用户名: 密码: 验证码:
施氏矿物的生物合成及去除水中砷的效果与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,起源于生物湿法冶金的生物沥浸(Bioleaching)技术被成功应用于城市污泥中有毒重金属的脱除。氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)和氧化硫硫杆菌(Acidithiobacillus thiooxidans)是生物沥浸中最为重要的两个微生物菌种。但在有氧化亚铁硫杆菌参与的污泥生物沥浸处理中,很多学者观察到铬溶出效率较低,铜的溶出与平均水力停留时间也并不呈显著相关关系。还有一些研究者发现污泥中铬和铁的生物沥浸远远不及化学浸提法的效率高,城市污泥中生物沥浸出来的铜还有随沥浸时间延长而再次减少的现象。有学者猜测该体系中形成了次生铁矿物—氢氧化铁和黄铁矾,并推测是由于这些次生铁矿物的吸附作用,导致了上述重金属生物沥浸效率不高。最近几年来,本课题组对制革污泥生物沥浸及溶出铬的回收开展了一系列卓有成效的研究。在利用以氧化亚铁硫杆菌菌株Acidithiobacillus ferrooxidans LX5和氧化硫硫杆菌Acidithiobacillus thiooxidans TS6为主的复合菌群进行制革污泥生物沥浸中试规模实验中,本文首次从制革污泥生物沥浸体系分离出次生铁矿物,并鉴定出这些铁矿物并非由以往许多学者所猜测的氢氧化铁和黄铁矾所组成,而是单一的次生羟基硫酸高铁矿物—施氏矿物(schwertmannite)。受污泥生物沥浸过程生成大量施氏矿物现象的启发,本研究模拟污泥生物沥浸反应条件,利用分离纯化的Acidithiobacillus ferrooxidans LX5菌株氧化FeSO_4溶液进行了施氏矿物的生物合成实验,优化了合成反应条件。并对生物成因施氏矿物的稳定性或相变规律进行了探讨。最后,本文重点研究了生物合成的施氏矿物对模拟地下水环境中As(Ⅲ)的去除效果及去除机理。主要研究结果如下:
     将pH约为3的制革污泥生物沥浸滤液(富含水溶性有机物和Fe~(2+)、Cr~(3+)、SO_4~(2-)及氧化亚铁硫杆菌)置于28℃、180rpm摇床中培养40 h,即有大量赭黄色沉淀生成。沉淀物经X-射线衍射(XRD)和傅立叶转换红外光谱(FT-IR)技术鉴定为纯施氏矿物。扫描电镜(SEM)及X—射线能谱(EDS)分析表明该施氏矿物为直径1μm的球形颗粒,其化学组成可表示为Fe_8O_8(OH)_(4.60)(SO_4)_(1.70),且矿物从污泥沥浸液中吸持了含量高达2.43%、已从污泥中沥浸溶出的三价铬。与氧化亚铁硫杆菌促进形成的矿山酸性废水及其影响下的水体或沉积物环境中多形成施氏矿物-黄铁矾-针铁矿-水铁矿等次生矿物共生体不同的是,污泥生物沥浸体系中仅仅形成唯一一种次生铁矿物—施氏矿物,其中原因应归结于污泥中高浓度的水溶性有机物(>300mg C/L)、较短的反应时间(~40 h)及低pH、高含量SO_4~(2-)的存在。
     利用氧化亚铁硫杆菌氧化FeSO_4溶液可简便、大量地合成纯施氏矿物。最优化的反应条件是:加入的细菌密度为1×10~7cells/mL,起始Fe~(2+)(以FeSO_4·7H_2O为铁源)浓度为8-12g/L,起始pH 3.2左右(不滴加任何酸碱溶液),在28℃、180rpm摇床中反应48-60 h。合成产物为直径约2μm、表面无明显毛刺的球状施氏矿物,其化学组成为Fe_8O_8(OH)_(4.42)(SO_4)_(1.79)。合成反应中铁的沉淀率为37.43%。
     将生物成因施氏矿物及吸附了As(Ⅲ)的施氏矿物按质量浓度为1g/L加入到去离子水中,以稀氢氧化钠调节矿物悬浮液pH为6.0或8.5,置于恒温恒湿培养箱中并定期振荡考察了矿物的稳定性或矿相变化情况。结果表明,生物成因施氏矿物及吸附了As(Ⅲ)的施氏矿物较文献报道的利用化学方法合成施氏矿物或矿山环境中自然形成的施氏矿物更为稳定,在pH 6和pH 8.5的环境中90天内其矿相均未发生任何变化。
     采用序批式吸附试验研究了施氏矿物对As(Ⅲ)的去除效果及去除机理。结果表明:施氏矿物对As(Ⅲ)有很强的吸附能力,且吸附速度快,在60min内即可达到平衡吸附容量的95%,施氏矿物对As(Ⅲ)的吸附去除过程符合Lagergren拟二级速率方程。在pH 7-10时,施氏矿物对As(Ⅲ)有最大吸附;溶液离子强度和竞争阴离子如Cl~-、NO_3~-及一定浓度的SO_4~(2-)(<0.01M)和PO_4~(3-)(<0.001M)对除砷效果基本无影响。采用Langmuir吸附等温线能很好地描述施氏矿物吸附As(Ⅲ)的过程(R~2>0.99),室温下饱和吸附容量达113.9mg/g;As(Ⅲ)在施氏矿物上的吸附能自发进行,该过程吸热,但温度变化对吸附容量影响并不显著。吸附As(Ⅲ)后,施氏矿物的PH_(pzc)由5.4下降为4.3。红外光谱分析结果表明As(Ⅲ)与施氏矿物表面的羟基发生了直接的表面络合。As(Ⅲ)在施氏矿物上的吸附属于专性吸附,形成内层络合物,吸附机理包括As(Ⅲ)与矿物表面金属羟基的表面络合、As(Ⅲ)与矿物表面及隧道结构内SO_4~(2-)的配位体交换作用。
     全文研究表明,污泥生物沥浸过程仅形成矿相单一的次生矿物—施氏矿物。模拟污泥生物沥浸反应条件,利用氧化氧化亚铁硫杆菌和硫酸亚铁能大量、简易地合成施氏矿物。该生物成因施氏矿物稳定性高,对As(Ⅲ)的专性吸附是通过表面络合和配位体交换作用实现的。作为一种优质吸附材料,施氏矿物在砷污染地下水的深度净化上可发挥重要作用。
During the last decade,the bioleaching technique,originated from biohydrometallurgy industry for extracting rare metals from sulfide minerals,has been successfully applied in municipal sludge treatment for removal of toxic heavy metals and proved to be an efficient and cost-effective alternative to physical or chemical technologies.Acidithiobacillus ferrooxidans(A.ferrooxidans) and Acidithiobacillus thiooxidans(A.thiooxidans) have been employed as the most significant microorganisms involved in bioleaching processes. However,it was observed that Cr could not be effectively solubilized and Cu solubilization was weakly correlated to mean hydraulic residence time in sewage sludge bioleaching experiments with inoculation of Acidithiobacillus ferrooxidans.Some researchers also reported that the bioleaching efficiencies of Cr and/or Fe were much lower than corresponding values in the chemical leaching process,and even that the solubilized Cu from sludge decreased again if the bioleaching time prolonged in the medium with pH ranged from 2 to 3.Some researchers hypothesized that secondary iron minerals including iron hydroxide and jarosite likely formed in sludge during bioleaching process,and that the adsorption of heavy metals on these secondary iron minerals resulted in the above-mentioned lower solubilization efficiencies.In recent years,the application of bioleaching approach in tannery sludge treatment in terms of the removal or recovery of Cr, a dominant toxic metal in tannery sludge,has been studied extensively by our research group.In the present work,the secondary iron mineral was separated for the first time from bioleached tannery sludge when sludge bioleaching experiments were performed in an air-lift bioreactor mainly by Acidithiobacillus ferrooxidans LX5 and Acidithiobacillus thiooxidans TS6 at pilot scale.The secondary iron mineral was identified to be a sole secondary hydroxyl iron sulfate mineral—schwertmannite,but not a mixture of ferric hydroxide and jarosite as hypothesized in earlier studies.Enlightened by the formation of schwertmannite in sludge during bioleaching in the bioreactor,synthesis of schwertmannite through oxidation of FeSO_4 by Acidithiobacillus ferrooxidans strains(i.e.A.ferrooxidans LX5) was studied systematically and the synthesis conditions were optimized.Furthermore, the stability or phase transformation of the biogenic schwertmannite was investigated. Moreover,the removal of As(Ⅲ) in aqueous medium by schwertmannite was studied extensively.The main results were presented as follows:
