用户名: 密码: 验证码:
磁铁矿、菱铁矿和四方纤铁矿的合成及其生物矿化意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界中,生物成因矿物由于受生物生长和生物大分子的调控作用,与非生物成因的自生矿物和成岩作用形成的矿物相比,往往具有独特的晶体形貌和复杂的组装超结构,这些特征构成其生物成因标志。因此,生物矿物可以作为生物标志物来示踪地质圈微生物生态系统的演化,为探索地球早期生命起源和寻找地外生命提供有用信息。铁是地球表生环境下最丰富的元素之一,也是最重要的营养元素之一。因此,涉及铁的生物矿化作用已经受到包括矿物学在内的诸多学科的广泛关注。在本论文中我们利用多种不同方法,在接近生物矿化的条件下,合成了多种含铁矿物及其组装超结构,包括定向排列的磁铁矿纳米链状结构、磁铁矿微米八面体和由此组装的花状多级结构、具有不同表面微形貌的菱铁矿微米球以及由四方纤铁矿纳米颗粒组装的纤维状超结构等。同时,以合成的菱铁矿微球为前躯体,控制合成磁铁矿,来探讨自然界中具有非热力学稳定形貌的磁铁矿颗粒的可能的成因来源。利用X-射线衍射、激光拉曼、傅里叶红外、扫面电子显微镜、(高分辨)透射电子显微镜、BET氮气吸附脱附分析仪、样品振动磁力计等多种表征手段鉴定矿物相成分,观察并分析晶体颗粒的结构特征。探究不同形貌含铁矿物的矿化过程,并提出了不同的矿化机制。实验结果对深入了解含铁矿物的生物矿化机制以及自然界中具有独特形貌和结构的含铁矿物的成因提供了有价值的参考。本论文的具体内容如下:
     1.在没有任何生物大分子或有机大分子的情况下,设计了以四方纤铁矿和亚铁离子为铁源合成纳米磁铁矿链状结构的实验工作,模拟趋磁细菌体内磁小体的矿化过程。实验结果表明,在弱碱性(pH = 8.0)条件下,合成的磁铁矿为35 nm左右的近似立方体,并且这些磁铁矿颗粒能够自发的定向排列,形成类似趋磁细菌体内的磁小体链状结构。利用高分辨透射电镜对磁铁矿的形貌进一步观察,我们发现这些近似立方体形的磁铁矿颗粒以{100}或{111}面对面的方式相互连接。结合已有的磁化模型研究,我们提出,由于铁磁性晶体固有磁偶极的存在,晶体之间的磁偶极作用力驱动了磁铁矿颗粒自发组装,并定向排列。由此,我们认为在趋磁细菌体内磁小体的矿化及组装链形成过程中,除了生物蛋白控制的因素以外,磁铁矿晶体固有各向异性的磁偶极吸引作用也贡献了磁小体链的形成。此外,晶体的磁偶极作用在局部环境中产生的洛伦兹力也可能会诱导磁小体晶体生长成拉长的形貌。
     通过改变矿化溶液的pH值,我们发现只有在弱碱性(pH = 8.0)环境中得到的磁铁矿颗粒具有与磁小体类似的形貌和组装行为。据此,我们推测趋磁细菌体内磁小体生长的囊泡可能也是一个弱碱性环境,其pH值在8.0左右。囊泡碱性环境的产生可能来源于囊泡内水分子的分解,而部分H+离子被特定的生物蛋白逆转运出囊泡,使得囊泡内OH-浓度升高。该实验结果的取得不但可以加深对整个磁小体生物矿化过程的理解,而且还能够丰富对生物体内某些磁性敏感细胞器官功能的认识。
     2.在生物分子天冬氨酸存在的情况下,我们成功地合成了磁铁矿八面体和由此组装的多级花状超结构。分析结果表明,以天冬氨酸为还原剂和以铁的水合氧化物为反应初始物在200 oC反应24 h后,得到的产物为纯的磁铁矿,产物颗粒呈现完美的正八面体晶体形貌,八面体的颗粒大小约为5μm,具有光滑的表面和高度的几何对称性。一系列的时间序列实验表明,在八面体形成的初期,水热体系发生的反应以三价铁的还原和纳米磁铁矿小颗粒的结晶析出为主,而在八面体形成的后期阶段,Ostwald熟化控制了微米八面体的生长过程。同时,我们还对磁铁矿八面体进行了磁学、电学性质的表征测试,为磁铁矿八面体潜在的工业应用提供了有用的实验数据。
     此外,反应在200 oC进行36 h后,磁铁矿八面体在磁性吸引力的驱动下可以自发地组装成一维棒状结构。反应继续延长至48 h,八面体进一步组装成三维的多级花状形貌的超结构。同时我们还发现,在240 oC反应24 h的条件下,部分磁铁矿八面体可以直接自发地组装成多级花状超结构。这些结果揭示了磁铁矿八面体可以通过亚单元组装的机制形成多级花状超结构。这些棒状和多级花状结构与古新世-始新世热极限期间在富粘土沉积物中发现的矛头形磁铁矿及其组装聚集体形貌类似。因此,我们的结果指示自然界中某些不寻常形貌和结构的磁铁矿可能有其多种成因来源。
     3.在以上研究基础上,我们以天冬氨酸为还原剂,以三嵌段聚合物F127分子为组装调节剂,在纯水相体系中成功地制备了磁铁矿微米空心球和“榴莲”形实心球。一系列时间过程实验显示,微米空心球的生长过程可表达为:首先,磁铁矿纳米小颗粒在F127分子的调控作用下聚集成微球;随着反应的进行,锚定在纳米颗粒表面的F127分子逐渐分解,F127分子对磁铁矿短暂的稳定作用逐渐丧失,使得聚集体内部的磁铁矿颗粒通过“重溶再结晶”过程,逐渐向外层迁移;最终,经过长时间的熟化,内部颗粒连续地向外迁移导致球形聚集体内部出现了空腔结构。进一步延长反应时间,空心球会演化成表面光滑且具有八面体尖角的“榴莲”球体。扫描、透射电镜观察结果和BET吸附脱附实验结果证明,“榴莲”形微球为实心球。磁铁矿微米空心球到“榴莲”实心球的演化有益于降低整个体系的能量。利用F127为组装调节剂在水相中合成磁铁矿微球的制备方法,对拓展磁铁矿颗粒在生物医药领域的应用有指导意义。
     4.自从Mckay等人(1996)在火星陨石ALH84001碳酸盐球粒中发现由拉长的磁铁矿纳米颗粒组装的链状结构以来,关于这些磁铁矿独特形貌的成因已受到包括矿物学在内诸多学科的广泛关注。有学者认为,这些磁铁矿纳米颗粒可能是由菱铁矿纳米棒分解产生,菱铁矿在经历脱碳酸盐作用后有可能将其晶体发育特征保存至其次生矿物磁铁矿晶体中,导致了磁铁矿出现非热力学稳定的拉长形貌。为深入了解菱铁矿向磁铁矿的转变过程,在生物分子抗坏血酸存在下,制备了具有不同表面特征的菱铁矿微米球体,并将菱铁矿微球在300 oC控制氧气氛下煅烧来合成磁铁矿。所获得的菱铁矿微球颗粒大小在10-30μm,其表面微结构包括不规则多面体、纳米颗粒以及纳米三角锥等三种形貌。低温对比实验显示,菱铁矿微球的形成过程是一个“棒状-花生状-哑铃状-球形”的多步连续生长过程。其中,菱铁矿亚单元微晶聚集成球的驱动力主要来源于的菱铁矿晶体固有的电偶极作用。随着反应体系中亚铁离子浓度的升高,菱铁矿微球表面会依次出现菱铁矿纳米颗粒和纳米三角锥结构,导致微球产生不同的表面构造。通过分析在高浓度亚铁离子情况下得到的微球表面三角锥形菱铁矿的结构特征和直接观察破损的菱铁矿微球形貌,我们认为菱铁矿微球表面微结构的变化是由菱铁矿纳米晶体在预先形成的菱铁矿微球表面发生二次成核和过生长导致的。
     此外,高温煅烧的实验结果显示,磁铁矿微球可以完好地继存母体菱铁矿微球的颗粒尺寸、表面和内部形貌特征。这暗示着,在自然环境中含铁碳酸盐矿物有可能通过共存流体氧逸度的变化、陨石撞击或火山爆发等自然事件,发生脱碳酸盐作用,将自己的生长发育特征保存至次生的磁铁矿晶体中,导致自然界中某些磁铁矿非热力学稳定形貌的出现。该项工作丰富了人们对自然界中某些磁铁矿特殊形貌的成因的认识。
     5.自然界中,某些披毛铁细菌(Gallionella Ferruginea)可以利用微环境中的铁元素在其体表合成纤维状的针铁矿(α-FeOOH)。这些纤维状针铁矿的形成过程与细菌分泌的聚多糖类物质有着密切关系。然而,对这些纤维状针铁矿的X射线近边吸收光谱的分析结果显示,矿化的细胞纤维中碳原子的结构特征与某些生物蛋白大分子(例如血红蛋白)的碳谱图非常接近。这暗示着除了聚多糖的贡献之外,针铁矿的矿化过程是否还受到某些潜在的生物蛋白质的调控作用。为加深对披毛铁细菌体表含铁羟基氧化物矿化过程的认识,我们设计了以牛血红蛋白为矿化调节剂,以尿素或氨水和六水三氯化铁为矿化初始物,在低温环境中合成四方纤铁矿的仿生矿化实验。已取得的实验结果表明,矿化产物四方纤铁矿具有明显的纤维状形貌,长度为500-700 nm,与生物成因的针铁矿和以多糖为模板仿生合成的四方纤铁矿纤维状结构类似。这些结果暗示了,生物成因的纤维状针铁矿的矿化过程除了受细菌分泌的多糖类物质的调控作用外,还可能受到其他胞外聚合物(比如蛋白质)的影响。在披毛铁细菌体表发生的生物矿化过程中,多种生物大分子可能协同作用共同导致了针铁矿的独特形貌。我们的工作不仅能帮助人们进一步认识生物成因的铁的羟基氧化物的形成机制,还能从矿物学角度加深人们对生物体内发生的与矿化相关的新陈代谢和生理活动和“矿物保护生命体”机制的理解。
