用户名: 密码: 验证码:
东方蝼蛄(Gryllotalpa orientalis Burmeister):特征、功能、力学及其仿生分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生学的出现为科学技术创新提供了新思路、新原理和新方法。
     土壤动物经历了亿万年的演化,其肢体几何外型的形态都能适应其在土壤中的生存环境。东方蝼蛄经过数亿年进化,集疾走、游泳、飞行、挖洞和鸣叫于一身,是“五项全能”的土壤动物。它能在稀泥里钻洞而不沾泥,独特的挖掘足有很高的掘土效率,因此分析东方蝼蛄的形态学特征,揭示其特性规律,具有重要学术价值和在农业机械土壤工作部件上的应用前景。
     研究了东方蝼蛄成虫躯体相对几何尺寸特征,测量并计算了东方蝼蛄的体足分布系数。使用3D激光扫描系统获得东方蝼蛄躯体外形轮廓点云,在Imageware软件中进行模型重构;提取东方蝼蛄主要部位的特征曲线,用Matlab进行曲线拟合与分析。采用体视显微镜、扫描电子显微镜、能谱仪以及水润湿角测量仪,研究东方蝼蛄各部位材料的断面形态,表皮成分,表面微观形态,刚毛特征,并获得各部位表面的润湿性能;利用纳米力学测试系统测量东方蝼蛄前足爪趾和口器的表皮纳米力学性能,比较东方蝼蛄与其它生物材料的纳米力学性能。为研究东方蝼蛄特有挖掘足爪趾的结构性能,在ANSYS软件中,导入东方蝼蛄爪趾的立体模型,对东方蝼蛄爪趾进行静力学仿真,研究东方蝼蛄爪趾受力变形状态。参照东方蝼蛄爪趾曲线,设计出挖掘机仿生模型斗齿,与挖掘机传统斗齿进行对比,对仿生模型斗齿进行力学仿真分析。设计并运用FDM-Dimension快速成型设备加工挖掘机仿生斗齿和传统斗齿,进行两种斗齿的挖掘阻力对比试验,验证了仿生斗齿的结构优势。
The geometric shape of soil animal’s legs are all adapt to their living surroundings through their volution over millions of years. The oriental mole crickets, such as Gryllotalpa orientalis Burmeister, can walk fast, swim, fly, dig in earth and tweet, and can bore the holes in mud without any soil adhesion on it’s body surfaces. The especial fossorial legs of the oriental mole cricket have very high efficiency in digging in earth. Analysis of the morphological characteristics of the oriental mole cricket is very important to the further theoretical research and technological development of soil-engating components of such terrain machinery as agricultural machine.
     The adult oriental mole crickets Gryllotalpa orientalis Burmeister were collected in Dehui city of Jilin Province, China. The size of the mole cricket’s body was measured with a stereomicroscope with a software for automatic calculation function and the body-foot layout ratios of the oriental mole cricket were calculated. The point clouds of head, pronotum, forewings and legs of the oriental mole cricket surface were obtained by a 3D scanner. The data of the point clouds were precessed using the Imageware software, the curved surface of the oriental mole cricket's surfaces were reconstructed. The mouthpart of the oriental mole crickets were reconstructed using the slicing method. Utilize Coreltrace software and Imageware software to get the characteristic curve data of the forelegs, pronotum and forewings of the oriental mole crickets were fitted with Matlab software. The corresponding curve equations were obtained and the second derivative and curvature were calculated.
     The geometrical characteristics of the surface of oriental mole cricket in microscale were examined by stereomicroscopy and scanning electronic microscopy (SEM). The seta covering density on the pronatum, abdomen, legs, hindwing, forewing of the oriental mole crickets were determined using the measurement method of the content of the second phase area. The growing orientations of the seta respect to the body were analyzed. The cross-sections geometrical morphologies of the oriental mole cricket's foreleg claw toes and mouthpart were examined by SEM and it was found that the both have empty structure inside them. The cross-section area of empty structure was measured using the slicing method and their ratios to the whole cross-section area were calculated. The composition of the oriental mole cricket's cuticle was examined with JSM-5301 energy spectrometer and the relativity of the cuticle composition with its founction was analyzed.
