用户名: 密码: 验证码:
新疆吐哈盆地十红滩铀矿床的流体—有机质—生物成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该项目属中国核工业地质局“十五”整装科研项目。为铀矿地质生产中科研项目。
     在野外地质调查,样品采集和分析、数据处理和综合的基础上,本文系统的分析吐哈盆地十红滩铀矿床容矿主岩的后生蚀变地球化学、同位素地球化学、地下水地球化学、有机地球化学和生物地球化学特征。认为容矿层岩石来源于南部觉罗塔格山,源岩类型主要为花岗岩,各地球化学分带的岩石具有相同物源和构造环境,均形成于被动大陆边缘,为低温成岩成矿作用的产物;有机质、生物参与了早成岩作用和表生成岩作用。在吐哈盆地西南缘弱挤压的构造环境下,在流体—有机质—生物的作用下,容矿主岩具有明显的地球化学水平分带性,依次可分为氧化带、弱氧化带、氧化还原过渡带和还原带。这一分带通过岩石的结构构造、颜色、蚀变矿物、常量元素含量、稀土元素含量以及U、Tu/U、Ra、S和有机质含量、微生物种群和数量等的规律性变化表现出来。通过水的离子成分、稀土元素组成和氢氧同位素等分析了含矿含水层地下水性质和来源,认为现代成矿流体属于外生流体,来源于南部的觉罗塔格山基岩裂隙水。地下水在含水层中径流过程时,在生物、有机质的作用下,发生了脱硫酸作用,形成具自生流体性质的强还原气体CH_4、H_2和H_2S等。有机质的镜质体反射率、干酪根原子比和碳同位素研究认为,容矿层有机质的母质类型为含腐泥腐殖型,其演化处于暗褐煤与亮褐煤阶段,生烃模式处于生物化学生气阶段。容矿层岩石中的酸解吸附烃、可溶有机物和铀之间有明显的正相关关系,具有厌氧细菌的改造特征。不同地球化学环境岩石微生物的培养鉴定,结合室内微生物对铀的模拟氧化实验和还原实验不仅直接证明微生物能在含有剧毒、高含量铀的矿石中生存和繁殖,促使层间氧化带的发育和铀的溶解迁移,而且可以利用有机质的微生物降解作用形成的烃类作为其生长的碳源,通过生物地球化学作用,在直接促使铀的还原沉淀同时,改变流体的Eh—pH,导致铀的还原成矿和吸附成矿,控制了该矿床铀的富集成矿和定位。这一结论丰富了我国层间氧化带砂岩型铀矿床成矿理论,在含油气盆地进行层间氧化带砂岩型铀矿找矿、地浸开采、环境治理方面具有重要的实践意义。容矿层有机质生物标志化合物和矿床地质特征的研究,结合国外典型层间氧化带型铀矿床的形成条件和模式分析,认为在该矿床形成过程中发挥重要作用的烃类属于同生还原剂,并非来源于上覆煤层和邻近油气田,明确了在吐哈盆地铀与煤、天然气、油是同一盆地不同部位的共存能源。提出了艾丁湖斜坡带上的中侏罗统西山窑组辫状河砂体是该区矿床铀矿勘查的重点层位,在具体实践中应重视局部构造的研究和钻孔中与层间氧化带有关的矿化信息的研究,这样可以达到扩大找矿、提高找矿效益目的。该研究成果在矿床勘查中得到验证,并取得良好的找矿成果,新发现铀工业孔4个,新增铀资源量XXXX吨。
     本文的创新点为:
     1、首次把流体—有机质—生物成矿理论用于层间氧化带砂岩型铀矿床。以微生物为纽带,研究了具有外生流体性质的渗入地下水和自生流体性质烃类之间的相互关系及在铀矿床形成过程中的作用。
     2、在国内首次从层间氧化带砂岩型铀矿床容矿层岩石中培养出不同代谢特征的微生物种群。首次采用培养出的微生物成功的进行了铀的氧化实验和铀的还原沉淀实验。
     3、在国内首次把有机地球化学方法用于研究层间氧化带砂岩型铀矿床容矿层有机质的构成、演化以及在矿床形成过程中的作用。证明了油气在砂岩型铀矿床成矿过程中发挥了重要的作用,这对于在含油气盆地寻找可地浸砂岩型铀矿床具有重要的意义。
This research project is scientific research project in uranium geology production which was approved to carry out by China nuclear industry geology bureau.