     The bioleached tannery sludge filtrate with pH~3 was rich in dissolved organic matter (DOM),Fe~(2+),Cr~(3+),SO_4~(2-) and A.ferrooxidans LX5.A large amount of ocherous precipitate was formed in the filtrate within 40 h during the sludge filtrate was incubated in a gyratory shaker at 28℃and 180rpm.The ocherous precipitate was identified as pure schwertmannite by X-ray diffraction(XRD) and Fourier transform infrared(FT-IR) spectroscopy.Results of scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis showed that the schwertmannite particles were spheroids of uniform size with a diameter of approximately 1μm and their chemical composition could be expressed as Fe_8O_8(OH)_(4.60)(SO_4)_(1.70),but Cr(Ⅲ) that had already solubilized from sludge by bioleaching incorporated into schwertmannite was about 2.43% by weight.It has well been accepted that the generation of acid mine drainage(AMD) is closely linked to the effects of Acidithiobacillus ferrooxidans and a schwertmannite-jarosite-goethite mineral paragenesis always occurs in AMD and waters or sediments impacted by AMD.However,there is only a sole secondary iron mineral(i.e. schwertmannite) formed in sludge bioleaching system.The presence of schwertmannite as monominerallic phase in sludge bioleaching environment should be predominantly attributed to extremely high content of DOM(>300 mg C/L),short reaction time(<40 h), high sulfate concentration(~9000 mg/L) and low pH value in this system.
     Biosynthesis of pure schwertmannite with a large quantity could be easily achieved through oxidation of FeSO_4 solution mediated by A.ferrooxidans LX5 resting cells.The yield of schwertmannite was affected mainly by bacterial density,the starting pH of reaction solution and reaction time,etc.The optimized reaction conditions were:1×10~7cells/mL of bacterial density,8-12 g/L of the initial concentration of Fe~(2+)(added as FeSO_4·7H_2O),about 3.2 of the starting pH(without addition of any acid or base solution) was incubated in gyratory shaker at 28℃and 180rpm for 48-60 hours.The biosynthesized product was spherical schwertmannite of uniform size with a diameter of about 2μm, having no obvious characteristic pin-cushion morphology,and its chemical composition could be expressed as Fe_8O_8(OH)_(4.42)(SO_4)_(1.79).The precipitation rate of iron in the course of synthesis reaction was 37.43%.
     The stability and phase transformation of the biogenic schwertmannite and As(Ⅲ)-containing schwertmannite were investigated in the present work.The synthetic schwertmannite suspension(1 g/L of mass concentration) was allowed to stand at 25℃in a incubator with occasional shaking.The solids sampled from the schwertmannite suspension were analyzed for mineralogical composition.Experimental results showed that the biogenic schwertmannite and As(Ⅲ)-containing schwertmannite were more stable than those synthesized by chemical method or naturally formed in acid mine drainage,as indicating that no any phase transformation occurred at pH 6 and pH 8.5 environments over a period of 90 days.
     Batch adsorption experiments were conducted to explore the adsorption process and related mechanism of As(Ⅲ) from aqueous solution on synthetic biogenic schwertmannite. Results indicated that biogenic schwertmannite has a strong adsorption for As(Ⅲ) and the adsorption capacity attained to almost 95%of equilibrium capacity within the first 60 minutes.The adsorption kinetic data could be described by the Lagergren pseudo-second order rate equation.Arsenite elimination was favored at pH=7-10.The changes of solution ionic strength(0.0001-0.1M) and the normally presented anions in natural environment had no obvious side effect on arsenite removal efficiency by schwertmannite except for phosphate(>0.001M) and sulfate with a concentration of above 0.01M.Adsorption isotherm data for As(Ⅲ) was found to fit well to Langmuir isotherm equation(R~2>0.99) with a maximum adsorption capacities of 114 mg/g at room temperature.The adsorption of arsenite on schwertmannite could be achieved spontaneously and it was a endothermic process,but temperature changes within experiment range had no significant impact on the adsorption capacity.The pH_(pzc)(pH of the point of zero charge) for schwertmannite was found to be initially 5.4,but when As(Ⅲ) was adsorbed,it decreased from this value to about 4.3.Moreover,FT-IR analysis results suggested that direct surface complexation between surface OH groups and As(Ⅲ) occurred.It was concluded that As(Ⅲ) was specially adsorbed onto schwertmannite by an inner-sphere mechanism through surface complexing action between surface hydroxyl and As(Ⅲ) and by ligand exchange between SO_4~(2-) and As(Ⅲ).
     It was concluded that synthesis biogenic schwertmannite with large quantity could be easily achieved through oxidation of FeSO_4 by A.ferrooxidans LX5 simulating the sludge bioleaching reaction conditions.Arsenite in aqueous solution can be specifically adsorbed onto the biogenic schwertmannite.It was indicated that biogenic schwertmannite,as a potentially excellent adsorbent,would play an important role in treatment of arsenic-contaminated groundwater in terms of arsenite removal.
引文
Accomero, M., Marini, L., Ottonello, G., et al. The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine are mixed with stream waters. Appl Geochem. 2005, 20,1368-1390.