     The contact angle of water on the cuticle surfaces of the oriental mole cricket with a contact angle measurement apparatus (OCA20) it was found that the oriental mole cricket body surfaces possess hith hydrophobicity and there exists close relationship with the seta covering density.
     The nanomechanics properties of the cuticle surfaces of the foreleg claw toe and mouthpart of the oriental mole cricket were examined with a nanomechanics testing system (Hisitron) and the nano-hardness and elastic modulus were measured. It was from comparing the nano-hardness of the cuticle surfaces of the oriental mole cricket with the foreleg femur cuticle of dung beetle Copris ochus Motschulsky and the cuticle of bovine hoof wall of cattle, pig and sheep that the nano-hardness of the cutlcles the foreleg claw toe and mouthpart of the oriental mole cricket are higher than the culticle of the foreleg femur cuticle of dung beetle Copris ochus Motschulsky and the cuticle of bovine hoof wall of cattle, pig and sheep.
     The models of the foreleg claw toe of the oriental mole cricket, without and with empty structure, were established employing Inventor software as modeling tool and the position with the largest stress was determined by finite element method with ANSYS software. It was found that the model toe with empty structure has better mechanic property than the model toe without empty structure. According to the conventional scales of the requirement of the excavator teeth, the conventional tooth model was established and the biomimetic tooth was designed based on geometrical structure of the vertical section of the foreleg claw toe of the oriental mole cricket. The simulation analysis of the conventional tooth and the biomimetic tooth models were conducted and it was found that the biomimetic tooth had higher excavating property than the conventional tooth under identical testing conditions.
     The biomimetic tooth model and conventional tooth model were manufactured utilizing FDM-Dimension rapid molding system. The linking parts of tooth part with test transmission attachment were designed The excavating tests of the biomimetic tooth were run in an indoor soil bin (The Key Laboratory of Bionics Engineering, Jilin University, P. R. China) as compared to the conventional tooth. The tests showed the same conclusions as the simulation.
引文
[1] LU YONGXIANG. Significance and Progress of Bionics[J]. Journal of Bionics Engineering, 2004,1(1):1-3.
    [2]路甬祥.仿生学的科学意义与前沿[J].科学中国人, 2004,(4):22-23.
    [3]孙毅.仿生学的发展现状与未来[J].科技发展与展望, 1997,(8):8-9.
    [4]奥华.前景广阔的仿生技术[J].电子质量, 1997,(6):28-29.
    [5]孙久荣,戴振东.仿生学的现状和未来[J].生物物理学报,2007,23(3):110-115.
    [6]机翼的升力.中国公众科技网[EB/OL]: http://app.cpst.net.cn/zjjt/2005_10/1128753210.html,2005.
    [7]应变测量.新华网[EB/OL]: http://news3.xinhuanet.com/st/2003-04/14/content_830352.htm,2003.
    [8] D W BECHERT, M BRUSE, W HAGE. Experiments with three dimensional riblets as an idealized model of shark skin[J]. Exp. Fluids, 2000,28:403-412.
    [9]先进制造技术的新发展.广西机电职业技术学院教学资源网[EB/OL]: http://www.gxcme.edu.cn/jpkc/jpkc/web/resource/article14.htm,2009.
    [10] AUTUMN K, LIANG Y A, HSIEH S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000,405(8):681-685.
    [11] PRAKER A R, LAWRENCE C R. Water cap ture by a desert beetle[J]. Nature, 2001,414:33-34.
    [12]杨洪秀,左文杰,李亦文,任露泉.活塞表面仿生非光滑微坑贮油润滑机理的任意拉格朗日-欧拉法有限元模拟[J].吉林大学学报(工学版), 2008,38(3):591-594.
    [13]任露泉,丛茜,佟金.界面粘附中非光滑表面基本特征的研究[J].农业工程学报, 1992,8(1):16-22.
    [14]任露泉,陈德兴,胡建国.土壤动物减粘脱土规律的初步分析[J].农业工程学报, 1990,6(1):15-20.
    [15]陈秉聪,任露泉,徐晓波等.典型土壤动物体表形态及减粘脱土的初步研究[J].农业工程学报, 1990,6(2):1-6.