Compared with abiogenic authigenic minerlas and diagenetic minerals, biogenetic minerals in nature usually possess unique crystallographic morphologies and sophisticated assembled architectures due to the regulation by the growth of orgamisms and the biomacromolecules in vivo. These features have been one of the criterions for the mineral biogenic origin. Therefore, biogenetic minerals can be used as the biosignatures for tracing the evolution of microbial ecosystem in geological environment, and provide useful information for exploring the terrestrial life origin and searching the extraterrestrial life. Iron is one of the most abundant elements within the Earth’s surface or near surface, and also one of the most important nutrient elements. Therefore, Fe-biomineralization has gained wide attentions of various fields including the mineralogy. In this dissertation, we used various synthetic methods under the conditions close to biomineralization to prepare different iron-bearing minerals’crystals and their assembled architectures, including the oriented chains of nanosized magnetite, the microsized magnetite octahedrons and their assembling flower-like architectures, the siderite microspherulites with different surface textures and the fiber-like akaganeite assembled by akaganeite nanoparticles. Meanwhile, the prepared siderite was further utilized as solid precursor to controllably synthesize magnetite for investigating the possible origin of the magnetite particles with non- thermodynamically stable morphologies in nature. Various characterization methods, such as X-ray diffraction, Raman spectroscopy, FT-IR spectroscopy, scanning electron microscopy, (high-resolution) transmission electron microscopy, Brunauer-Emmett-Teller (BET) gas sorptometry, vibrating sample magnetometer, were used to analyze the mineral phases of the products and to observe the morphologies of the crystals. Based on the investigation of the mineralization processes of different iron-bearing minerals, we proposed different mineralization mechanisms for the corresponding iron-bearing minerals. Our results may offer valuable information for better understanding the biomineralization process of iron-bearing minerals and the origins of some iron-bearing minerals with unique morphologies in natural environment. The details of dissertation are summerized as follows.
     1. In the absence of biomolecules or organic additives, we designed a biomimetic experiment for synthesizing the oriented chains of magnetite (Fe3O4) nanoparticles by using akaganeite (β-FeOOH) and ferrous ions as the irons source to simulate the biomineralization process of magnetosomes in magnetotactic bacteria. Our results demonstrate that under the weak alkali environment (pH = 8.0), the obtained magnetite nanoparticles are of 35 nm in size and roughly cuboidal morphology, and can be self-assemblied into the oriented chains, which are similar to the magnetosome chains in the magnetotactic bacteria. The HRTEM observation shows that these cuboidal nanoparticles are connected, face to face, with {100} or {111} facets. Based on the intrinsic dipolar structures of magnetite crystal, we proposed that the magnetic dipole-dipole interaction drived the self-assembly of the magnetite particles into oriented chains. This implicates that in magnetotactic bacteria, except for the biological control, the dipolar interaction may be a potential candidate for the organization of magnetosomes into the oriented chain. Besides, the Lorentz force resulting from the dipolar interaction may be capable of inducing the elongated morphologies of magnetosome crystals during the crystal growth.
     Changing the pH values of the mineralization system, we found that a moderate alkali environment (pH = 8.0) was essential to generate the cuboidal magnetites, which resembled biogenic magnetosome in the magnetotactic bacteria, and the pH value of the alkali environment could be further determined at about 8.0. These results suggest that the environment within the vesicles of magnetotactic bacterias may be an alkali solution at the pH value of 8.0. The alkali environment originates from the decomposition of the water molecule in vesicles, followed by the H+ antitransportation out of the vesicles by some special proteins, leading to the OH- insides the vesicles increased. These insights can contribute to deepen our understanding about the entire circumstance of magnetosome formation and chain assembly, and may be useful to improve our knowledge concerning the functions of magnetoreceptive organelles in vivo.