    Balaji, T., Yokoyama, T., Matsunaga, H. Adsorption and removal of As(V) and As(III) using Zr-loaded lysine diacetic acid chelating resin. Chemosphere. 2005, 59, 169-1174.
    Bang, S., Patel, M., Lippincott, L., et al. Removal of arsenic from groundwater by granular titanium dioxide absorbent. Chemosphere. 2005, 60, 389-397.
    Barham, R.J. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate. J. Mater. Res. 1997, 12, 2751-2758.
    Bigham, J.M., Carlson, L., Murad, E. Schwertmannite, a new iron oxyhydroxysulfate from pyhasalmi, Finland,and other localities. Mineral Mag. 1994, 58, 641-648.
    Bigham, J.M., Schwertmann, U., Carlson, L. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe( II) in acid mine waters. Geochim Cosmochim Acta. 1990, 54, 2743-2758.
    Bigham, J.M., Schwertmann, U., Pfab, G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl. Geochem. 1996a. 11, 845-849.
    Bigham, J.M., Schwertmann, U., Traina, S.J., et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta. 1996b, 60, 2111-2121.
    Blais, J.F., Tyagi, R.D., Auclair, J.C., et al. Comparison of acid and microbial leaching for metal removal from municipal sludge. Water Sci. Technol. 1992, 26,197-206.
    Bosecker, K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591-604.
    Brierley, C.L. Bacterial succession in bioheap leaching. Hydrometallurg. 2001, 59, 249-255.
    Bromebacher, C., Bachofen, R., Brandle, H. Biohydrometallurgical processing of solids: a patent review. Appl. Microbiol. Biotechnol. 1997, 48, 577-587.
    Casiot, C., Lebrun, S., Morin, G., et al. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci. Total Environ. 2005, 347, 122-130.
    Chakraborty, A.K., Saha, K.C. Arensic dermatosis from tubwell water in west Bengal Indian. J. Medical Res. 1987, 85, 326-334.
    Chen, S.Y., Lin, J.G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Res. 2004, 38, 3205-3214.
    Childs, C.W., Inoue, K., Mizota, C. Natural and anthropogenic schwertmannite from Towada-Hachimantai National park, Honshu, Japan. Chem. Geolog. 1998, 144, 81-86.
    Colmer, A.R., Temple, K.L., Hinkle, M.E. An iron-oxidation bacterium from the acid drainage of some bituminous coal mines. J. Bacteriol, 1950,166, 317-328.
    Courtin-Nomade, A., Grosbois, C., Bril, H., et al. Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl. Geochem. 2005, 20, 383-396.
    Dinelli, E., Lucchini, F., Fabbri, M., et al. Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy). J. Geochem. Explor 2001,74,141-152.
    Dold, B. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Appl. Geochem. 2003, 18,1531-1540.
    Dold, B., Fontbote, L. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposites from the Punta del Cobre belt, northern Chile. Chem. Geolog. 2002, 189, 135-163.
    Espana, J.S., Pamo, E.L., Santofimia, E., et al. Acid mine drainage in the Iberian Pyrite Belt: Geochemistry, mineralogy and environmental implications. Appl. Geochem. 2005, 20, 1320-1357.
    Evangelou, V.P., Zhang, Y.L. A review: pyrite oxidation mechanisms and acid mine drainage prevention. Critical. Reviews in Environ. Sci. Technol. 1995, 25, 141-199.
    Fukushi, K., Sasaki, M., Sato, T., et al. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl. Geochem. 2003, 18 , 1267-1278.
    Gagliano, W.B., Brill, M.R., Bigham, J.M., et al. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim. Cosmochim. Acta. 2004, 68, 2119-2128.
    Jeffer, A.L., Robert, F.S., Chirstopher, T.D. Environmental toxicants. New York: National Academies Press. 1993. 77.
    Jekel, M.R. Removal of arsenic in drinking water treatment in. Nriagu J O. Arsenic in the environment. NewYork: John Wiley & Sons Inc. 1994.
    Jensen, A.B., Webb, C. Ferrous sulfate oxidation using Thiobacillus ferrooxidans: A review. Process Biochem. 1995,30,225-236.
    Johnson, D.B., Hallberg, K.B. The microbiology of acidic mine waters. Res. Microbiol. 2003, 154, 466-473.
    Jonsson, J., Jonsson J., Lovgren, L. Precipitation of secondary Fe(III) minerals from acid mine drainage. Appl. Geochem. 2006, 21, 437-445.
    Jonsson, J., Persson, P., Sjoberg, S., et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulfate release and surface properties. Appl. Geochem. 2005,20, 179-191.
    Karim, M.D.M. Arsenic in groundwater and health problems in Bangladesh. Water Res. 2000, 34, 304-310.
    Katsoyiannis, I., Zouboulis, A., Althoff, H., et al. As(III) removal from groundwaters using fixed-bead upflow bioreactors. Chemosphere. 2002,47, 325-332.
    Kawano, M., Tomita, K. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am. Mineral. 2001, 86,1156-1165.
    Kim, J.J., Kim, S.J., Tazaki, K. Mineralogical characterization of microbial ferrihydrate and schwertmannite, and non-biogennic Al-sulfate precipitates from acid mine drainage in the Donghae mine area, Korea. Environ Geolog. 2002,42, 19-31.
    Kim, J.Y., Chon, H.T. Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea. Appl. Geochem. 2001, 16, 1387-1396.
    Kirby, C.S., Thomas, H.M., Southam, G., et al. Relative contributions of abiotic and biological factors in Fe (II) oxidation in mine drainage. Appl. Geochem. 1999, 14, 511-530.
    Lee, J.S., Chon, H.T. Hydrogeochemical characteristics of acid mine drainage in the vicinity of an abandoned mine, Daduk Creek, Korea. J. Geochem. Explor. 2005, 31,1-4.
    Loan, M., Richmond, W.R., Parkinson, G.M. On the crystal growth of nanoscale schwertmannite. J. Crystal Growth. 2005, 275, el875-el881.
    Lombardi, A.T., Garcia, Jr. An evaluation into the potential of biological processing for the removal of metals from sewage sludge. Critical Rev. Microbiol. 1999, 25, 275-288.
    Majzlan, J., Navrotsky, A., Schwertmann, U. Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)_3), schwertmannite (FeO(OH)_3/_4(SO_4)_(1/8), and Fe_2O_3. Geochim. Cosmochim. Acta. 2004, 68, 1049-1059.
    Naicker, K., Cukrowska, E., McCarthy, T.S. Acid mine drainage arising from gold mining activity on Johannesburg South Africa and environs. Environ. Pollut. 2003,122, 29-40.
    Nordstrom, D.K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. PP. 37-56 in: Acid Sulfate Weathering (J.A. Kittrick, D.S. Fanning & L.R. Hossner, editors), Soil Science Society of America, Madison, WI. 1982.