    [16] BECHERT D W, BRUSE M, HAGE W. Experiments with there-dimensional ribblets as anidealized model of shark skin[M]. Berlin: Springer-Verlag, 2000.
    [17] BECHERT D W, HOPPE G. On the drag reduction of the shark skin[C]. AIAA Shear Flow Control Conference, AIAA-85-0546, 1985.
    [18] REIF W E, DINKELACKER A. Hydrodynamics of the squamation in fast swimming sharks[J]. Heues Jahrbuch fur Geologie und Palaontologie Abhandlungen,1982,164:184-187.
    [19]周仲荣,雷源忠,张嗣伟.摩擦学发展前沿[M].北京:科学出版社, 2006.
    [20] LUQUAN REN, ZHIWU HAN, JIANQIAO LI, JIN TONG. Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil[J]. Journal of Terramechanics, 2003,(39):221-230.
    [21]李安琪,任露泉,陈秉聪,崔相旭.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报, 1990,6(3):8-14.
    [22]崔相旭,任露泉.穿山甲鳞片成分与结构及其减粘脱土分析[J].农业工程学报, 1990,6(3):15-22.
    [23]丛茜,王连成,任露泉,王志中,李安琪.鳞片形非光滑表面的仿生设计[J].吉林工业大学学报, 1998,28(2):12-17.
    [24]韩志武,崔占荣,任露泉,李建桥,佟金.非光滑仿生曲面形推土铲推土阻力试验研究[J].农业机械学报, 2002,33(2):125-126.
    [25]丛茜,王连成,任露泉,陈秉聪,周淑辉,李安琪.波纹非光滑仿生推土板的减粘降阻的试验研究[J].建筑机械, 1996,(3):28-30.
    [26]任露泉,丛茜,吴连奎,方瑛.仿生非光滑推土板减粘降阻的试验研究[J].农业机械学报, 1997,28(2):1-5.
    [27]任露泉,佟金,李建桥,陈秉聪.松软地面机械仿生理论与技术[J].农业机械学报, 2000,31(1):5-9
    [28]武海涛,吕宪国,杨青,姜明.土壤动物主要生态特征与生态功能研究进展[J].土壤学报, 2006,43(2):314-323.
    [29]忻介六.土壤动物知识[M].北京:科学出版社, 1986.
    [30]青木淳一.土壤动物学[M].东京:北隆馆, 1973.
    [31]殷秀琴等.东北森林土壤动物研究[M].长春:东北师范大学出版社, 2001.
    [32]尹文英等.中国土壤动物[M].北京:科学出版社, 2000.
    [33] EILEEN J K. Tillage systems and soil ecology[J]. Soil & Tillage Research , 2001,61:61-76.
    [34] RAIJA L , NIKO S , HéCTOR C. Effects of water level and nutrients on spatial distribution of soil mesofauna in peatlands drained for forestry in Finland[J]. Applied Soil Ecology, 2001,16:1-9.
    [35] SARR M, AGBOGBAA C , RUSSELL SMITH A , et al. Effects of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal[J]. Applied Soil Ecology, 2001,16:283-290.
    [36] LEE K E. Earthworms : Their Ecology and Relationships with Soil and Land Use.Sydney[M]. Academic Press, 1985.
    [37]任露泉,徐晓波,陈秉聪等.典型土壤动物爪趾形态的初步分析[J].农业机械学报, 1990(2):44-49.
    [38]吉尔W.R.,范德伯奇G.E..耕作和牵引土壤动力学[M].北京:中国农业机械出版社, 1983.
    [39]佟金,马云海,任露泉.天然生物材料及其摩擦学[J].摩擦学学报, 2001,21(4):315-320.
    [40]丛茜,李安琪.几何非光滑生物体表形态的分类学研究[J].农业工程学报, 1992,8(2):7-12.
    [41]荣宝军.耐磨仿生几何结构表面及其土壤磨料磨损[D].长春:吉林大学,2008.
    [42] MILLER TA. Review of Physiological Systems in Insects[C], Marc J. Klowden, Academic Press, San Diego, CA, 2002.
    [43] MORDUE W, GOLDSWORTHY GJ, BRADY J, BLANEY WM. Insect physiology[M]. Blackwell scientific publications, 1980.