     2. In the presence of biomolecule aspartic acid, we successfully fabricated the microsized magnetite octahedrons and their assembling flower-like architectures. The results show that after 24 h duration of the reaction in which aspartic acid was used as reductant and hydrated ferric oxides were used as raw materials, our product is pure magnetite, which is of 5μm in size and regular octahedral appearance with a smooth surface. A series of time-course experiments revealed that at the early stage of magnetite formation Fe3+-reduction and nanosized magnetite formation predominate, while at the later stage Ostwald ripening contributes to the growth of perfect octahedral magnetite. Meanwhile, we also investigated the magnetic properties and electrochemical performances of the magnetite octahedrons. The experimental data can be valuable for the potential industrial application of magnetite particles.
     Besides, with increasing the duration to 36 h at 200 oC, magnetite octahedrons can self-assemble into one-dimension rod-like structures. After 48 h, octahedrons can further assemble into three-dimension flower-like architectures. Meanwhile, we found that after 24 h duration at 240 oC, some magnetite octahedrons could directly self-assemble into flower-like architectures. These results reveal that magnetite octahedrons can assemble into the flower-like architectures through the subunits self-assembly. These magnetite rod-like structures and flower-like architectures are similar to the spear-like magnetite particles and their aggregates occuring at the clay sediment at the Paleocene-Eocene Thermal Maximum. Therefore, our results imply that some giant magnetite particles in nature may have diverse origins, which can be useful for geologists to investigate the ancient geological events or the ancient environment.
     3. Based on the above investigation, we successfully synthesized magnetite hollow microspheres and solid durian-like microspheres by using aspartic acid as the reductant, using triblock copolymer F127 as the assembly reagents in the aqueous system. The formation process of hollow microspheres can be described as follows. Firstly, the magnetite nanoparticles self-aggregate into the microspherulites under the modification of F127 molecules. Then, with hydrothermal reaction proceeding, F127 molecules capping to magnetite nanocrystals gradually decompose, leading to that the transient stabilization of the magnetite nanopartciles imposed by the capping F127 molecules would be broken. As a result, the magnetite within spherical aggregation could gradually diffuse to the outer layer by the dissolution-recrystallization. Finally, the hollow spherolites formed after long hydrothermal duration. Moreover, with increasing reaction durations, the hollow microspheres can evolve unique durian-like architectures with a compact surface and numerous octahedral vertexes. The SEM, TEM observations and the BET results indicate that the durian-like microspheres are solid. The evolution from magnetite hollow microspheres to durian-like solid microspheres is favorable to minimize total system energies. This aqueous method by using F127 as assembly reagent for synthesizing magnetite microspheres may be useful for magnetite to extend their applications in biomedical fields.
     4. Since Mckay et al. (1996) found the magnetite chain assembled by elongated magnetite particles in the carbonate globules of Mars meteorolite ALH84001, the origin of these magnetites with unique morphologies has gained wide attentions of various fields including mineralogy. It is considered that these magnetite particles could result from the decomposition of siderite. The developed habits of siderite could be preserved into the secondary mineral magnetite after the decarbonation of siderite, leading to the formation of non-thermodynamically stable morphologies of magnetite. For a deeper understanding of the transformation from siderite to magnetite, we designed a benign ascorbic acid-assisted synthetic strategy to obtain siderite (FeCO3) spherulites with different surface textures, and further fabricate magnetite throught an oxygen-limited thermolysis of siderite spherulites at 300 oC. The obtained siderite spherulites are of 10-30μm, and have different surface textures including polyhedrons, nanoprticles and triangular pyramids. The lower-temperature experimental results show that the formation of siderite microspheres is a successive multistep growth in the form of the rod-peanut-dumbbell-sphere transition, which is mainly driven by the intrinsic electric forces of siderite crystallites. With increasing ferrous concentrations in the reaction system, siderite nanoparticles or nano-sized triangular pyramids appear one after the other on the preformed spherical surfaces, resulting in different surface textures of the siderite microspheres. Based on the investigation of the tri-pyramid siderite structure obtained under the highest ferrous concentration and the direct observation of the broken siderite microspheres, we believe that the surface morphological mutations of siderite microspheres result from the secondary nucleation and overgrowth of siderite nanocrystals on the preformed spherical surface.
     Moreover, the calcination results show that the magnetite crystals can benignly inherit the original sizes, morphologies, surface and internal features of the precursor siderite microspheres, suggesting that the developed habits of the Fe-bearing carbonate minerals in nature could be preserved into the magnetite crystals through a change in oxygen fugacity of a coexisting fluid, a meteorite impact or a volcanic process, potentially leading to the enlongated or uncommon morphologies of some magnetite minerals in nature. This study can enrich our understanding concerning the origin of the magnetite particles with non-thermodynamical morphologies in nature.
     5. In nature, Gallionella Ferruginea can utilize ferric ions on its surrounding to synthesize fiber-like goethite (α-FeOOH). The formation of fiber-like goethite is closely involved with the extracellular polysaccharide. Nevertheless, the results of Carbon K-adge XANES spectrum show that the structure features of carbon atoms in the mineralized cellula filaments are similar to those of some biomacromolecules, such as serum albumin. This implies that except for the contribution of polysaccharide, the goethite mineralization may be regulated by some potential protein. In order to deepen our understanding about the biomineralization process of iron oxyhydroxides on the surface of Gallionella Ferruginea, we designed a biomimetic experiment at the low temperature to synthesize akaganeite by using bovine serum albumin as the modifier, using urea or ammonia water and the FeCl3·6H2O as the raw materials. The present results show that the obtained akaganeite (β-FeOOH) is of the fiber-like morphology, and 500-700 nm in size, similar to the biogenic goethite and the polysaccharide template-regulated akaganeite. These results suggest that except for the modification of the polysaccharide produced by bacteria, the biomineralization of the fiber-like akaganeite may be influenced by other extracellular polymer, such as protein. During the biomineralization process on the Gallionella Ferruginea surface, the synergistic operation of multiple biomacromolecules probably result in the unique fiber-like appearance of iron oxyhydroxide mineral. Our study can not only be helpful to further understand the formation mechanism of the iron oxyhydroxide mineral in vivo, but also deepen our knowledge concerning the metabolism and physiological activity related with the biomineralization process and the“mineral shields biology”mechanism.
引文
崔福斋(2006)生物矿化[M].北京:清华大学出版社.
    戴永定(1994)生物成因矿物学[M].北京:石油工业出版社.
    林巍,田兰香,潘永信等. 2006,趋磁细菌磁小体研究进展[J].微生物学通报, 33, 133-137.
    欧阳健明(2006)生物矿化的基质调控及其仿生应用[M].北京:化学工业出版社.
    钱霞,刘维,赵见高等. (2002)红条毛肤石鳖齿舌牙齿内的纳米磁性矿物质[J].科学通报,47,10-13.
    王夔(1998)生物无机化学[M].北京:清华大学出版社.
    王荔军,李敏,李铁津,王运华,张福锁等. (2001)植物体中的纳米结构SiO2 [J]. 科学通报, 46,625-632.