    
    Nordstrom, D.K. Worldwide occurrences of arsenic in ground water. Science. 2002, 296, 2143-2145.
    Ohnuki, T., Sakamoto, F., Kozai, N., et al. Mechanisms of arsenic immobilization in a biomat from mine discharge water. Chem. geolog. 2004, 212, 279-290.
    Poul, B.K. Arsenic contamination awareness among the rural residents in Bangladesh. Soc Sci Medicine. 2004, 59, 1741-1755.
    Rawlings, P.E. ed. Biomining: Theory, microbes and industrial processes. Berlin: Springer and Landes Bioscience. 1997.
    Regenspurg, S., Brand, A., Peiffer, S. Formation and stability of schwertmannite in acid mining lakes. Geochim. Cosmochim. Acta. 2004,68, 1185-1197.
    Regenspurg, S., Gobner, A., Peiffer, S., et al. Potential remobilization of toxic anions during reduction of arsenate and chromated schwertmannite by the dissimilatory Fe(III)-reducing bacterium Acidiphilium Cryptum JF-5. Water. Air. Soil. Pollut. Focus. 2002, 2, 57-67.
    Regenspurg, S., Peiffer, S. Arsenate and chromate incorporation in schwertmannite. Appl. Geochem. 2005, 20, 1226-1239.
    
    Rothschild, L.J., Mancinelli, R.L. Life in the extreme environments. Nature. 2001, 409, 1092-1100.
    Schwertmann, U., Bigham, J.M., Murad, E. The first occurrence of schwertmannite in a natural stream environment. Eur. J. Mineral. 1995, 7 , 547-552.
    Sidenko, N.V., Shreiff, B.L. The attenuation of Ni, Zn, and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Appl. Geochem. 2005, 20, 1180-1194.
    Silverman, M.P., Lundgrne, D.G. Studies on the chemoautotrophic iron bacterium Thiobacillus ferrooxidans. J. Bacteriol. 1959, 77, 642-647.
    
    Singer, P.C., Stumm, W. Acid mine drainage: the rate determining step. Science. 1970, 167, 1121-1123.
    Smedley, P.L., Kinniburgh, D.Q. A review of the source, behavior and distribution of arsenic in nature waters. Appl. Geochem. 2002, 17, 517-368.
    Smedley, P.L., Zhang, M., Zhang, G., et al. Mobilization of arsenic and other trace elements in fluvioacustrine aquiers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 2003, 18, 1453-1477.
    Solisio, C., Lodi, A., Veglio, F. Bioleaching of Zinc and aluminium from industrial waste sludge by means of Thiobacillus ferrooxidans. Waste Manag. 2002,22, 667-675.
    Sreekrishnan, T.R., Tyagi, R.D. A Comparative study of the cost of leaching out heavy metals from sewage sludge. Process Biochem. 1996, 31, 31-41.
    Subrt, J., Bohacek, J., Stengl, V., et al. Uniform particles with a large surface area formed by hydrolysis of Fe_2(SO_4)_3 with Urea. Mater. Res Bullet. 2005,34,905-914.
    Tyagi, R.D., Munier, J., Blais, J.F. Heavy metal removal from anaerobically digested sewage sludge by chemical and microbiological methods. Appl. Microbial. Biotechnol. 1996,46,422-431.
    Waychunas, G.A., Kim, C.S., Banfield, J.F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scanvenging mechanisms. J. Nanoparticle Res. 2005, 7, 409-433.
    Williams,D.J.,Bigham,J.M.,CravottaⅢ,C.A,et al.Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates.Appl.Geochem.2002,17,1273-1286.
    Wong,I.W.C.;Xiang,L.;Gu,X.Y.;Zhou,L.X.Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source.Chemosphere.2004,55,101-107.
    Xia,Y.J.,Liu,J.An overview on chronic arsenism via drinking water in PR China.Toxicology.2004,98,25-29.
    Yu,J.Y.,Heo,B.,Choi,I.K.,et al.Apparent solubilities of schwertmannite and ferrihydrate in natural stream waters polluted by mine drainage.Geochim.Cosmochim.Acta.1999,63,340%3416.
    Zhou,L.X.,Fang,D.,Wang,S.M.,et al.Bioleaching of Cr from sludge:the effects of initial acid addition and recycling of acidified bioleached sludge.Environ.Technol.2005,26,277-284.
    冯树屏.砷的分析化学.北京:中国环境出版社.1986,9-12.
    郝春博,张洪勋,白志辉,等.酸性矿山废水区域沉积物中嗜酸菌多样性研究.环境科学.2006,27,2255-2260.
    贺永德.2004.现代煤化工技术手册.北京:化学工业出版社.2004.
    黄蕴慧,蔡剑辉,曹亚文.新矿物(1994.1-1994.12).岩石矿物学杂志.1999,18,50-64.
    刘成.生物法处理矿山酸性废水技术的应用.有色金属(矿山部分).2001,4,39-44.
    罗凯,张建国.矿山酸性废水治理研究现状.资源环境与工程.2005,19,45-49.
    饶俊,张锦瑞,徐晖.酸性矿山废水处理技术及其发展前景.矿业工程.2005,3,47-49.
    沈萍.微生物学.北京:高等教育出版社.2000.
    沈雁峰,孙殿军,赵新华,等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告.中国地方病学杂志.2005,24,172-175.
    孙红福,赵峰华,丛志远,等.在我国发现的Schwertmannite矿物及其特征.矿物学报.2006,26,38-42.
    孙振亚,祝春水,陈和生,等.几种不同类型的FeOOH吸附水溶液中铬离子的研究.岩石矿物学杂志,2003,22,352-354.
    韦冠俊.矿山环境工程..北京:冶金工业出版社.2001,92-96.
    肖唐付,洪冰,杨中华,等.砷的水地球化学及其环境效应.地质科技情报.2001,20,71-76.
    杨显万.微生物湿法冶金.北京:冶金工业出版社.2003.
    周立祥,王艮梅.污水污泥中重金属的细菌淋滤效果研究.环境科学学报.2001,21,504-506.
    周顺桂.生物淋滤技术去除污泥中重金属的研究.南京农业大学博士论文.2003.
    Acero, P., Ayora, C., Torrento, C., et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta. 2006, 70, 4130-4139.
    Bigham, J.M., Carlson, L., Murad, E. Schwertmannite, a new iron oxyhydroxysulfate from pyhasalmi, Finland and other localities. Mineral. Mag. 1994, 58, 641-648.
    Bigham, J.M., Schwertmann, U., Carlson, L., et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim. Cosmochim. Acta. 1990, 54, 2473-2758.
    Bigham, J.M., Schwertmann, U., Traina, S.J., et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta. 1996, 60, 2111-2121.