     On the basis of geological investigation in the field, sampling, samply analysising, simulated test , data processing, inductive and synthesize, the report analysed in a systematic way epigenetic alteration geochemical , isotope geochemical, hydrogeochemical, organic geochemical, organism geochemical characteristic of ore-locating hosting rock in the Shihongtan uranium deposit in Turpan-Hami basin. The author thinks that ore-locating hosting rock originated from southern Jueluotage mountain, the precursor type is mainly granite. the rock in different geochemical belt is same in provenance and tectonic environment. The rock was formed in edge of passive continent, and is product of law-temperature diagenesis action. Organic matter and organism participated in early diagenesis action and epidiagenetic metallogenesis. In weak compression tectonic environment of southwest Turpan-Hami basin, the geochemical horizontal zonation was formed in the ore-locating hosting rock by organism-organic matter-fluid mutual action. The zonation is divided into completely-oxidized, incompletely-oxidized, redox and primary zone in proper order. The zonation was expressed in regularity variation of rock texture and structure, colour, altered mineral, major elements, Ree, U, Th/U, U/Ra, S, organic matter, microbial species and quantity. The nature and source of groundwater in ore-bearing aquifer is analysed by means of major ion composition , Ree andδ~(13)OδD, author think that present metallogenetic fluid is exogene origin , and origined from bed rock crevice-water of Jueluotage mountain. When groundwater runoffs in aquifer , the sulphate reduction reaction took place and strong reduced gas H_2S, CH_4, H_2 were formed by way of organism and organic matter mutual interaction. Through study on vitrin reflection power, H/C, O/C, carbon isotope of kerogen, the author think that organic matter mother-material type is sapropelic humus. organic matter is under attritus and bright brown coal stage. Hydrocarbon-generation model is biochemical gas-generation stage. Uranium content in rock is positive correlativity with soluble organic, acidolysis hydrocarbon. The microbial in different geochemical environment of rock culured and distinguished, in addition, microbial oxidation and reduction uranium simulated test proved that microbial may not only live and breed in poisonous and high content uranium ore, imple layer oxidation zone to develop and uranium to dissolve and migrate, but control uranium concentration to form deposit and place by way of biological geochemical impling uranium to reduct and precipitate by changing Eh—pH of fluid which use hydrocarbon origined from organic matter biological decomplexation as carbon resourse. This conclusion enriches metallogenetic theory of layer oxidation zone sandstone type uranium deposit, but has important practical significance in finding this kind of deposit, in-situ leach and environment harness. According to studying on biological marke chemical compound, deposit geological feature of this deposit, as well as formation condition and model of typical layer oxidation zone sandstone type uranium deposit abroad, the paper think that hydrocarbon belongs to contemporaneous reductive, does not origined from upper coal- seam and oil-gas field close to this uranium deposit, which play important role in metallogenetic process, clear that uranium deposit and coal, gas-oil is coexitence energy resources in different place of identical basin. Author poses that braided river dene in the middle Jurassic Xishanyao formation is key position for uranium exploration in the Ai-ding lake belt, must attach importance to study on local structure and mineralized information relation with layer oxidation zone, like this, goal of enlargement prospecting and the enhancement for prospecting benefical may be achieved. The result of study were proved in deposit exploration, the good ore-searching result was obtained. four commercial mineralized holes were new found. the uranium amount of resources increased xxxx tons.
引文
[1]赵风民.外生—后成渗入型铀矿床的空间定位问题探讨.铀矿地质,2005.21(3):161~168.