    肖宇鹏(2009)以氨基酸为有机质仿生合成碳酸钙[D].吉林:吉林大学化学学院.
    Addadi, L., Joester, D., Nudelman, F., Weiner, S. (2006) Mollusk shell formation: A source of new concepts for understanding biomineralization processes[J]. Chem. Eur. J., 12, 980-987.
    Addadi, L., Raz, S., Weiner, S. (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization[J]. Adv. Mater., 15, 959-970.
    Addadi, L. and Weiner, S. (1997) Biomineralization: a pavement of pearl[J]. Nature, 389, 912-915.
    Aizenberg, J., Albeck, S., Weiner, S., Addadi, L. (1994) Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements[J]. J. Cryst. Growth, 142, 156-164.
    Aizenberg, J., Muller, D.A., Grazul, J.L., Hamann, D.R. (2003) Direct fabrication of large micropatterned single crystals[J]. Science, 299, 1205-1208.
    Arakali, A., Webb, J., Matsunaga, T. 2003, A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1[J]. Journal of Biological Chemistry, 278, 8745-8750.
    Arias, J.L. and Fernández, M.S. (2003) Biomimetic processes through the study of mineralized shells[J]. Mater. Character., 50,189-195.
    Austin, S.R. (1924) Academic[M]. London.
    Autumn, K., Liang, Y.A., Hsieh, T. (2000) Adhesive force of a single geckofoot-hair[J]. Nature, 405, 681-685.
    Ball, G.F.M. (2008) Vitamins: Their role in the human body– Vitamin C[M]. P. 393-420. Blackwell Publishing Ltd.: Hoboken.
    Banifield, J.F. and Zhang, H. (2001) Nanoparticles in the environment[J]. Rev. Mineral. Geochem., 44, 1-58.
    Barber, D.J., Reeder, R.J., Smith, D.J. (1985) A TEM microstructural study of dolomite with curved faces (saddle dolomite)[J]. Contrib. Mineral. Petrol., 91, 82-92.
    B?uerlein, E. (2003) Biomineralization of Unicellular Organisms: An Unusual Membrane Biochemistry for the Production of Inorganic Nano- and Microstructures[J]. Angew. Chem. Int. Ed., 42, 614-641.
    Bazylinski, D.A. (1999) Synthesis of the bacterial magnetosome: the making of a magnetic personality[J]. Internatl Microbiol, 2, 71-80.
    Bazylinski, D.A. and Frankel, R.B. (2003) Biologically controlled mineralization in prokaryotes[J]. In P.M. Dove, J.J. De Yoreo, and S. Weiner, Eds.,
    Biomineralization, 54, 217-247. Review in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Bazylinski, D.A. and Frankel, R.B. (2004) Magnetosome formation in prokaryotes[J]. Nature Reviews, 2, 217-230.
    Bazylinski, D.A., Frankel, R.B., Jannasch, H.W. (1988) Anaerobic production of magnetite by a marine magnetotactic bacterium[J]. Nature, 334, 518-519.
    Bazylinski, D.A., Garratt-Reed, A.J., Abedi, A., Frankel, R.B. (1993) Copper association with iron sulfide magnetosomes in a magnetotactic bacterium[J]. Arch Microbiol, 160, 35-42.
    Bazylinski, D.A. and Moskowitz, B.M. (1997) Microbial biomineralization of magnetic iron minerals[J]. In Mineralogical Society of America Reviews in Mineralogy, 35, 181-223.
    Becker, A., Bismayer, U., Epple, M., Fabritius, H., Hasse, B., Shi, J., Ziegler, A. (2003) Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber[J]. Dalton Trans., 551-555.
    Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., Morse, E.D. (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins[J]. Nature, 381, 56-58.
    Berman, A., Addadi, L., Kvick, ?., Leiserowitz, L., Nelson, M., Weiner, S. (1990)Intercalation of Sea Urchin Proteins in Calcite: Study of a Crystalline Composite Material[J]. Science, 250, 664-667.
    Berman, A., Addadi, L., Weiner, S. (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals-a study of intrastalline proteins[J]. Nature, 331, 546-548.
    Bggild, O.B. (1930) The shell structure of the mollusks[J]. Nature, 9, 233-326.
    Blackemore, R.P. (1975) Magnetotactic bacteria[J]. Science, 190, 377-379.
    Black, C.T., Murray, C.B., Sandstrom, R.L., Sun, S.H. (2000) Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices[J]. Science, 290, 1131-1134.
    Boettcher, A. L. and Wyllie, P. J. (1968) The calcite-aragonite transition measured in the system CaO-CO2-H2O[J]. Jour. Geol., 76, 314-330.
    Bunker, C.E., Novak, K.C., Guliants, E.A., Harruff, B.A., Meziani, M.J., Lin, Y., Sun, Y.P. (2007) Formation of protein-metal oxide nanostructures by the sonochemical method: Observation of nanofibers and nanoneedles[J]. Langmuir, 23, 10342-10347.
    Busch, S., Dolhaine, H., DuChesne, A., Heinz, S., Hochrein, O., Laeri, F., Podebrad, O., Vietze, U., Weiland, T., Kniep, R. (1999) Biomimetic morphogenesis of fluorapatite-gelatin composites: Fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen[J]. Eur. J. Inorg. Chem., 10, 1643-1653.
    Carlstrom, D. (1963) A crystallographic study of vertebrate otholiths[J]. Biological Bulletin, 125: 441-462.
    Cazalbou, S., Combes, C., Eichert, D., Rey, C. (2004) Adaptative physic-chemistry of bio-related calcium phosphates[J]. J. Mater. Chem., 14, 2148-2153.
    Chikazumi, S. Physics of Magnetism[M]. Wiley: New York, 1964, p100.
    Chan, C.S., De Stasion, G., Welch, S.A., Girasole, M., Frazer, B.H., Nesterova, M.V., Fakra, S., Banfield, J.F. (2004) Microbial polysaccharides template assembly of nanocrystal fibers[J]. Science, 303, 1656-1658.
    Cho, K.S., Talapin, D.V., Gaschler, W., Murray, C.B. (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J]. J AM CHEM SOC, 127, 7140-7147.
    C?lfen, H. and Qi, L.M. (2001) A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer[J].Chem. Eur. J., 7, 106-116.
    Douglas, T., Dichson, D.P.E., Betteridge, S., Charnoch, J., Garner, C.D., Mann, S. (1995) Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite[J]. Science, 269, 54-57.
    Cao, S.W., Zhu, Y.J., Ma, M.Y., Li, L., Zhang, L. (2008) Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and gamma-Fe2O3: Preparation and potential application in drug delivery[J]. J. Phys. Chem. C., 112, 1851-1856.
    Cui, F.Z., Wen, H.B., Zhang, H.B., Li, H.D. (1994) Anisotropy of micro indentation and morphology in natural ivory[J]. J. Mater. Sci. Lett., 12, 87-89.
    Cusack, M., Pérez-Huerta, A., Dalbeck, P. (2007) Common crystallographic control in calcite biomineralization of bivalved shells[J]. CrystEngComm, 9, 1215-1218.