    Blais, J.F., Tyagi, R.D., Auclair, J.C., et al. Comparison of acid and microbial leaching for metal removal from municipal sludge. Water Sci. Technol. 1992, 26, 197-206.
    Blodau, C., Gatzek, C. Chemical controls on iron reduction in schwertmannite-rich sediments. Chem. Geol. 2006, 235, 366-376.
    Bosecker, K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591-604.
    Bromebacher, C., Bachofen, R., Brandle, H. Biohydrometallurgical processing of solids: a patent review. Appl. Microbiol. Biotechnol. 1997,48, 577-587.
    Carlson, L., Bigham, J.M., Schwertmann, U., et al. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A Comparison with synthetic analogues. Environ. Sci. Technol. 2002, 36,1712-1719.
    Chan, L.C., Gu, X.Y., Wong, J.W.C. Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria. Adv. Environ. Res. 2003, 7, 603-607.
    Chen, H., Zhou, L.X., Li, C. Removal of Cr from tannery sludge by bioleaching in air-lift reactor: A Pilot Study. Environ. Sci. 2007, 28, 2046-2051.
    Chen, S.Y., Lin, J.G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Res. 2004, 38, 3205-3214.
    Childs, C.W., Inoue, k., Mizota, C. Natural and anthropogenic schwertmannite from Towada-Hachimantai National Park, Honshu, Japan. Chem. Geolog. 1998,144, 81-86.
    Couillard, D., Chartier, M. Removal of metals from aerobic sludges by biological solubilization in batch
    Lazaroff, N., Melanson, L., Lewis, E., et al. Scanning electron microscopy and infrared spectroscopy of iron sediments formed by Thiobacillus ferrooxidans. Geomicrobiol. J. 1985, 4, 231-267.
    Lindsay, W. L.. Chemical Equilibria in Soils. New York, John Wiley & Sons. 1979.
    Nelson, Y.M., Lion, L.W., Shuler, M.L., et al. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese(hydr)oxides, iron(hydr)oxides, and their mixtures. Environ. Sci. Technol. 2002, 36, 421-425.
    Regenspurg, S., Brand, A., Peiffer, S. Formation and stability of schwertmannite in acid mining lakes. Geochim. Cosmochim. Acta. 2004, 68,1185-1197.
    Schwertmann, U., Bigham, J.M., Murad, E. The first occurrence of schwertmannite in a natural stream environment. Eur. J. Mineral. 1995, 7, 547-552.
    Shen, S.B., Tyagi, R.D., Blais, J.F., et al. Bacterial leaching of metals from tannery sludge by indigenous sulphur-oxidizing bacteria — Effect of sludge solids concentration. J. Environ. Eng. 2003,129, 513-519.
    Shen, S.B., Vidyararthi, A., Tyagi, R.D., et al. Bacterial leaching of metals from tannery sludge by indigenous sulphur-oxidizing bacteria — Effect of sulphur concentration. Prac. Period. Hazard., Toxic, Radioact. Waste Manage. 2002, 6, 244-249.
    Solisio, C.; Lodi, A.; Veglio, F. Bioleaching of Zinc and aluminium from industrial waste sludge by means of Thiobacillus ferrooxidans. Waste Manag. 2002,22, 667-675.
    Sreekrishnan, T.R., Tyagi, R. D., Blais, J.F., et al. Kinetics of heavy metals bioleaching from sewage sludge. I: Effects of process parameters. Water Res. 1993, 27, 1641-1651.
    Sreekrishnan, T.R., Tyagi, R.D. A Comparative study of the cost of leaching out heavy metals from sewage sludges. Process Biochem. 1996, 31, 31-41.
    Tyagi, R.D., Couillard, D. Bacteria leaching of metal from digested sewage sludge. Process Biochem. 1987, 22, 114-117.
    Tyagi, R.D., Tran, F.T. Bacterial leaching of metal from digested sewage sludge by indigenous iron-oxidizing. Environ. Pollut. 1993, 82, 9-12.
    Wang, D.Z., Zhou, L.X., He, F. Studies on the enhancement of dehydration property of tannery sludge by bioleaching technique. China Environmental Science, 2006, 26, 67-71.(in Chinese)
    Wang, S.M., Zhou, L.X. A renovated approach for increasing colony count efficiency of Thiobacillus ferrooxidans and Thiobacillus thiooxidans: Double-layer Plates. Acta Scientiae Circumstantiae, 2005, 25, 1418-1420.(in Chinese)
    Webster, J.G., Swedlund, P.J., Webster, K.S. Trace metal adsorption onto an acid mine drainage iron(III) oxyhydroxy sulfate. Environ.Sci.Technol. 1998, 32,1361-1368.
    Wong, J.W.C.; Xiang, L.; Gu, X.Y.; Zhou, L.X. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere. 2004, 55, 101-107.
    Xiang, L., Ke, J.J., Qiu, R.Q. Influence of some physical and chemical factors on the growth of Thiobacillus ferrooxidans Strain 8~#. In: Yang, X.W., Chen, Q.Y., He, A.P.(Eds.), Proceedings of the Third International Conference on Hydrometallurgy, Kunming, P.R. China. 1998.
    Yu, J.Y., Heo, B., Choi, I.K., Cho, J.P., et al. Apparent solubilities of schwertmannite and ferrihydrite in natural steam water polluted by mine drainage. Geochim. Cosmochim. Acta. 1999,63, 3407-3416.
    Zhou, L.X., Fang, D., Zhou, S.G., et al Removal of Cr from tannery sludge by AcidophilicThiobacilli. Environ. Sci. 2004, 25, 62-66.
    Zhou, L.X., Wang, G.M.. Bioleaching of heavy metals from sewage sludge. Acta Scientiae Circumstantiae, 2001, 21, 504-506.
    Zhou, L.X., Fang, D., Wang, S.M., et al. Bioleaching of Cr from tannery sludge: The effects of initial acid addition and recycling of acidified bioleached sludge. Environ. Technol. 2005, 26,277-284.
    Zhou, S.G. Ph.D. Thesis. Removal of heavy metals from metal-laden sludge by bioleaching technology. Nanjing Agriculture University, P.R. China. 2003.
    Zhou, S.G, Zhou, L.X. Adsorption and coprecipitation of dissolved metals with jarosite under conditions simulating sewage sludge bioleaching. Spectroscopy and spectral analysis. 2006, 26, 966-970.
    Zhou, S.G., Zhou, L.X., Chen, F.X. Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions. Spectroscopy and Spectral Analysis. 2007,27, 367-370.
    Zhou, S.G., Zhou, L.X., Wang, S.M., Fang, D. Removal of Cr from tannery sludge by bioleaching methods. J. Environ. Sci. 2006, 18, 885-890.
    Acero, P., Ayora, C., Torrento, C., et al, The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta. 2006, 70, 4130-4139.
    Banfield, J. F., Zhang, H. Nanoparticles in the environment. Reviews in Mineral. Geochem. 2001, 44, 1-58.