    [44] RICHARDS OW, DAVIES RG. Imms’General Textbook of Entomology[M], 1977.
    [45] RICHARDS AG. The chemistry of insect cuticle. In: Rockstein M. editor, Biochemistry of insects[C]. New York: Academic Press, 1978,p205-232.
    [46] http://www.cals.ncsu.edu:8050/course/ent425/tutorial/integ.html.
    [47] ANDERSEN SO, PETER MG, ROEPSTORFF P. Cuticular sclerotization in insects[J]. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 1996,113B:689-705.
    [48] BARTH FG. Microfiber reinforcement of an arthropod cuticle. Laminated composite material in biology[J]. Z Zellforsch Mikrosk Anat, 1973,144(3):409-433.
    [49] NEVILLE AC. Biology of the arthropod cuticle[M]. Berlin: Springer- Verlag, 1975.
    [50] VINCENT JFV. Insect cuticle- a paradigm for natural composites[J]. Symposia of the Societyfor ExperimentalBiology, 1980,34(2):183-210.
    [51] LOWENSTAM HA. Biominerals[J]. Science, 1981,211:1126-1131.
    [52] CHAPMAN RF. The insects, structure and function[C], Harvard University Press, Cambridge, Mass. 1998, 4thEd, p415-438.
    [53] HILLERTON JE, VINCENT JFV. The specific location of zinc in insect mandibles[J]. Journalof Experimental Biology, 1982,101(1):333-336.
    [54] SCHOFIELD RMS, NESSON MH, RICHARDSON KA. Zinc is incorporated into cuticular "tools" after ecdysis: The time course of the zinc distribution in "tools" andwhole bodies of an ant and a scorpion[J]. Journal of Insect Physiology, 2003,49(1):31-44.
    [55] EDWARDS AJ, FAWKE JD, MCCLEMENTS JG, SMITH SA, WYETH P. Correlation of zinc distribution and enhanced hardness in the mandibular cuticle of the leaf-cutting ant Atta sexdens rubropilosa[J]. Cell Biology International, 1993,17(7):697-698.
    [56] ROBERTSON B, HILLERTON JE, VINCENT JFV. The presence of zinc or manganese as the predominant metal in the mandibles of adult stored product beetles[J]. Journal of Stored Products Research, 1984,20(3):133-137.
    [57] FAWKE JD, MCCLEMENTS JG, WYETH P. Cuticular metals—quantification and mapping by complementary techniques[J]. Cell Biology International, 1997,21(10):675-678.
    [58] QUICKE DLJ, WYETH P, FAWKE JD, BASIBUYUK HH, VINCENT JFV. Manganese and zinc in the ovipositors and mandibles of hymenopterous insects[J]. Zoological Journal of the Linnean Society, 1998,124(4):387-396.
    [59] ROBERT MSS, MICHAEL HN, KATHLEEN AR. Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants[J]. Naturwissenschaften, 2002,89(12):579-583.
    [60]任露泉,张建伟,陈秉聪,齐宝山.仿生挠性铲斗减粘脱土的研究[J].农业机械学报, 1990,21(4):33-39.
    [61]孙世元,任露泉,佟金等.仿生钢布兜式铲斗的研究[J].农业机械学报, 1993,24(4):18-22.
    [62]郭志军,邓志强,陈海燕.仿生挖掘斗-土壤接触二维有限元分析[J].建筑机械,2007,5:74-77.
    [63]李建桥,任露泉,刘朝宗,陈秉聪.减粘降阻仿生犁壁的研究[J].农业机械学报, 1996,27(2):1-4.
    [64] REN LUQUAN, TONG JIN, ZHANG SHUJUN,CHEN BINGCONG. Reducing sliding resistance of soil against bulldozing plates by un-smoothed bionics surfaces[J]. Journal of Terra mechanics, 1995,32(6):303-309.
    [65] REN LUQUAN, TONG JIN, CONG QIAN. Unsmooth cuticles of soil animals and their characteristics of reducing adhesion and resistance [J]. Sciences Bulletin, 1998,43:166-169.