    Dahl, K. and Buchardt, B. (2006) Monohydrocalcite in the Arctic Ikka Fjord, SW Greenland: first reported marine occurrence[J]. Journal of Sedimentary Research, 76, 460-471.
    Davis, S.A., Burkett, S.L., Mendelson, N.H., Mann, S. (1997) Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J]. Nature, 385, 420-423.
    Deng, H., Li, X.L., Peng, Q., Wang, X., Chen, J.P., Li, Y.D. (2005) Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem., Int. Ed., 44, 2782-2785.
    Dobson, J. (2006) Magnetic nanoparticles for drug delivery[J]. Drug Dev. Res., 67, 55-60.
    Dominic, W., Jeremy, D., Mann, S. (1994) Crystal Tectonics: Construction of Reticulated Calcium Phosphate Frameworks in Bicontinuous Reverse Microemulsions[J]. Nature, 264, 1576-1578.
    Dong, H., Jaisi, D.P., Kim, J., Zhang, G. (2009) Microbe-clay mineral interactions[J]. Am. Mineral., 94, 1505-1519.
    Dorozhkin, S.V. and Epple, M. (2002) Biological and medical significance of calcium phosphates[J]. Angew. Chem. Int. Ed., 41, 3130-3146.
    Douglas, T. (2003) A Bright Bio-Inspired Future[J]. Science, 299, 1192-1193.
    Dubrawski, J.V., Channon, A.L., Warne, S.St.J. (1989) Examination of the siderite-magnesite minerals series by Fourier transform infrared spectroscopy[J]. Am. Mineral., 74, 187-190.
    Dunin-Borkowski, R.E., McCartney, M.R., Frankel, R.B., Bazylinski, D.A., Posfai,M., Buseck, P.R. (1998) Magnetic microstructure of magnetotactic bacteria by electron holography[J]. Science, 282, 1868-1870.
    Dunlop, D.J. (1972) Magnetite: behavior near the single-domain threshold[J]. Science, 176, 41-43.
    Effenberger, H., Mereite, K., Zemann, J. (1981) Crystal strycture refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite and dolomite with discussion of some aspects of the stereochemistry of calcite-type carbonates[J]. Zeit. Kristallogr., 156, 233-243.
    Faivre, D., Menguy, N., Pósfai, M., Schüler, D. (2008) Environmental parameters affect the physical properties of fast-growing magnetosomes[J]. American Mineralogist, 93, 463-469.
    Falini, G., Albeck, S., Weiner, S., Addadi, L. (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules[J]. Science, 271, 67-69.
    Farmer, V.C. (1974) The infrared spectra of minerals[M]. London: Mineralogical Society.
    Feng, Q.L., Pu, G., Pei, Y., Cui, F.Z., Li, H.D., Kim, T.N. (2000) Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell[J]. J. Cryst. Growth, 216, 459-465.
    Field, C.B., Behrenfeld, M.J, Randerson, J.T. (1998) Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 281, 237-240.
    Frankamp, B.L., Boal, A.K., Tuominen, M.T., Rotello, V.M. (2005) Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly[J]. J. Am. Chem. Soc., 127, 9731-9735.
    Frankel, R.B. and Bazylinski, D.A. (2003) Biologically induced mineralization by bacteria[J]. In P.M. Dove, J.J. De Yoreo, and S. Weiner, Eds., Biomineralization, 54, 95-114. Review in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Frankel, R.B., Papaefthymiou, G.C., Blakemore, R.P., O’Brien, W. (1983) Fe3O4 precipitation in magnetotactic bacteria[J]. Biochim Biophys Acta, 763, 147-159.
    Fuhrmann, T., Landwehr, S., El, Rharbi-Kucki.M. (2004) Diatoms as living photonic crystals[J]. Appl. Phys. B, 78, 257-260.
    Garvie, L.A. (2003) Decay-induced biomineralization of the saguaro catus (Carnegiea gigantea)[J]. Am. Miner., 88, 1879-1888.
    Gil, P.P., Pesquera, A., Velasco, F. (1992) X-ray diffraction, infrared and M?ssbauer studies of Fe-rich carbonates[J]. Eur. J. Mineral., 4, 521-526.
    Golden, D.C., Ming, D.W., Schwandt, C.S., Lauer Jr., H.V., Socki, R.A., Morris, R.V., Lofgren, G.E., Mckay, G.A. (2001) A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH84001[J]. Am. Mineral., 86, 370-375.
    Golden, D.C., Ming, D.W., Morris, R.V., Brearley, A.J., Lauer Jr., H.V., Treiman, A.H., Zolensky, M.E., Schwandt, C.S., Lofgren, G.E., McKay, G.A. (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001[J]. Am. Mineral., 89, 681-695.
    Gorby, Y.A., Beveridge, T.J., Blakemore, R.P. (1988) Characterization of the bacterial magnetosome membrane[J]. J Bacteriol, 170, 834-841.
    Gower, L.B. (2008) Biomimetic model system for investgating the amorphous precursor pathway ans its role in Biomineralization[J]. Chem. Rev., 108, 4551-4627.
    Guerin, W.F. and Blakemore, R.P. (1992) Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum[J]. Appl Environ Microbiol, 58, 1102-1109.
    Hamm, C.E., Merkel, R., Springer, O. (2003) Architecture and material properties of diatom shells provide effective mechanical protection[J]. Nature, 421, 841-843.
    Han, Y.S., Hadiko, G., Fuji, M., Takahashi, M. (2005) A novel approach to synthesize hollow calcium carbonate particles[J]. Chem. Lett., 34, 152-153.
    Heuer, A.H, Fink, D.J.L.V.J. (1992) Innovative materials proeessing: abiomimetie approach[J]. Science, 225, 1098-1105.
    Heywood, B.R. and Mann, S. (1994) Molecular construction of oriented inorganic materials–controlled nucleation of calcite and aragonite under compressed Langmuir monolayers[J]. Chem. Mater., 6, 311-318.
    Hu, M., Jiang, J.S., Li, X.D. (2009) Surfactant-assisted hydrothermal synthesis of dendritic magnetite microcrystals[J]. Cryst. Growth Des., 9, 820-824.
    Huang, L.J. and Li, H.D. (1989) The microstructure of biomineralized bivalvia shells[J]. MRS Symp. Proc., 174, 164-167.
    Isambert, A., Valet, J.P., Gloter, A., Guyot, F. (2003) Stable Mn-magnetite derived from Mn-siderite by heating in air[J]. J. Geophys. Res., 108, 2283.
    Isambert, A., Resseguier, T.D., Gloter, A., Reynard, B., Guyot, F., Valet, J.P. (2006)Magnetite-like nanocrystals formed by laser-driven shocks in siderite[J]. Earth Planet. Sci. Lett., 243, 820-827.
    Jackson, A.P., Vincent, J.F.V., Turner, R.M. (1988) The mechanical design of nacre[J]. Proc. R. Soc. B., 2, 234-237.