    [2]权志高,李占双.新疆十红滩砂岩型铀矿床基本特征及成因分析.地质论评,2002,48(4):430~436.
    [3]张金带,徐高中,陈安平,王成.我国可地浸砂岩型铀矿成矿模式初步探讨.铀矿地质,2005.21(3):139~145.
    [4]王震亮,张立宽.沉积盆地流体研究的现状与前沿问题.盆地多种能源矿产共存富集成藏(矿)研究进展.北京,科学出版社,2005,26~43.
    [5]闵茂中,王汝成,边立曾,张富生,彭新建,王金平,李朋富,尹琳,张光辉等.2003.层间氧化带砂岩型铀矿中的生物成矿作用[J].自然科学进展,13(2):164.
    [6]夏毓亮,林锦荣,刘汉彬,范光,侯艳先.北方主要产铀盆地及其蚀源区U—Pb同位素体系、铀成矿年代学研究.铀矿地质,2001.19(3):129~136。
    [7]彭新建.新疆十红滩铀矿床成矿作用地球化学研究.南京大学博士研究生学位论文,2003.
    [8]倪卫冲,徐国苍,航放航磁弱信息提取方法在新疆十红滩地区的应用试验。2001,核工业地质局科研成果报告。
    [9]纪友亮,冷胜荣,张立强等.吐哈盆地侏罗系层序地层及复杂储层研究.1998,山东东营:石油大学出版社.
    [10]陈肇博,陈祖伊,李胜祥.层间氧化带砂岩型和古河谷砂岩型铀矿成矿地质特征对比.世界核地质科学.2003,20(1).
    [11]别列里曼[苏]主编,熊福清,孙西田,狄永强等译,水成铀矿床,1995.核工业西北地质局203研究所(内部资料).
    [12]潭鸿赞.吐哈盆地水文地质研究.铀矿地质,2002.18(2):97~103.
    [13]王建容 1997吐哈盆地古水动力条件与油气聚集规律.石油与天然气地质.18(1).28~33
    [14]曹溅辉 2000.台北凹陷地下水动力特征及其对油气运移和聚集的影响.沉积学报.18(2).273~278
    [15]李占游,李保侠,乔海明,邓小卫,贾恒,何永振,付成铭,刘林,蔺志璧,石海.新疆吐鲁番十红滩铀矿床南矿带32-31勘探线普查地质报告.2002,核工业203研究所.(内部资料).
    [16]乔海明,张复新,徐高中,徐纯红,王伟涛.层间氧化带砂岩型铀矿床成矿地质条件简析.盆地多种能源矿产共存富集成藏(矿)研究进展.北京,科学出版社,2005,26~43.
    [17]张子敏,马汉峰,蔡根庆.吐哈盆地西南缘艾丁湖斜坡带层间氧化带分带性及其地球化学特征.世界核地质科学.2004,21(1),5~9.
    [18]蔡根庆,李胜祥,张子敏,黄志章.十红滩砂岩型铀矿床层间氧化带蚀变及元素地球化学,中国核学会铀矿地质分会学术论文交流会.2006,18~30.
    [19]M·Φ·马克西莫娃,E·M·什玛廖维奇[俄]著,夏同庆,潘乃礼译,层间渗入成矿作用,1996.核工业西北地质局203研究所(内部资料).
    [20]中国科学院地球化学研究所地球化学与沉积学研究室.有机地球化学.北京:科学出版社,1982.1~354.
    [21]徐高中.2002.吐哈盆地南缘构造演化极其对层间氧化带砂岩型铀矿成矿作用影响.铀矿地质,2003.19(3):137~140.
    [22]赵振华.铕地球化学特征的控制因素.南京大学学报(地球科学版),1993,5:271~280.
    [23]赵振华.微量元素地球化学原理.北京:科学出版社,1997:1~238.
    [24]王果、华仁民、秦立峰.乌库尔其地区层间氧化带铀成矿过程中的流体作用研究.矿床地质,2000,19(4):340~349.
