
    114. Van der Maas, P. Chemically enhanced biological NOx removal from flue gases, pH.D. Wageningen:Wageningen University,2005.
    115. Apel, W. A.; Turick, C. E. The Use of Denitrifying Bacteria for the Removal of Nitrogen-Oxides from Combustion Gases. Fuel 1993,72 (12),1715-1718.
    116.蒋文举;毕列锋;李旭东.生物法废气脱硝研究.环境科学,1999,3,34-37.
    117. Chen, J. M.; Chen, J.; Hershman, L.; Wang, J. D.; Chang, D. P. Y. Autotrophic biofilters for oxidation of nitric oxide. Chinese J. Chem. Eng.2004,12 (1),113-117.
    118. Chou, M. S.; Lin, J. H. Biotrickling filtration of nitric oxide. J. Air Waste Manage. Assoc.2000,50 (4),502-508.
    119. Davidova, Y. B.; Schroeder, E. D.; Chang, D. P. Y. Biofiltration of nitric oxide. Proceedings,90th Annual Meeting, Air and Waste Management Association, Pittsburgh, PA, June 18-22 (1997).
    120. Min, K. N.; Ergas, S. J.; Harrison, J. M. Hollow-fiber membrane bioreactor for nitric oxide removal. Environ. Eng. Sci.2002,19 (6),575-583.
    121. Zhang, S. H.; Mi, X. H.; Cai, L. L.; Jiang, J. L.; Li, W. Evaluation of complexed NO reduction mechanism in a chemical absorption-biological reduction integrated NOX removal system. Appl. Microbiol. Biot.2008,79 (4),537-544.
    122. Jing, G H.; Li, W.; Shi, Y.; Ma, B. Y.; Tan, T. E. Regeneration of nitric oxide chelate absorption solution by two heterotrophic bacterial strains J. Zhejiang Univ. Sci. (China) 2004,5,432-435.
    123. Mi, X. H.; Gao, L.; Zhang, S. H.; Cai, L. L.; Li, W. A new approach for Fe(III)EDTA reduction in NOX scrubber solution using bio-electro reactor. Bioresour. Technol.2009,100 (12),2940-2944.
    124. Gao, L.; Mi, X. H.; Zhou, Y.; Li, W. A pilot study on the regeneration of ferrous chelate complex in NOX scrubber solution by a biofilm electrode reactor. Bioresour.Technol.2011,102 (3),2605-2609.
    125. van der Maas, P.; Harmsen, L.; Weelink, S.; Klapwijk, B.; Lens, P. Denitrification in aqueous FeEDTA solutions. J. Chem. Technol. Biot.2004,79 (8), 835-841.
    126. Lee, B. D.; Apel, W. A.; Smith, W. A. Oxygen effects on thermophilic microbial populations in biofilters treating nitric oxide containing off-gas streams. Environ. Prog.2001,20(3),157-166.
    127.郑平;徐向阳;胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004.
    128. Kumaraswamy, R.; van Dongen, U.; Kuenen, J. G.; Abma, W.; van Loosdrecht, M. C. M.; Muyzer, G. Characterization of microbial communities removing nitrogen oxides from flue gas:the BioDeNOx process. Appl. Environ. Microb.2005,71 (10), 6345-6352.
    129. Straub, K. L.; Schonhuber, W. A.; Buchholz-Cleven, B. E. E.; Schink, B. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol. J.2004,21 (6),371-378.
    130. van der Maas, P.; van den Brink, P.; Klapwijk, B.; Lens, P. Acceleration of the Fe(III)EDTA-reduction rate in BioDeNOx reactors by dosing electron mediating compounds. Chemosphere 2009,75 (2),243-249.
    131. Zhang, S. H.; Cai, L. L.; Mi, X. H.; Jiang, J. L.; Li, W. NOx removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter. Environ. Sci. Technol.2008,42 (10),3814-3820.
    132.张士汉.生物还原耦合化学吸收处理模拟烟气中NOx的机理及工艺研究,博士学位论文.杭州:浙江大学,2010.
    133. Jing, G. H. Removal of Nitiric Oxide by Fell(EDTA) Chelate Absorption Combined with Microbial Reduction, pH. D. Zhejiang:Zhejiang University,2004.
    134. Chen, J.; Wang, Z. Y.; Jiang, Y. F.; Qian, H. F.; Zhang, W.; Chen, J. M. Assessment of the Bacterial Community for Denitrifying Removal of Nitric Oxide in a Rotating Drum Biofilter by Denaturing Gradient Gel Electrophoresis. Environ. Eng. Sci.2009,26 (7),1189-1196.
    135. Jiang, R.; Huang, S. B.; Chow, A. T.; Yang, J. Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. J. Hazard Mater.2009,164 (2-3), 432-441.
    136. Zhang, S. H.; Li, W.; Wu, C. Z.; Chen, H.; Shi, Y. Reduction of Fe(II)EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution. Appl. Microbiol. Biot.2007,76 (5),1181-1187.