    Barham, B.J. Schwertmannite: a unique mineral, contains a replaceable ligand, transforms to jarosite, hematites, and/or basic iron sulfate. J. Mater. Res. 1997, 12, 2751-2757.
    Barron, J.L., Luecking, D.R. Growth and maintenance of Thiobacillusferrooxidans cells, Appl. Environ. Microbial. 1990, 56, 2801-2806.
    Berger, A.C., Bethke, C.M., Krumhansl, J.L. A process model of natural attenuation in drainage from a historic mining district. Appl. Geochem. 2000, 15,655-666.
    Bigham, J. M., Carlson, L., Murad, E. Schwertmannite, a new iron oxyhydroxysulfate from pyhasalmi, Finland,and other localities. Mineral Mag. 1994, 58, 641-648.
    Bigham, J.M., Nordstrom, D.K. Iron and aluminum hydroxysulfates from acid sulfate waters. In reviews in Mineralogy and Geochemistry (eds. Alpers, C.N., Jambor, J.L., Nordstrom D.K.) pp.351-403. Mineralogical Society of America, Washington, D.C. 2000.
    Bigham, J.M., Schwertmann, U, Carlson, L. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe( II) in acid mine waters. Geochim Cosmochim Acta. 1990, 54, 2743-2758.
    Bigham, J.M., Schwertmann, U., Carlson, L., et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim. Cosmochim. Acta. 1990, 54, 2743-2758.
    Bigham, J.M., Schwertmann, U., Pfab, G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl Geochem. 1996a, 11, 845-849.
    Bigham, J.M., Schwertmann, U., Traina, S.J., et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta. 1996b, 60, 2111-2121.
    Chan, C.S., Stasio, G.D., Welch, S.A., et al. Microbial Polysaccharides Template Assembly of Nanocrystal Fibers. Science. 2004, 303, 1656-1658.
    Childs C W, Inoue K, Mizota C. Natural and anthropogenic schwertmannite from Towada-Hachimantai National park, Honshu, Japan. Chem Geol. 1998, 144: 81-86.
    Claassen, J.O., Meyer, E.H.O., Rennie, J., et al. Iron precipitation from zinc-rich solutions: defining the Zincor Process. Hydrometallurgy. 2002, 67, 87-108.
    Colmer, A. R., Temple, K.L, Hinkle, M.E. An iron-oxidation bacterium from the acid drainage of some bituminous coal mines. J. Bacteriol. 1950,166, 317-328.
    Cornell, R.M., Schwertmann, U. The iron oxides: Structure, properties, reactions, occurrence and uses. VCH Verlagsgesellschaft mbH, Weinheim. 1996.
    Curutchet, G., Pogliani, C., Donati, E., et al. Effect of iron(III) and its hydrolysis products (jarosites) on Thiobacillusferrooxidans growth and on bacterial leaching. Biotechnol. Lett. 1992, 14,329-334.
    Das, G.K., Acharya, S., Anand, S., et al. Jarosites: a review. Miner. Process. Extract. Metall. Rev. 1996, 16, 185-210.
    Dold, B. Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction(DXRD). Appl Geochem. 2003, 18, 1531-1540.
    Dutrizac, J. E. Factors affecting alkali jarosite precipitation. Metall. Trans. 1983,14B, 531-539.
    Espafia, J.S., Pamo, E.L., Pastor, E.S. The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): Field and laboratory rates. J. Geochem. Explor. 2007,92,120-132.
    Espafia, J.S., Pamo, E.L., Santofimia, E., et al. Acid mine drainage in the Iberian Pyrite Belt: Geochemistry, mineralogy and environmental implications. Appl Geochem. 2005, 20,1320-1357.
    Fanning, D. S., Rabenhorst, M. C., Burch, S. N., et al. Sulfides and sulfates. In Soil Mineralogy with Environmental Applications (eds. J. B. Dixon, D. G. Schulze and W. L. Daniels). Soil Science Society of America, Madison, WI. 2002.
    Frost, R.L., Wills, R.A., Kloprogge, J. T., et al. Thermal decomposition of hydronium jarosite (H_3O)Fe_3(SO_4)_2(OH)_6. J. Therm. Anal. Cal. 2006, 83, 213-218.
    Fukushi, K., Sasaki, M., Sato, T, et al. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem. 2003, 18, 1267-1278.
    Gagliano, W.B., Brill, M.R., Bigham, J.M., et al. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim Cosmochim Acta. 2004, 68, 2119-2128.
    JCPDS (Joint Committee on Powder Diffraction Standards). Mineral powder diffraction file. International Center for Diffraction Data. Swarthmore, Pennsylvania. 2002.
    Jonsson, J., Persson, P., Sjoberg, S., et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulfate release and surface properties. Appl Geochem. 2005, 20, 179-191.
    Kawano, M., Tomita, K. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am. Mineral. 2001, 86,1156-1165.
    Kelly, D. P., Jones, C.A. Factors affecting metabolism and ferrous iron oxidation in suspensions and batch culture of Thiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration, in: Murr, L.E., Torma, A.E., Brierly, J.A. (Eds.)pp. 19—43. Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic press, New York, 1978.
    Labrenz, M., Gilbert, B., Welch, S.A., et al. Formation of sphalerite(ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science. 2000, 290, 1744-1747.
    Lazaroff, N., Sigal, W., Wasserman, A. Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 1982, 43, 924-938.
    Loan, M., Richmond, W. R., Parkinson, G. M. On the crystal growth of nanoscale schwertmannite. J. Crystal Growth. 2005, 275, e1875-e1881.
    Majzlan, J., Stevens, R., Boerio-Goates, J., et al. Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H_3O)Fe_3(SO_4)_2(OH)_6, Phys Chem Minerals. 2004, 31, 518-531.
    Music S., Orehovec, Z., Popovic, S. Structural properties of precipitates formed by hydrolysis of Fe~(3+) ions in Fe_2(SO_4)_3 solutions. J. Mater. Sci. 1994, 29, 1991-1998.
    Nemati, M., Harrison, S.T.L., Hansford, G.S., et al. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem. Eng. J. 1998,1, 171-190.
    Nordstrom, D.K., Alpers, C.N. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon, M.J. (Eds), The environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues: Society of Economic Geologists. Reviwes in Economic Geology, 6A, 1999, 133-156.
    Pesic, B., Oliver, D.J., Wichlacz, P. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 1989, 33, 428-439.
    Regenspurg, S., Brand, A., Peiffer, S. Formation and stability of schwertmannite in acid mining lakes. Geochim. Cosmochim. Acta. 2004, 68, 1185-1197.
    
    Rothschild, L.J., Mancinelli, R.L. Life in the extreme environments. Nature. 2001, 409, 1092-1100.
    Schroth, A.W., Parnell Jr, R.A. Trace metal retention through schwertmannite to goethite transformation. Appl. Geochem. 2005, 20, 907-917.