    [25]刘钦甫、杨晓杰、丁述理.华北晚古生代煤系高龄岩微量元素和稀土元素地球化学研究.地球化学,1998,27(2):196~203.
    [26]朱西养,汪云量、王志畅,张成江.川西砂岩型铀矿稀土元素特征及铀成矿作用.油矿地质,2004,20(2):71~79.
    [27]郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000,148~149.
    [28]别风雷,李胜荣,孙岱生,侯增谦,苏文超,英基丰.川西呷村黑矿型多金属矿床热液体系稀土元素组成特征.矿物学报,2000,20(3):233~241.
    [29]H.B.古勃金,A.A.斯米尔诺夫著(苏),雷文高译.水成铀矿的找矿标志和预测基础.原子能出版社,1985,1~66.
    [30]卢武长.稳定同位素地球化学.成都地质学院,1986
    [31]柳益群,刑秀娟,韩作振,樊爱萍,杨仁超.碎屑岩成岩作用阶段与石油天然气煤铀成藏成矿阶段划分.盆地多种能源矿产共存富集成藏(矿)研究进展.北京,科学出版社,2005,59~67.
    [32]谢书成,殷鸿福.生物-有机质-流体成矿系统—以南京栖霞山铅锌银锰多金属矿床为例.武汉:中国地质大学出版社,1997:52~53.
    [33]沈照理 朱宛华等.水文地球化学基础.1993.地质出版社.
    [34]吴梅贤,李鲜华,刘颖,卫克勤.广东白沙佛冈花岗岩风化壳地下水中的稀土元素.地球化学.2003,32(4):335~342.
    [35]杨庆杰,刘立等.盆地流体的基本类型及其驱动机制.世界地质.2000,19(2),15~20.
    [36]张德支,王有翔.川北砂岩型铀成矿条件与油气运移过程中的物理-化学条件.矿物岩石,1994,14(2):83~87.
    [37]杜乐天,欧光习.油气在北方砂岩型铀矿形成和找矿中的应用.核工业北京地质研究院年报,2003(内部资料).
    [38]袁明生、梁世君、燕列灿、闫玉魁、汤良杰、庞雄奇等,吐哈盆地油气地质与勘探实践.石油工业出版社,2002.
    [39]焦养泉,吕新彪,王正海,王敏芳.从沉积到成岩两种截然不同的地质环境-吐哈盆地砂岩型铀矿研究实例.地球科学,2004,29(5).
    [40]侯读杰,张林晔.实用地球化学图鉴.北京:石油工业出版社,2003:115
    [41]史维浚.铀水文地球化学原理.原子能出版社,1990.
    [42]代世峰、钟宁宁、刘池洋、孙玉壮、秦胜飞、李丹.煤成油研究现状及存在问题.盆地多种能源矿产共存富集成藏(矿)研究进展.北京,科学出版社,2005,83~95.
    [43]向伟东、陈肇博、陈祖伊、尹双金.试论有机质与后生砂岩型铀矿成矿作用—以吐哈盆地十红滩铀矿床为例.铀矿地质,2000,16(2):65~73.
    [44]中国科学院地球化学研究所.高等地球化学.北京:科学出版社,1998:352-353
    [45]涂光炽.中国层控矿床地球化学.科学出版社,1988,Vol.3.
    [46]吴传璧 周书欣(译).油气化探的理论与方法.地质出版社.
    [47]中国石油学会石油地质委员会.有机地球化学和陆相生油//戴金星,宋岩.煤成气型生物成因气及其成因探讨,北京:石油工业出版社,1986:297~304.
    [48]张晓宝,徐永昌,刘文汇,沈平,吉利明,马立元.吐哈盆地水溶气组分与同位素特征形成机理及意义探讨.沉积学报,2002,20(4):705~709.
    [49]戴金星,裴锡古,戚厚发.中国天然气地质学.北京:石油工业出版社,1986:42~43.48.