    [66] TONG JIN, SUN JIYU, CHEN DONGHUI, ZHANG SHUJUN. Geometrical features and wettability of dung beetle and potential biomimetic engineering applicationin tillage implements[J]. Soil&Tillage Research. 2005,80(1):1-12.
    [67]蔡柏岐,牛瑶.我国三种蝼蛄的雄性生殖器鉴别[J].昆虫知识, 2002,39(2):152-153.
    [68]何忠.非洲蝼蛄的鸣声结构及声引诱[J].动物学报, 1989,35(1):73-81.
    [69]何忠.蝼蛄的声学通讯[J].生物学通报, 1995,30(12):6-7.
    [70]康乐.我国的“非洲蝼蛄”应为“东方蝼蛄”[J].昆虫知识. 1993,30(2):124-127.
    [71] ZHANG SHUJUN, TONG JIN, HAPESHI KEVIN, CHEN DONGHUI. Optimising body layout design of limbed machines[J]. Jourual of Bionic Engineering, 2007,4:117-122.
    [72]齐艳红.长春市主要绿地类型土壤动物的生态地理特征研究[D].长春:东北师范大学,2005.
    [73]许智钦,孙长库. 3D逆向工程技术[M].北京:中国计量出版社出版,2002.
    [74]于喆,赵敏. Imageware优秀的逆向工程软件[J].计算机辅助设计与制造, 2000, 9:13-15.
    [75]范光照,章明,姚宏宗,许智钦.逆向工程技术及应用[M].台北:高立图书有限公司, 1988.
    [76]姜元庆,刘佩军.UG/Imageware逆向工程培训教程[M].北京:清华大学出版社, 2003.
    [77] M.A. ARBOS, J.M. FERRANDO, M.T. QUILES, et al.. Improved surgical mesh integration into the rat abdominal wall with arginine administration[J]. Biomaterials, 2006,(27):758-768.
    [78]李江雄.复杂曲面反求工程CAD建模技术研究[D].杭州:浙江大学,1998.
    [79] ALAN C LIN,SHOU-YEE LIN. Computer-aided Model Engraving: From Point-data Smoothing Machining To Accuracy Checking[C]. Journal of Material Processing Technology ,1999.
    [80]朱心雄.自由曲线曲面造型技术[M].北京:科学技术出版社,2000.
    [81] J.KIDD. On the anatomy of the mole-cricket[J]. Philosophical transactions of the royal society of London. 1825,115:203-246.
    [82]高吭.蝗虫后足的结构形态仿生信息采集及生物力学测试[D].长春:吉林大学,2006.
    [83]刘钦圣,张晓丹,王兵团.数值方法教程[M].北京:冶金工业出版社,1998.
    [84]施新泉.原来如此——千姿万态的动物[M].上海:上海科学技术文献出版社,2005.
    [85] DANG J. Useless Facts [J/OL]: http://www.ldcsb.on.ca/schools/jp2/news paper/Christmas2003.pdf, 2006.
    [86]孙霁宇.臭蜣螂表皮纳米力学测试方法和纳米力学行为[D].长春:吉林大学,2005.
    [87]程红,孙久荣,李建桥,任露泉.臭蜣螂体壁表面结构及其与减粘脱附功能的关系[J].昆虫学报, 2002,45(2):175-181.
    [88]张金.三种昆虫膜翅结构仿生模型与纳米力学[D].长春:吉林大学,2008.
    [89]孙久荣,郭策,程红等.蜣螂与壁虎刚毛的比较及改形对其功能的影响[J].动物学报, 2005,51(4):761-767.
    [90] JUST S, GRONENBERG W. The control of mandible movements in the ant Odontomachus[J]. Journal of Insect Physiology, 1999,45(3):231-240.
    [91] PAUL J. Mandible movements in ants[J]. Comparative Biochemistry and Physiology, Part A, 2001,131(1):7-20.
    [92]朱凤武.金龟子形态分析及深松耕作部件仿生设计[D].长春:吉林大学,2005.
    [93] SCHMIDT J, KLEFFMANN T, SCHAUB GA. Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans[J]. Parasitol Research, 1998,84(7):527-536.
    [94] HEPBURN HR. Structure of the integument. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Ed Kerkut G A, et al.), Vol. 3: Integument[C], Respiration and Circulation. Pergamon Press. 1985, p1-58.