    Schwertmann, U., Bigham, J.M., Murad, E. The first occurrence of schwertmannite in a natural stream environment. Euro. J. Mineral. 1995, 7, 547-552.
    
    Sidenko, N.V., Shreiff, B.L. The attenuation of Ni, Zn , and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Appl Geochem. 2005, 20, 1180-1194.
    Subrt,J.,Bohacek,J.,Stengl,V.,et al.Uniform particles with a large surface area formed by hydrolysis of Fe_2(SO_4)_3 with Urea.Mater.Res.Bulletin.2005,34,905-914.Wang,H.,Bigham,J.M.,Jones,F.S.,et al.Synthesis and properties of ammoniojarosite prepared with iron-oxidizing acidophilic microorganism at 22-65℃.Geochimi.Cosmochimi.Acta.2007,71,155-164.
    Waychunas,G.A.,Xu,N.,Fuller,C.C.,et al.XAS study of AsO_4~(3-) and SeO_4~(2-) substituted schwertmannites.Physica B.1995,208-209,481-483.
    Webster,J.G.,Swedlund,P.J.,Webster,K.S.Trace metal adsorption onto a acid mine drainage iron(Ⅲ)oxy hydroxy sulfate.Environ.Sci.Technol.1998,32,1361-1368.
    Webster,J.G.,Swedlund,P.J.,Webster,K.S.Trace metal adsorption onto an acid mine drainage iron(Ⅱ)oxyhydroxl sulfate.Environ.Sci.Technol.1998,32,1361-1368.
    Yu,J.Y.,Heo,B.,Choi,I.K.,et al.Apparent solubilities of schwertmannite and ferrihydrate in natural stream waters polluted by mine drainage.Geochim Cosmochim Acta.1999,63,3407-3416.
    Zinck,J.M.Dutrizac,J.E.The behaviour of zinc,cadmium,thallium,tin and selenium during ferrihydrite precipitation from sulphate solutions.CIM Bulletin.1998,91,94-101.
    廖岳华,周立祥.极端酸性环境下形成的施威特曼石(schwertmannite)及其环境学意义.岩石矿物杂志.2007,26,177-183.
    王乾坤,马荣骏,谭泪曾.黄铁矾法除铁动力学研究与应用—草黄铁矾沉淀的研究.矿冶工程.1985,6,48-53.
    王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法.环境科学学报.2005,25,1418-1420.
    周顺桂,周立祥,陈福星.施氏矿物Schwertmannite的微生物法合成、鉴定及其对重金属的吸附性能.光谱学与光谱分析.2007,27,367-370.
    周顺桂.生物淋滤技术去除污泥中重金属的研究.南京农业大学博士学位论文.南京.2003.
    Acero,P.,Ayora,C.,Torrento,C.,et al.The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite.Geochim.Cosmochim.Acta.2006,70,4130-4139.
    Anderson,M.A.,Rubin,A.J.Adsorption of inorganics at solid-liquid interfaces.Ann Arbor Science Publishers,Inc.,1981.
    Berger,A.C.,Bethke,C.M.,Krumhansl,J.L.A process model of natural attenuation in drainage from a historic mining district.Appl.Geochem.2000,15,655-666.
    Bigham,J.M,Carlson,L,Murad E.Schwertmannite,a new iron oxyhydroxysulfate from pyh(a|¨)salmi,Finland,and other localities.Mineral Mag.1994,58,641-648.
    Bigham,J.M.,Nordstrom,D.K.Iron and aluminum hydroxysulfates from acid sulfate waters.In reviews in Mineralogy and Geochemistry(eds.Alpers,C.N.,Jambor,J.L.,Nordstrom D.K.) pp.351-403.Mineralogical Society of America,Washington,D.C.2000.
    Bigham,J.M.,Schwertmann,U,Carlson,L.A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(Ⅱ) in acid mine waters.Geochim Cosmochim Acta.1990,54,2743-2758.
    Bigham,J.M.,Schwertmann,U.,Traina,S.J.,et al.Schwertmannite and the chemical modeling of iron in acid sulfate waters.Geochim.Cosmochim.Acta.1996,60,2111-2121.
    Dold,B.Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction(DXRD).Appl Geochem.2003,18,1531-1540.
    Dzombak,D.A.,Morel,F.M.M.Surface complexation modeling.Hydrous ferric oxides.John Wiley and Sons,New York.1990.
    Fanning,D.S.,Rabenhorst,M.C.,Burch,S.N.,et al.Sulfides and sulfates.In Soil Mineralogy with Environmental Applications(eds.J.B.Dixon,D.G.Schulze and W.L.Daniels).Soil Science Society of America,Madison,WI.2002.
    Fukushi,K.,Sasaki,M.,Sato,T,et al.A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump.Appl Geochem.2003,18,1267-1278.
    J(o|¨)nsson,J.,Persson,P.,Sj(o|¨)berg,S.,et al.Schwertmannite precipitated from acid mine drainage:phase transformation,sulfate release and surface properties.Appl Geochem.2005,20,179-191.
    Kawano,M.,Tomita,K.Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water.Am.Mineral.2001,86,1156-1165.
    Knorr,K.H.;Blodau,C.Controls on schwertmannite transformation rates and products.Appl.Geochem.2007,22,2006-2015.
    Regenspurg,S.,Brand,A.,Peiffer,S.Formation and stability of schwertmannite in acid mining lakes.Geochim.Cosmochim.Acta.2004,68,1185-1197.
    Waychunas,G.A.,Xu,N.,Fuller,C.C.,et al.XAS study of AsO_4~(3-) and SeO_4~(2-) substituted schwertmannites.Physica B.1995,208-209,481-483.
    陆现彩,陆建军,朱长见,等.微生物矿化成因的铁硫酸盐矿物表面特征初探.高校地质学报.2005,11(2),194-198.
    Anderson,M.A.,Rubin,A.J.Adsorption of inorganics at solid-liquid interfaces.Ann Arbor Science Publishers,Inc.1981.
    APHA.Standard Methods for the Examination of Water and Wastewater,19th ed.,American Public Health Association,Washington,D.C.1995.
    Bhattacharya,P.,Welch,A.H.,Stollenwerk,K.G.Arsenic in the environment:Biology and Chemistry.Sci.Total Environ.2007,379,109-120.
    Bigham, J.M., Carlson, L., Murad, E. Schwertmannite, a new iron oxyhydroxysulfate from pyhasalmi, Finland,and other localities. Mineral Mag. 1994, 58, 641-648.
    Bigham, J.M., Schwertmann, U., Traina, S.J., et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta. 1996, 60, 2111-2121.
    Deliyanni, E.A., Bakoyannakis, D.N., Zouboulis, A.I., et al. Sorption of As(V) ions by akaganeite-type nanocrystals Chemosphere. 2003, 50, 155-163.