    [50]陈骏,姚素平,季峻峰等.微生物地球化学及其研究进展.地质论评,2004,50(6):620~632.
    [51]闵茂中,王汝成,边立曾等.层间氧化带砂岩型铀矿中的生物成矿作用.自然科学进展,2003,13(2):164~168.
    [52]闵茂中,H.F.Xu,L.L.Barton等.厌氧菌Shewcenella putrefaciens还原U(Ⅵ)的实验研究:应用于中国层间氧化带砂岩型铀矿床.中国科学,2004,34(2):125~129.
    [53]武汉地质学院地球化学教研室.1979.地球化学.北京:地质出版社,322~329
    [54]郑士民,颜望明,钱新明.自养微生物.北京:科学出版社,1983,25~64.
    [55]阎葆瑞,张锡根.微生物成矿学.北京:科学出版社,2000,31~102.
    [56]H.W.多伊尔.细菌的新陈代谢.北京:科学出版社,1983,156~356.
    [57]王大耜.细菌分类基础.北京:科学出版社,1977,39~58.
    [58]陈绍铭,郑福寿.水生微生物实验法[M].北京:海洋出版社,1985.87~239.
    [59]赵瑞全,秦明宽,王正邦.微生物和有机质在512层间氧化带砂岩型铀矿成矿中的作用[J].铀矿地质,1998.14(6):338~343.
    [60]蔡金芳,雷丽莉,张洁,张富平,王荣.可溶性芳香化合物与砂岩型铀成矿的关系.西北铀矿地质,2005,31(2):59~62.
    [61]闵茂中,彭新建,王果,殷建化.我国西北地区层间氧化带砂岩型铀矿床中铀的赋存形式.油矿地质,2006,23(4):193~201.
    [62]车遥,孙振亚,陈敬中.现代沉积环境中铁的微生物矿化作用.高校地质学报,2000,6(2):278~281.
    [63]罗红军,徐树宝,扬茂源.吐鲁番坳陷含油气系统.石油勘探与开发,1999,26(5):1~5.
    [64]王恩德,王丹丽,王毅.铁矿物形成过程中的细菌作用研究.岩石矿物学杂志,2001,20(4).
    [65]康晏,王万春,任君虎.生物气生成的地球化学.岩石地球化学通报,2004,23(4):350~354.
    [66]樊建明,郭平,孙良田,张显军,田义民.天然气储层中硫化氢分布规律、成因及对生产的影响.特种油气藏,2006,13(2).90~94.
    [67]易真戟,谭凯旋,谵爱丽,赵龙云.硫酸盐还原菌及其在工业和矿山废水治理中的应用.云南师范大学学报,2006:26(3),39~44.
    [68]张小里,刘海洪,陈开勋,郭生武,陈志昕.硫酸盐还原菌生长规律的研究.西北大学学报,1999:29(5).397~401.
    [69]向廷生,万家云,蔡春芳.硫酸盐还原菌对原油的降解作用和硫化氢的形成.天然气地球科学,2004:15(2),171~173.
    [70]关德师,戚厚发,钱贻伯,张辉,张祥,黄宝家.生物气的生成模式.石油学报,1997,18(3):31~36.
    [71]樊毓文 硫酸还原茵生长规律及石油管材微生物腐蚀防护的研究.西安:西北大学化工科学系,1998.6.
    [72]Campbell A C, Palmer M R, Kinkhammer G P. Chemistry of hot spring on the Mid-Atantic Ridge. Nature, 1988, 335: 514~519.
    [73]Cathey W B. Implications of the Geology and Geochemistry of the Maclean Five Uranium Deposit, Three Rivers, Taxas. Oak Ridge Associated Universities. 1980,1~140
    [74]Fouquet Y, Stackelberg U, Charlou J. Matallogenesis in back-are environments:The Lau Basin example. Econ. Geol., 1993,88:2154~2181.
    [75]Granger H C. Finch W I. The Colorado plateau Uranium province. USA. Washington:springer, 1989.157~189.