    Jia, B.P. and Gao, L. (2008) Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field[J]. J. Phys. Chem. C., 112, 666-671.
    Johnanesss, W. and Puhan, D. (1971) The calcite-aragonite transition, reinvestigated[J]. Contrib. Mineral. Petrol., 31, 28-38.
    Kamat, S., Su, X., Ballarini, R., Heuer, A.H. (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature, 405, 1036-1040.
    Kingery, W.D., Bowen, H.K., Uhlmann, D.R. (1976) Introduction to Ceramics[M], 2nd ed, John Wiley: New York.
    Kirschvink, J.L. (2001) A seventh criterion for the identification of bacterial magnetofossils[J]. Eos Transactions AGU, 82, S131.
    Klokkenburg, M., Vonk,C., Claesson, E.M., Meeldijk,J.D., Erne, B.H., Philipse, A.P. (2004) Direct imaging of zero-field dipolar structure in colloidal dispersions of synthetic magnetite[J]. J AM CHEM SOC, 126, 16706-16707.
    Kniep, R. and Busch, S. (1996) Biomimetic growth and self-assembly of fluorapatite aggregates by diffusion in denatured collagen matrices[J]. Angew. Chem. Int. Ed. Engl., 35, 2624-2626.
    Komeili, A., Li, Z., Newman, D.K., Jensen, G.J. (2006) Magnetosomes are cell membrane invaginations organized be the actin-like protein MamK[J]. Science, 311, 242-245.
    Kopp, R.E. and Kirschvink, J.L. (2008) The identification and biogeochemical interpretation of fossil magnetotactic bacteria[J]. Earth-Science Reviews, 86, 42-61.
    Kopp, R.E., Weiss, B.P., Maloof, A.C., Vali, H., Nash, C.Z., Kirschvink, J.L. (2006) Chains, clumps, and strings: magnetofossil taphonomy with ferromagnetic resonance spectroscopy[J]. Earth and Planetary Science Letters, 247, 10-25.
    Koziol, A.M. (2004) Experimental determination of siderite stability and application to Martian Meteorite ALH84001[J]. Am. Mineral., 89, 294-300.
    Kr?ger, N. and Poulsen, N. (2008) Diatoms-From cell wall biogenesis to nanotechnology[J]. Annu. Rev. Genet., 42, 83-107.
    Kurt, O.K. (1998) Diversity of bacterial iron mineralization[J]. Earth Sci. Rev. 43, 91-121.
    Li, C.C., Yin, X.M., Wang, T.H., Zeng, H.C. (2009) Morphogenesis of highly uniform CoCO3 submicrometer crystals and their conversion to mesoporous Co3O4 for gas-sensing applications[J]. Chem. Mater., 21, 4984-4992.
    Li, Y., Wang, R., Zhou, G., Zhang, C. (2005) Microbial biomineralization[J]. 11, 167-180.
    Lian, S.Y., Wang, E.B., Gao, L., Kang, Z.H., Lan, Y., Xu, L. (2004) Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process[J]. Solid State Commun., 132, 375-378.
    Liao, Z.M., Li, Y.D., Xu, J., Zhang, J.M., Xia, K., Yu, D.P. (2006) Spin-filter effect in magnetite nanowire[J]. Nano Lett., 6, 1087-1091.
    Lin, A. and Meyers, M.A. (2005) Growth and structure in abalone shell[J]. Materials Science and Engineering A, 390, 27-41.
    Lin, H.P., Wong, S.T., Mou, C.Y., Tang, C.Y. (2000) Extensive void defects in mesoporous aluminosilicate MCM-41[J]. J. Phys. Chem. B., 104, 8967-8975.
    Lin, W., Tian, L.X., Pan, Y.X. (2006) Formation of magnetosomes in magnetotactic bacteria[J]. Microbiology China, 33, 133-137 (in Chinese with English abstract). Liu, X.M., Fu, S.Y., Xiao, H.M. (2006) Fabrication of octahedral magnetite microsrystals[J]. Mater. Lett., 60, 2979-2983.
    Lovley, D.R., Stolz, J.F., Nord, Jr. G.L., Philips, E.J.P. (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J]. Nature, 330, 252-254.
    Lowenstam, H.A. (1981) Minerals formed by organisms[J]. Science, 211, 1126-1131.
    Lowenstam, H.A. (1962) Magnetite in denticle capping in recent chitons (polyplacophora)[J]. Geol. Soc. Am. Bull., 73, 435-438.
    Lowenstam, H.A. and Weiner, S. (1989) On Biomineralization. Oxford University Press, N.Y.
    Lu, Q.Y., Gao, F., Komarneni, S. (2004) Biomolecule-assisted synthesis of highly orded snowflake structures of bismuth sulfide nanorods[J]. J. Am. Chem. Soc., 126, 54-55.
    Lu, Q.Y., Gao, F., Komarneni, S. (2005) A green chemical approach to the synthesis of the tellurium nanowires[J]. Langmuir, 21, 6002-6005.
    Lv, Y.D., Wang, H., Wang, X.F., Bai, J.B. (2009) Synthesis, characterization andgrowing mechanism of monodisperse Fe3O4 microspheres[J]. J. Cryst. Growth, 311, 3445-3450.
    Ma, Z.J., Huang, J., Sun, J., Wang, G.N, Li, C.Z., Xie, L.P Zhang, R.Q. (2007) A Novel Extrapallial Fluid Protein Controls the Morphology of Nacre Lamellae in the Pearl Oyster, Pinctada fucata[J]. J. Biol. Chem., 282, 23253-23263.
    Mandernack, K.W., Bazylinski, D.A., Shanks, W.C., Bullen, T.D. (1999) Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria[J]. Science, 285, 1892-1896.
    Mann, S. (1983) Mineralization in biological systems[J]. Struct. Bonding, 54, 125-174.
    Mann, S. (1986) On the nature of boundary-organized Biomineralization[J]. J. Inorg. Chem., 28, 363-371.
    Mann, S. (2001) Biomineralization: Principles and concepts in bioinorganic materials mhemistry[M]. Oxford University Press, Oxford, UK, 240pp.
    Mann, S. (2002) Biomineralization[M], New York: Oxford University.
    Martina, M.S., Fortin, J.P., Menager, C., Clement, O., Barratt, G., Grabielle-Madelmont, C., Gazeau, F., Cabuil, V., Lesieur, S. (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging[J]. J. Am. Chem. Soc., 127, 10676-10685.
    Meldrum, F.C., Heywood, B.R., Mann, S., Frankel, R.B., Bazylinski, D.A. (1993a) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium[J]. Proc R Soc London Ser B, 251, 231-236.
    Meldrum, F.C., Heywood, B.R., Mann, S., Frankel, R.B., Bazylinski, D.A. (1993b) Electron microscopy study of magnetosomes in two cultured vibroid magnetotactic bacteria[J]. Proc R Soc London Ser B, 251, 237-242.
    Mellman, I., Fuchs, R., Helenius, A. (1986) Acidification of the endocytic and exocytic pathways[J]. Ann. Rev. Biochem, 55, 663-700.