    Deliyanni, E.A., Nalbandian, L., Matis, K.A. Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent. J.Colloid Interface Sci. 2006, 302, 458-466.
    Dixit, S., Hering, J.G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol. 2003, 37,4182-4189.
    Douglas, M.R. Principles of adsorption and adsorption processes. New York: John Wiley Inc, 1984, 30-38.
    Dutta, P.K., Ray, A.K., Sharma, V.K., et al. Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Colloid Interface Sci. 2004, 278, 270-275.
    Eggleston, C.M., Jordan, G. A new approach to pH of point of zero charge measurement: Crystal-face specificity by scanning force microscopy (SFM). Geochimica Cosmochimica Acta. 1998, 62, 1919-1923.
    EPA. Report on the expert panel on arsenic carcinogenicity : review and workshop. Washington DC: National Center for Environmental Assessment, US Environmental Protection Agency. 1997.
    Fukushi, K., Sato, T., Yanase, N. Solid-solution reactions in As(V) sorption by schwertmannite. Environ. Sci. Technol. 2003, 37, 3581-3586.
    Fukushi, K., Sato, T., Yanase, N., et al. Arsenate sorption on schwertmannite. American Mineralogst. 2004, 89, 1728-1734.
    Guo, X., Du, Y., Chen, F., et al. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. J. Colloid Interface Sci. 2007, 314, 427-433.
    Guo, X.., Chen, F. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol. 2005, 39, 6808-6818.
    Hayes, K.F., Leckie, J.O. Modeling ionic-strength effects on anion adsorption at hydrous oxide-solution interfaces.J Colloid Interface Sci. 1987, 115, 564-572.
    Hudson-Edwards, K.A., Schellb, C., Macklin, M.G. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl. Geochem. 1999, 14, 1015-1030.
    Jang, M., Min, S.H., Kim, T.H., et al. 2006. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environ. Sci. Technol. 40, 1636-1643.
    Jeffer, A.L., Robert, F.S., Chirstopher, T.D. Environmental toxicants. New York: National Academic Press. 1993. 77.
    Jonsson, J., Persson, P., Sjoberg, S., et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulfate release and surface properties. Appl Geochem. 2005, 20, 179-191.
    Karim, M.D.M. Arsenic in groundwater and health problems in Bangladesh. Water Res. 2000, 34, 304-310.
    Kim, Y.H., Kim, C.M., Choi, I. et al. Arsenic Removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol. 2004, 38, 924-931.
    Knorr, K.H.; Blodau, C. Controls on schwertmannite transformation rates and products. Appl. Geochem. 2007, 22, 2006-2015.
    Lin, T.F., Wu, J.K. Adsorp tion of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res. 2001, 35, 2049-2057.
    Loukidou, M.X., Zouboulis, A.I., Karapantsios, T.D., et al. Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004, 242, 93-104.
    Manning, B.A., Goldberg, S. Adsorption and Stability of Arsenic(III) at the Clay Mineral-Water Interface. Environ. Sci. Technol. 1997, 31,2005-2011.
    Marc, A.A., Alan, J.R. Adsorption of inorganics at solid-liquid interfaces. Michigan: Ann arbor science publisher. 1981, 1-51.
    Mohan, D., Pittman Jr, C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazardous Mater. 2007, 142, 1-53.
    Peak, D., Ford, R.G., Sparks, D.L. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J. Colloid Interface Sci. 1999,218, 289-299.
    Pena, M., Meng, X.G., Korfiatis, G.P. Adsorption Mechanism of Arsenic on Nanocrystalline Titanium Dioxide. Environ. Sci. Technol. 2006, 40, 1257-1262.
    Pierce, M.L., Moore, C. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 1982, 16, 1247-1253.
    Raven, K.P., Jain, A., Loeppert, R.H. Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ.Sci. Technol. 1998, 32, 344-349.
    Schindler, P.W., Walti, E., Furst, B. The role of surface-hydroxyl groups in the surface chemistry of metal oxides. Chimia. 1976, 30, 107-109.
    Smedley, P.L., Kinniburgh, D.Q. A review of the source , behaviour and distribution of arsenic in natural waters.Appl Geochem.2002,17,517-368.
    Smith,A.H.Cancer risks from As in drinking water.Environ Health Persp.1992,97,259-262.
    Stephanie,O.,Marie-Odile,S.,Philippe,de D,et al.Diffusion-Controlled Adsorption of Arsenate on a Natural Manganese Oxide.Ind Eng Chem Res,2002,41,6194-6199.
    Stumrn,W.Chemistry of the solid-water interface;Wiley-interscience:New York,1999.
    Suarez,D.L.,Goldberg,S.,Su,C.Evaluation of oxyanion adsorption mechanisms on oxides using FTIR spectroscopy and electrophoretic mobility.Am.Chem.Soc.Syrup.Ser.1998,715,136-178.
    Wood,S.A.,Tait,C.D.,Janecky,D.R.A Raman study of arsenite and thioarsenite species in aqueous solution at 25℃.Geochem.Trans.2002,3,31-39.
    Yates,D.E.,Healy,T.W.Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces.J.Colloid.Interface Sci.1975,22,222-228.
    Zhang Y,Yang M,Huang X.Arsenic(V) removal with a Ce(Ⅳ)-doped iron oxide adsorbent.Chemosphere.2003,51,945-952.
    Zhang,G.,Qu,J.,Liu,H.,et al.Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.Water Res.2007,41,1921-1928.
    Zhang,W.,Singh,P.,Paling,E.,et al.Arsenic removal from contaminated water by natural iron ores.Mineral.Eng.2004,17,517-524.
    豆小敏,张昱,杨敏,等.砷在金属氧化物/水界面上的吸附机制Ⅱ.电荷分布多位络合模型模拟.环境科学学报.2006,26,1592-1599.
    冯树屏.砷的分析化学.北京:中国环境出版社.1986,9-12.
    傅献彩,陈瑞华.物理化学.人民教育出版社.北京,1980.
    马红梅,朱志良,张荣华,等.β-FeO(OH)对水中砷的吸附作用.同济大学学报(自然科学版).2007,35,1656-1660.
    汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理.北京:中国环境科学出版社.2000.
    魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式.地球科学进展.2000,15,90-96.
    肖唐付,洪冰,杨中华,等.砷的水地球化学及其环境效应.地质科技情报.2001,20,71-76.
    杨莉丽,李娜,张德强,等.氢化物发生-原子吸收光谱法测定中药中砷(Ⅲ)和砷(Ⅴ).分析科学学报.2004,20,483-485.
    姚娟娟,高乃云,夏圣骥,等.饮用水除砷技术研究新进展.工业用水与废水.2007,38,1-5.
    张昱,豆小敏,杨敏,等.砷在金属氧化物/水界面上的吸附机制Ⅰ.金属表面羟基的表征和作用.环境科学学报,2006.26,1586-1591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700