    137. R. Kumaraswamy, U. v. D., J.G. Kuenen, W. Abma, M. C. M. van Loosdrecht, and G. Muyzer, Characterization of microbial communities removing nitrogen oxides from flue gas:the BioDeNOx process. Appl. Environ. Microb.2005,71 (10),6345-6352.
    138. Kostka, J. E.; Stucki, J. W.; Nealson, K. H.; Wu, J. Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clay Clay Miner.1996,44 (4),522-529.
    139.冷守琴.氯苯高效降解菌选育及应用其强化生物滴滤运行性能研究,硕士学位论文.杭州:浙江工业大学,2011.
    140. DeJournett, T. D.; Arnold, W. A.; LaPara, T. M. The characterization and quantification of methanotrophic bacterial populations in constructed wetland sediments using PCR targeting 16S rRNA gene fragments. Appl. Soil. Ecol.2007,35 (3),648-659.
    141. Muyzer, G.; Dewaal, E. C.; Uitterlinden, A. G. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes-Coding for 16S rRNA. Appl. Environ. Microb. 1993,59(3),695-700.
    142. Ibekwe, A. M.; Grieve, C. M.; Lyon, S. R. Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl. Environ. Microb.2003,69 (9),5060-5069.
    143. Pinar, G.; Saiz-Jimenez, C.; Schabereiter-Gurtner, C.; Blanco-Varela, M. T.; Lubitz, W.; Rolleke, S. Archaeal communities in two disparate deteriorated ancient wall paintings:detection, identification and temporal monitoring by denaturing gradient gel electrophoresis. Fems. Microbiol. Ecol.2001,37 (1),45-54.
    144. Pinar, G.; Gurtner, C.; Lubitz, W.; Rolleke, S. Identification of archaea in objects of art by denaturing gradient gel electrophoresis analysis and shotgun cloning. Method. Enzymol.2001,336,356-366.
    145. Huang, L. N.; De Wever, H.; Diels, L. Diverse and Distinct Bacterial Communities Induced Biofilm Fouling in Membrane Bioreactors Operated under Different Conditions. Environ. Sci. Technol.2008,42 (22),8360-8366.
    146. Fischer, S. G.; Lerman, L. S. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 1979,16 (1),191-200.
    147. Muyzer, G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol.1999,2 (3),317-322.
    148. Picard, C.; Ponsonnet, C.; Paget, E.; Nesme, X.; Simonet, P. Detection and Enumeration of Bacteria in Soil by Direct DNA Extraction and Polymerase Chain-Reaction. Appl. Environ. Microb.1992,58 (9),2717-2722.
    149. Wong, M. L.; Medrano, J. F. Real-time PCR for mRNA quantitation. Biotechniques 2005,39 (1),75-85.
    150.李继香.新型材料膜生物反应器处理生活污水的性能及微生物群落研究,博士学位论文.上海:同济大学,2010.
    151. Harms, G.; Layton, A. C.; Dionisi, H. M.; Gregory, I. R.; Garrett, V. M.; Hawkins, S. A.; Robinson, K. G.; Sayler, G. S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol.2003,37 (2),343-351.
    152. Brooks, H. A.; Gersberg, R. M.; Dhar, A. K. Detection and quantification of hepatitis A virus in seawater via real-time RT-PCR. J. Virol. Methods 2005,127 (2), 109-118.
    153. Xia, S. Q.; Li, J. X.; He, S. Y.; Xie, K.; Wang, X. J.; Zhang, Y. H.; Duan, L. A.; Zhang, Z. Q. The effect of organic loading on bacterial community composition of membrane biofilms in a submerged polyvinyl chloride membrane bioreactor. Bioresource Technol.2010,101 (17),6601-6609.
    154. Ibekwe, A. M.; Grieve, C. M. Detection and quantification of Escherichia coli O157:H7 in environmental samples by real-time PCR. J. Appl. Microbiol.2003,94 (3),421-431.
    155. Kuroda, M.; Watanabe, T.; Umedu, Y. Simultaneous oxidation and reduction treatments of polluted water by a bio-electro reactor. Water Sci. Technol.1996,34 (9), 101-108.
    156. Elefsiniotis, P.; Wareham, D. G.; Smith, M. O. Use of volatile fatty acids from an acid-phase digester for denitrification. J. Biotechnol.2004,114 (3),289-297.
    157. Itokawa, H.; Hanaki, K.; Matsuo, T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Res. 2001,35 (3),657-664.
    158. Wrage, N.; Velthof, G. L.; van Beusichem, M. L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem.2001,33 (12-13),1723-1732.
    159.荆国华FeⅡ(EDTA)络合吸收结合生物转化脱除NO研究,博士学位论文.杭州:浙江大学,2004.
    160. Chang, S. G.; Littlejohn, D.; Lynn, S. Effects of metal chelates on wet flue gas scrubbing chemistry 1983,17 (11),649-653.
    161. Teramoto, M.; Hiramine, S. I.; Shimada, Y.; Sugimoto, Y.; Teranishi, H. Absorption of Dilute Nitric Monoxide in Aqueous-Solutions of Fe(II)-EDTA and Mixed-Solutions of Fe(II)-EDTA and Na2SO3. J. Chem. Eng. Jpn.1978,11 (6), 450-457.