    Milligan, A.J. and Morel, F.M.M. (2002) A proton buffering role for silica in diatoms [J]. Science, 297, 1848-1850.
    Moskowitz, B.M. (1995) Biomineralization of magnetic minerals[J]. Reviews in Geophysics Supplementum, 123-128.
    Nadagouda, M.N. and Varma, R.S. (2007) A greener synthesis of core (Fe, Cu)-shell (An, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C[J]. Cryst. Growth Des., 7, 2582-2587.
    Nakamura, C., Kikuchi, T., Burgess, J.G., Matsunaga, T. (1995) Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. Strain AMB-1[J]. J Biochem, 118, 23-27.
    Nelson, D.M., Tréguer, P., Brzezinski, M.A. (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochem. Cycles, 9, 359-372.
    Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., von Rechenberg, B. (2005) Superparamagnetic nanoparticles for biomedical application: Possibilities and limitations of a new drug delivery system[J]. J. Magn. Magn. Mater., 293, 483-496.
    Palache, C., Berman, H., Frondel, C. (1944) Dana’s system of mineralogy[M]. Wiley, New York.
    Penn, R.L. and Banfield, J.F. (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania[J]. Geochim. Cosmochim. Acta, 63, 1549-1557.
    Perry, C.C. (2003) Silicification: The Processes by Which Organisms Captureand Mineralize Silica[M]. In P.M. Dove, J.J. De Yoreo, and S. Weiner, Eds., Biomineralization, 54, p. 291-327. Reviews in Mineralogy and geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Perry, C.C. and Keeling-Tucker, T. (1998) Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium[J]. J. Inorg. Biochem., 69, 181-191.
    Philipes, A.P. and Maas, D. (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability[J]. Langmuir, 18, 9977-9984.
    Politi, Y., Mahamid, J., Goldberg, H., Weiner, S., Addadi, L. (2007) Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization[J]. CrystEngComm, 9, 1171-1177.
    Pósfai, M. and Dunin-Borkowski, R.E. (2009): Magnetic nanocrystals in organisms. ELEMENTS, 5, 235-240.
    Qi, H.P., Ye, J., Tao, N., Wen, M.H., Chen, Q.W. J. (2009) Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive filed[J]. Cryst. Growth., 311, 394-398.
    Qi, L.M. and Ma, J.M. (2002) Biomimetic morphogenesis of calcium carbonate inmixed solutions of surfactants and double-hydro-philic block copolymers[J]. Adv. Mater., 14, 300-303.
    Qu, X.F., Yao, Q.Z., Zhou, G.T., Fu, S.Q., Huang, J.L. (2010a) Formation of hollow magnetite microspheres and their evolution into durian-like architectures[J]. J. Phys. Chem. C, 114, 8734-8740.
    Qu, X.F., Zhou, G.T., Yao, Q.Z., Fu, S.Q. (2010b) Aspartic-acid-assisted hydrothermal growth and properties of magnetite octahedrons[J]. J. Phys. Chem. C, 114, 284-289.
    Raven, J.A. (1983) The transport and function of silicon in plants[J]. Biol. Rev., 58, 179-207.
    Reeder, R.J. and Dollase, W.A. (1989) Structural variation in the dolomite-ankerite solid solution series: An X-ray, M?ssbauer, and TEM study[J]. Am. Mineral., 74, 1159-1167.
    Schabes, M.E. and Bertram, H.N. (1988) Magnetization processes in ferromagnetic cubes[J]. J Appl Phys, 64, 1347-1357.
    Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J.M., Schüler, D. (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria[J]. Nature, 440, 110-115.
    Schmahl, W.W., Griesshaber, E., Neuser, R., Lenze, A., Job, R., Brand, U. (2004) The microstructural of the fibrous layer of terebratulide brachiopod shell calcite[J]. Eur. J. Mineral., 16, 693-697.
    Schmid, A.M.M. and Schulz, D. (1979) Wall Morphogenesis in Diatoms: Deposition of Silica by Cytoplasmic Vesicles[J]. Protoplasma, 100, 267-288.
    Schmidt, W.J. (1924) Dic Bausteine des Tierkorpers in Polarisiertem Lichte[J]. Cohen Verlag, Bonn.
    Schumann, D., Raub, T.D., Kopp, R.E., Guerquin-Kern, J.L., Wu, T.D., Rouiller, I., Smirnov, A.V., Sears, S.K., Lücken, U., Tikoo, S.M., Hesse, R., Kirschvink, J.L., Vali, H. (2008) Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum[J]. PNAS, 105, 17648-17653.
    Shankar, S.S., Patil, U.S., Prasad, B.L.V., Sastry, M. (2004) Liquid foam as template for the synthesis of iron oxyhydroxide nanoparticles[J]. Langmuir, 20, 8853-8857.
    Shebanova, O.N. and Lazor, P. (2003) Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation[J]. J. Raman Spectrosc., 34, 845-852.
    Sheparovych, R., Sahoo, Y., Motornov, M., Wang, S., Luo, H., Prasad, P.N., Sokolov, I., Minko, S. (2006) Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly[J]. Chem Mater, 18, 591-593.
    Smetacek, V. (1999) Diatoms and the ocean carbon cycle[J]. Protist, 150, 25-32.
    Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K. (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites[J]. Nature, 399, 761-763.
    Sonvico, F., Dubernet, C., Colombo, P., Couvreur, P. (2005) Metallic colloid nanotechnology, applications and diagnosis and therapeutics[J]. Curr. Pharm. Des., 11, 2091-2105.
    Sleytr, U.B., Sara, M., Pum, D., Schuster, B. (2001) Characterization and use of crystalline bacterial cell surface layers[J]. Prog. Surface Sci., 68, 231-278.
    Suga, S. and Watabe, N. (1992) Hard tissue mineralization and demineralization[J]. Springer Verlag, 6, 101-105.
    Sugimoto, T., Matijevi?, E. (1980) Formation of uniform spherical magnetite particles bu crystallization from ferrous hydroxide gels[J]. J. Colloid Interface Sci., 74, 227-243.
    Sumper, M. and Kr?ger, N. (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins[J]. J. Mater. Chem., 14, 2059-2065.
    Tamaura, Y., Saturno, M., Yamada, K., Katsura, T. (1984) The transformation of γ-FeO(OH) to Fe3O4 and green rustⅡin an aqueous solution[J]. Bull Chem Soc Jpn, 57, 2417-2421.
    Tasker, P.W. (1979) The stability of ionic crystal surfaces[J]. J. Phys. C: Solid State Phys., 12, 4977-4984.
    Tauxe, L., Mullender, T.A.T., Pick, T. (1996) Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis[J]. J GEOPHYS RES, 101, 571-583.
    Taylor, A.P. and Barry, J.C. (2004) Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes[J]. Journal of Microscopy, 213(Pt2), 180-197.
    Thewlis, J. (1931) The structure of ferromagnetic ferric oxide[J]. Philos. Mag., 12, 1089-1106.