    [76]Jenden p d, Kaplan I R, Poreda R J, Craig H. Origin of nitrogen-rich natural gases in the California Great Valley:evidence from helium, carton, and isotope ratios. Geochemica et Cosmochimica Acta, 1998,52:851~861.
    [77]Johannesson K H., Hendry M J., Rare earth element geochemistry of groundwater from a thick till and clay-rich aquitard sequence. Saskatchewan, Canada. Geochim Acta, 2000,64(9):1493~1509.
    [78]Johannesson K H., Stetzenbach K J., Hodge V F., et at., Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet Sci Lett, 1996, 139(1-2): 305-319.
    [79]Kirland D W .Denison E, Rooney M A. Diagenetic alteration of Permian strata at oil fields of south central Oklahoma, USA. Marine Petroleum Geology, 1995,12:629-644.
    [80]Landais P. Organic geochemistry of sedimentary uranium ore deposits. Ore Geology Rewiew, 1996: 11, 33-51.
    [81]Loveley D R, et al Enzymatic iron and uranium reduction by sulfatereduction bacteria. Marine Geol, 1993, 113(1):41.
    
    [82]Lovely D R, et al. Microbial reduction of uranium. Nature, 1991,350:413.
    [83]Lovley D R, Philips E J P, Gorby Y A, Landa E R. Microbial reduction of uranium. Nature(London) 1991,350:413-416.
    [84]Nakashima S. Precipitation kinetics of uranium by sedimentary organic matter under diagenetic and hydrothermal conditions[J]. Econ Geol. 1999. 94(7): 993.
    [85]Barton L L,et al. bBactirial reduction of soluble uranium:the first step in situ immobilization of uranium[J]. Radio Waste Manage Environ Restor, 1996. 20(1):141.
    [86]Abdelouas A, et al. Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground waste[J].J Contain Hydral, 1998. 35(1) :217.
    [87]Lovley D R. Bioremediation of organic ang metal reduction[J]. J Ind Microbial, 1995. 14(1):85.
    [88]Phillips E J P, et al. Remediation of uranium contaminated soils with biocarbonate extraction and microbial U(VI) reduction[J]. J Ind Microbial, 1995. 14(1):203.
    [89]Nakashima S. Precipitation kinetics of uranium by sedimentary organic matter under diagenetic and hydrothermal conditions[J]. Econ Geol.1999. 94(7): 993.
    [90]Marques A M, et al. Uranium accumulation by Pseudomonas sp. ESP-5028. Appl Microbiol Biotechnol, 1991, 35(2):406.
    [91]Michard A, Alberade F, Michard F. Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vents field(13N). Nature, 1983, 303: 795-797.
    [92]Michard A, Alberade F. The Ree content of some hydrothermal fluids. Chm. Geol., 1986, 55: 51-60.
    [93]Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a paleoenviromental indicator of bottom water oxygenation Sed. Petrol, 1998, 58 (7) :812— 819.
    [94]Saxby J D, The significance of organic matter in ore genesis. Hand book of Strata-bound and Stratiform Ore Deposits, Vol. H, ed. By Wolfm K. H., 1977,111-129.
    [95]Spirakis C S. The role of organic matter in the formation of uranium deposits in Sedimentary roc. Ore Geology Rewiew, 1996: 11(1-3), 53-69.
    [96]Sverjensky D M. Europium redox equilibrium in aqueous solutions. Earth planet. sci.Lettt., 1984, 67: 70~78.
    
    
    
    [97]Zyakun A M, Bondar V A, Namsaraev B B. Factionation of stable carbon isotopes of methane in process of microbiological oxidation. Geokhimiya, 1979: 291—297.
    
    
    [98]Rudd J W M, Taylor C D. Methane cycling in aquatic environments. Adv. Aquat. Microbiol., 1980, (2): 77-150.
    
    [99]Lovely J A, Klug M J. Sulfate reducers can out compete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol., 1983,45:187~192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700