    162. Sada, E.; Kumazawa, H.; Kudo, I.; Kondo, T. Individual and Simultaneous Absorption of Dilute NO and SO2 in Aqueous Slurries of MgSO3 with FeⅡ-EDTA. Ind. Eng. Chem. Proc. Dd.1980,19 (3),377-382.
    163. Sada, E.; Kumazawa, H.; Kudo, I.; Kondo, T. Absorption of NO in aqueous solutions of FeⅢ-EDTA chelate and aqueousslurries of MgSO3 with FeⅡ-EDTA. Ind. Eng. Chem. Proc. Dd.1981,20 (1),46-49.
    164. Sada, E.; Kumazawa, H.; Machida, H. Oxidation-Kinetics of FeⅡ-EDTA and FeⅡ-NTA Chelates by Dissolved-Oxygen. Ind. Eng. Chem. Res.1987,26 (7),1468-1472.
    165. Wubs, H. J.; Beenackers, A. A. C. M. Kinetics of the Oxidation of Ferrous Chelates of EDTA and HEDTA in Aqueous Solution.Ind. Eng. Chem. Res.1993,32 (11),2580-2594.
    166. Zang, V.; Vaneldik, R. Kinetics and Mechanism of the Autoxidation of Iron(II) Induced through Chelation by Ethylenediaminetetraacetate and Related Ligands. Inorg. Chem.1990,29 (9),1705-1711.
    167. Curtis, T. P.; Craine, N. G. The comparison of the diversity of activated sludge plants. Water. Sci. Technol.1998,37 (4-5),71-78.
    168. Ward, D. M.; Ferris, M. J.; Nold, S. C.; Bateson, M. M. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. R.1998,62 (4),1353-1357.
    169. Ferris, M. J.; Ward, D. M. Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microb.1997,63 (4),1375-1381.
    170.陈浚.生物转鼓净化NO废气及微生物学研究,博士学位论文.杭州:浙江工业大学,2009.
    171.付必谦;张蜂;高瑞如.生态学实验原理与方法.北京:科学出版社,2006.
    172. Pantanella, F.; Berlutti, F.; Passariello, C.; Sarli, S.; Morea, C.; Schippa, S. Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 2007,102(4),992-999.
    173. Li, W. J.; Zhang, Y. Q.; Park, D. J.; Li, C. T.; Xu, L. H.; Kim, C. J.; Jiang, C. L. Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int. J. Syst. Evol. Micr.2004,54,1811-1814.
    174. Anderson, M.; Habiger, J. Characterization and Identification of Productivity-Associated Rhizobacteria in Wheat. Appl. Environ. Microb.2012,78 (12),4434-4446.
    175. Spain, A. M.; Peacock, A. D.; Istok, J. D.; Elshahed, M. S.; Najar, F. Z.; Roe, B. A.; White, D. C.; Krumholz, L. R. Identification and isolation of a Castellaniella species important during biostimulation of an acidic nitrate-and uranium-contaminated aquifer. Appl. Environ. Microb.2007,73 (15),4892-4904.
    176. Skovhus, T. L.; Ramsing, N. B.; Holmstrom, C.; Kjelleberg, S.; Dahllof, I. Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl. Environ. Microb.2004,70 (4),2373-2382.
    177. Hermansson, A.; Lindgren, P. E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl. Environ. Microb.2001,67 (2),972-976.
    178. Ahn, J. H.; Kim, Y. J.; Kim, T.; Song, H. G.; Kang, C.; Ka, J. O. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. J. Microbiol. Meth.2009,78 (2),216-222.
    179. Kuo, D. H. W.; Robinson, K. G.; Layton, A. C.; Meyers, A. J.; Sayler, G. S. Real-time PCR quantification of ammonia-oxidizing bacteria (AOB):Solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environ. Eng. Sci.2006,23 (3),507-520.
    180. Lee, E. H.; Ryu, H. W.; Cho, K. S. Removal of benzene and toluene in polyurethane biofilter immobilized with Rhodococcus sp. EH831 under transient loading. Bioresource Technol.2009,100 (23),5656-5663.
    181. Duan, L.; Moreno-Andrade, I.; Huang, C. L.; Xia, S. Q.; Hermanowicz, S. W. Effects of short solids retention time on microbial community in a membrane bioreactor. Bioresource Technol.2009,100 (14),3489-3496.
    182. Mathur, A. K.; Majumder, C. B. Biofiltration and kinetic aspects of a biotrickling filter for the removal of paint solvent mixture laden air stream. J. Hazard. Mater.2008, 152(3),1027-1036.
    183. Lu, B. H.; Jiang, Y.; Cai, L. L.; Liu, N.; Zhang, S. H.; Li, W. Enhanced biological removal of NOx from flue gas in a biofilter by Fe(II)Cit/Fe(II)EDTA absorption. Bioresource Technol.2011,102 (17),7707-7712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700