    [95] WIGGLESWORTHVB. Principles of Insect Physiology[C], Chapman& Hall. 1972, 7thed, p27.
    [96] VINCENT JFV. Arthropod cuticle:a natural composite shell system[J]. Composites: Part A, 2002,33(10):1311-1315.
    [97]程红,陈茂生,孙久荣.臭蜣螂体壁的组织结构[J].昆虫学报,2003,46(4):429-435.
    [98] GAO X F, JIANG L. Biophysics: Water-repellent legs of water striders[J]. Nature, 2004,432:36.
    [99] C. NEINHUIS and W. BARTHLOTT. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany. 1997,79(6): 667-677
    [100] HERMINGHAUS S. Roughness-induced non-wetting[J]. Europhysics Letters, 2000,52(2):165-170.
    [101]杨晓东,尚广瑞,李雨田,宣明.植物叶表的润湿性能与其表面微观形貌的关系[J].东北师大学报(自然科学版), 2006,38(3):91-95.
    [102]谢存毅.纳米力学测试技术及其应用[C].中国力学学会学术大会,2005.
    [103] BOUSSINESQ J. Applications des potentiels a l’etude de l’equilibre et du movement des solids elastiques[C]. Paris: Gauthier-Villars,1885.
    [104] DOERNER MF, NIX WD. A method of interpreting the data from the depth-sensing indentation instruments[J]. Journal of Materials Research, 1986,1(4):601-609.
    [105] PHARR GM, OLIVER WC, BROTZEN FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation[J]. Journal of Materials Research, 1992,7(3):613-617.
    [106] VANLANDINGHMA MR. Review of instrumented indentation[J]. Journal of research of the national institute of standards and technology, 2003, 108(4):249-265.
    [107] HAY JC, PHARR GM. Experimental investigations of the sneddon solution and an improved solution for the analysis of nanoindentation data. Materials Research Society Symposium– Proceedings[C]. v522, Fundamentals of Nanoindentation and Nanotribology, 1998, p39-44.
    [108] OLIVER WC, PHARR GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Material Research, 2004,19(1):3-20.
    [109] OLIVER WC, PHARR GM. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992,7(6):1564-1580.
    [110] LI XD, BHUSHAN B. A review of nanoindentation continuous stiffness measurement technique and its applications[J]. Materials Characterization, 2002,48(1):11-36.
    [111] TABOR D. The Hardness of Metals[M]. New York:Oxford University Press,1951.
    [112] GREENWOOD JA, WILLIAMSON JBP. Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A[J]. Mathematical and Physical Sciences, 1966,295(1442):300-319.
    [113] BELL TJ, FIELD JS, SWAIN MV. Elastic-plastic characterization of thin films with spherical indentation[J]. Thin Solid Films, 1992,220(1-2):289-294.
    [114] KING RB. Elastic analysis of some punches problems for a layered medium[J]. International Journal of Solids Structure, 1987,23(12):1657-1664.
    [115] SNEDDON IN. The relation between load and penetration in the axisymmetric Boussinesq' problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965,3(1):47-57.
    [116] Hysitron Inc. TriboIndenter Users Mannual[M].2001, p98-102.
    [117] Image. Hysitron[EB/OL]:http://www.hysitron.com, 2001.
    [118] Image. Machines[EB/OL]:http://www.nanoindentation.cornell.edu/Machine/Nanoindentation-Machine.htm, 2003.
    [119] DOERNER MF, NIX WD. A method of interpreting the data from the depth-sensing indentation instruments[J]. Journal of Materials Research. 1986,1(4):601-609.
    [120]杨迪,李福欣.显微硬度试验[M].北京:中国计量出版社出版, 1988.
    [121] SCHERGE M, GORB SS. Biological micro- and nanotribology: nature’s solutions[C]. Springer-Verlag Berlin Heidelberg, 2001,p122.
    [122]马和中.生物力学导论[M].北京:北京航空学院出版社出版, 1986.
    [123] ENDERS S, BARBAKADSE N, GORB SN, ARZT E. Exploring biological surfaces by nanoindentation[J]. Journal of Materials Research, 2004,19(3):880-887.