    Tripp, S.L., Dunin-Borkowski, R.E., Wei, A. (2003) Flux Closure in self-assembledcobalt nanoparticle rings[J]. Angew Chem Int Ed, 42, 5591-5593.
    Turnbull, A.G. (1973) A thermodynamic study of vaterite[J]. Geochim. Cosmochim. Acta, 37, 1593-1601.
    Vali, H. and Kirschvink, J.L. (1989) Magnetofossil dissolution in a paleomagnetically unstable deep-sea sediment[J]. Nature, 339, 203-206.
    Vallet-Regi, M. and Gonzalez-Calbet, J.M. (2004) Calcium phosphates as substitution of bone tissue[J]. Prog. Solid State Chem., 32, 1-31.
    Vincent, J. (1991) Structrual biomaterials[M]. Princeton University.
    Vollath, D., Szabo, D.V., Taylor, R.D., Willis, J.O. (1997) Synthesis and magnetic properties of nanostructured maghemite[J]. J. Mater. Res., 12, 2175-2182.
    Wang, J., Chen, Q., Zeng, C., Hou, B. (2004) Magnetic-field-induced growth of single crystalline Fe3O4 nanowires[J]. Adv Mater, 16, 137-140.
    Wang, J., Peng, Z.M., Huang, Y.J., Chen, Q.W. (2004) Growth of magnetite nanorods along its easy-magnetization axis of [110][J]. J. Cryst. Growth, 263, 616-619.
    Wang, S., Xin, H., Qian, Y. (1997) Preparation of nanocrystalline Fe3O4 by gamma-ray radiation[J]. Mater. Lett., 33, 113-116.
    Wang, Z.L. (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. J Phys Chem B, 104, 1153-1175.
    Webb, J., Macey, D.J., Chua-anusorn, W., Pierre T.G.S., Brooker, L.R., Rahman, I., Noller, B., (1999) Iron biominerals in medicine and the environment[J]. Coord. Chem. Rev., 190, 1199-1215.
    Wei, A. (2006) Calixrene-encapsulated nanoparticles: Self-assembly into functional nanomaterials[J]. Chem. Commun., 23, 1581-1591.
    Weiner, S. and Hood, L. (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation[J]. Scinece, 190, 987-988
    Weiner, S. and Dove, P.M. (2003) An Overview of Biomineralization Processes and the Problem of the Vital Effect[M]. In P.M. Dove, J.J. De Yoreo, and S. Weiner, Eds., Biomineralization, 54, p. 1-29. Reviews in Mineralogy and geochemistry, Mineralogical Society of America, Chantilly, Virginia.
    Williams, W. and Dunlop, D.J. (1989) Three-dimensional micromagnetic modelling of ferromagnetic domain structure[J]. Nature, 337, 634-637.
    Witt, A., Fabian, K., Bleil, U. (2005) Three-dimensional micromagnetic calculations for naturally shaped magnetite: Octahedra and magnetosomes[J]. Earth and Planetary Science Letters, 233, 311-324.
    Xi, G.C., Wang, C., Wang, X. (2008) The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods[J]. Eur. J. Inorg. Chem., 3, 425-431.
    Xiong, Y., Ye, J., Gu, X.Y., Chen, Q.W. (2007) Synthesis and assembly of magnetite nanocubes into flux-closure rings[J]. J. Phys. Chem. C, 111, 6998-7003.
    Xuan, S.H., Hao, L.Y., Jiang, W.Q., Song, L., Hu, Y., Chen, Z.Y., Fei, L.F., Li, T.W. (2007) A FeCO3 precursor-based route to microsized peanutlike Fe3O4[J]. Cryst. Growth Des., 7, 430-434.
    Yan, A., Liu, X.H., Qiu, G., Zhang, N., Shi, R.R., Yi, R., Tang, M., Che, R.C. (2007) A simple solvothermal synthesis and characterization of round-biscuit-like Fe3O4 nannoparticles with adjustable sizes[J]. Solid State Commun., 144, 315-318.
    Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., Stucky, G.D. (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 396, 152-155.
    Young, J.R. and Henriksen, K. (2003) Biomineralization within vesicles: the calcite of coccoliths[J]. Rev. Mineral. Geochem., 54, 189-215.
    Yu, D.B., Sun, X.Q., Zou, J.W., Wang, Z.R., Wang, F., Tang, K. (2006) Oriented assembly Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres[J]. J. Phys. Chem. B., 110, 21667-21671.
    Yu, J.G., Yu, J.C., Zhang, L.Z., Wang, X.C., Wu, L. (2004) Facile fabrication and characterization of hierarchically porous calcium carbonate microspheres[J]. Chem. Commun., 21, 2414-2415.
    Yu, S.H., C?lfen, H., Antonietti, M. (2003) Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures[J]. J. Phys. Chem. B, 107, 7396-7405.
    Yu, S.H., C?lfen, H., Hartmann, J., Antonietti, M. (2002) Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers[J]. Adv. Funct. Mater., 12, 541-545.
    Yuwono, V.M., Burrows, N.D., Soltis, J.A., Penn, R.L. (2010) Oriented aggregation: Formation and transformation of mesocrystal intermediates revealed[J]. J. AM. CHEM. SOC., 132, 2163-2165.
    Zaremba, C.M., Belcher, A.M., Fritz, M., Li, Y.L., Mann, S., Hansma, P.K., Morse, D. E., Speck, J. S., Stucky, G.D. (1996) Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls[J]. Chem. Mater., 8, 679-690.
    Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.H. (2002) Exchange-coupled nanocomposite magnets by nanoparticles self-assembly[J]. Nature, 420, 395-398.
    Zhang, D.E., Zhang, X.J., Ni, X.M., Song, J.M., Zheng, H.G. (2007) Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route[J]. Cryst. Growth. Des., 7, 2117-2119.
    Zhang, D.H., Liu, Z.Q., Han, S., Li, C., Lei, B., Stewart, M.P., Tour, J.M., Zhou, C.W. (2004) Magnetite (Fe3O4) core-shell nanowires: Synthesis and magnetoresistance[J]. Nano Lett., 4, 2151-2155.
    Zhang, H.B., Cui, F.Z., Wang, S. Li, H.D. (1991) Characterizing the hierarchical structures of natural ivory[M]. MRS Symp Proc., 255, 151-154.
    Zhou, G.T., Yao, Q. Z., Fu, S.Q., Guan Y.B. (2010) Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite[J]. Eur. J. Mineral., 22,259-269.
    Zhou, G.T., Yao, Q.Z., Ni, J. Jin, G. (2009) Formation of aragonite mesocrystals and implication for Biomineralization[J]. Am. Miner., 94, 293-302.
    Zhang, Z.P., Gao, D.M., Zhao, H., Xie, C.G., Guan, G.,J., Wang, D.P., Yu, S.H. (2006) Biomimetic assembly of polypeptide-stabilized CaCO3 nanoparticles[J]. J. Phys. Chem. B., 110, 8613-8618.
    Zurzolo, C. and Bowler, C. (2001) Exploring bioinorganic pattern formation in diatoms. A story of polarized trafficking[J]. Plant Physiology, 127, 1339-1345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700