    [124]郭颖杰.哺乳动物角蛋白材料力学及摩擦学行为研究[D].长春:吉林大学,2005.
    [125]张洪伟,张以都,王锡平,周慎杰.基于ANSYS参数化建模的农用车车架优化设计[J].农业机械学报, 2007,38(03):35-38.
    [126]朱伟,马履中,吴伟光,陈修祥.基于三平移并联机构的三维减振平台建模与仿真[J].农业机械学报, 2008,39(01):142-146.
    [127]张毅,王笑风,杨东来.触土部件仿生优化设计应用研究[J].筑路机械与施工机械化, 2007(5):43-47.
    [128]王泽鹏,高峰,薛风先.斜交轮胎三维有限元建模及应力分析[J].农业机械学报, 2007,38(5):43-46,65.
    [129] (美)BUCHANAN, G.R.董文军,谢伟松译.有限元分析[M].北京:科学出版社,2002.
    [130] CHRISTOPHER A. CHUNG. Simulation modeling handbook:a practical approach[Z]. CRC PRESS, 2004
    [131] F. CUCKER. Special Volume Foundations of Computational Mathematics[M]. Elsevier, 2003.
    [132] L. L. FAULKNER. Boundary:Methods,Elements, Contours, and Nodes[M].Taylor & Francis Group, LLC,2005.
    [133] DUC THAI NGUYEN. FINITE ELEMENT METHODS: Parallel-Sparse Statics and Eigen-Solutions[M]. Springe, 2006.
    [134] REDDY, J. N. Introduction To The Finite Element Method[M]. McGraw-Hill College,2005.
    [135]李庆扬.数值分析基础教程[M].北京:高等教育出版社,2004.
    [136] SAEEDMOAVENI,王崧译.有限元分析?ANSYS理论与应用[M].北京:电子工业出版社,2005.
    [137]张波,盛和太. ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社,2005.
    [138]赵均海.弹性力学及有限元[M].武汉:武汉理工大学出版社,2003.
    [139]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005.
    [140]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003.
    [141]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [142]邓凡平. ANSYS有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [143]刘涛.精通ANSYS[M].北京:清华大学出版社,2004.
    [144] Dr. A YOXALL. Department of Mechanical Engineering. Ansys User Guide [DB/OL].ANSYS Inc. 2005.
    [145]陈精一. ANSYS工程分析实例教程[M].北京:中国铁道出版社,2007.
    [146] ANSYS Modeling and Meshing Guide (ANSYS Release 9.0)[DB/CD]. ANSYS,2004.
    [147]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [148]范钦珊.工程力学[M].北京:机械工业出版社, 2007.
    [149]尚晓江,邱峰,赵海峰等. ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2007.
    [150]李兵,何正嘉,陈雪峰. ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社,2008.
    [151]郭日修.弹性力学与张量分析[M].北京:高等教育出版社,2003.
    [152]张如一,陆耀桢.实验应力分析[M].北京:机械工业出版社, 1981.
    [153]液压挖掘机斗齿分类.中华人民共和国建筑工业行业标准. JG/T 90-1999[S].北京:中国标准出版社,1999.
    [154] Autodesk Inventor Professional 2008 help. chm. [DB/CD]. Autodesk, 2008.
    [155]冯德富.工厂实用在线检测技术[M].北京:国防工业出版社,2007.
    [156]刘伟军等.快速成型技术及应用/现代加工技术丛书[M].北京:机械工业出版社,2005.
    [157]许述财,张立君,李建桥,杨志强.拉压型传感器静态性能虚拟标定系统[J].试验技术与试验机, 2005,45(4):23-26.
    [158]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [159]李法虎.土壤物理化学[M].北京:化学工业出版社,2006.
    [160]奚廷孔,张艳新.土壤样品的采集和处理技术[J].广西农业学报, 2007,22(3):36-37.
    [161]何迅,巩细民.土壤样品的采集与制备技术[J].湖北农业科学, 2003(3):47-48.
    [162]孙向阳.土壤学[M].北京:中国林业出版社,2005.
    [163]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [164]梁春光,庄严.工程力学[M].北京:北京理工大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700