用户名: 密码: 验证码:
基因重组大肠杆菌发酵糖枫木片热水抽提物水解液转化合成生物乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪70年代石油危机以来,人们认为燃料乙醇的生产是缓解能源危机的重要途径之一。在木质原料的糖化液中,主要存在己糖和戊糖两种成分,自然界中没有一种微生物可以有效地转化这些糖类生成乙醇。大肠杆菌Escherichia coli可以利用己糖和戊糖,但没有大量生产乙醇的能力。在E. coli中构建特异性生产乙醇的代谢途径成为了基因工程改造乙醇生产菌的一个研究热点。
     半纤维素是造纸工业的副产物,如果将其直接排放会产生巨大的环境污染,用稀酸将其水解后可以获得大量的木糖以及少量的甘露糖、鼠李糖、葡萄糖、半乳糖和阿拉伯糖。同时,由于生物质稀酸水解过程中,糖类物质会降解生成糠醛和5-羟甲基糠醛(HMF)等强烈抑制微生物生长和乙醇发酵的有毒物质。并且水解液经中和后含有一定浓度的Na2SO4和CaSO4等盐类物质,形成较高的渗透压,也对微生物生长形成抑制作用。
     本文首先研究了pH和缓冲液用量、温度、接种量、种龄和溶氧水平等培养条件对基因重组菌株E.coli FBR5发酵纯木糖为碳源的培养基生产乙醇的影响。实验证明E.coliFBR5的适宜生长条件为:磷酸盐缓冲液用量为12 mL、培养温度为35℃、5%的接种量、12~14小时种龄和摇床转速180 r/min的微氧环境。
     在纯木糖为碳源的培养基中,进行了各种微生物生长及发酵抑制剂的添加试验,可知E. coli FBR5对水解液中各种抑制剂的耐受极限浓度为:硫酸钠5~10 g/L;氯化钙10 g/L;硫酸亚铁0.50 g/L;糠醛2.0 g/L;苯酚0.2~0.4g/L。该结果表明,在本研究所制得的糖枫木片热水抽提物水解液中对大肠杆菌的生长起主要抑制作用的是过高浓度的盐类物质。
     研究表明糖枫木片热水抽提所得低聚糖溶液经纳滤膜浓缩、稀硫酸水解、中和并经纳滤膜分级分离后可获得可发酵的混合糖溶液。但由于成分复杂以及一些抑制剂的存在,E. coli FBR5在以该水解液为碳源的培养基中生长受到严重抑制,乙醇产量很低。经过菌种驯化和筛选,获得了一株能够耐受一定浓度水解液毒性的突变株,命名为E. coli FBHW.稀硫酸水解液经过离子交换树脂处理可以有效降低毒性,菌株FBHW在脱毒水解液中可以快速生长,并取得22.6g/L的乙醇产量。考虑到脱毒处理会使生产工艺复杂,增加生产成本,本研究通过采用混合酸水解、混合碱中和的方法均衡水解液中各种离子浓度,降低其对微生物生长的抑制作用。在不经任何脱毒处理的混合酸水解液中,FBHW发酵乙醇产量提高到36.9 g/L。
     事物都有两方面,一方面水解液中过高浓度的金属离子会对微生物生长产生抑制作用,另一方面某些金属离子也是微生物生长所必需的。本文运用ICP方法测定了LB肉汤培养基、菌株E. coli FBHW在LB肉汤培养基中生长所得细胞以及水解液中的各种元素含量。结果表明在2MAB水解液中除了Cu、K、Na和P外,其他元素均大大过量,尤其是各种微量元素如Fe、Ni、Zn、Mn等。本文尝试以氨水替代LB肉汤培养基作为微生物生长所需氮源。初步研究在该合成培养基中,大肠杆菌可以生长获得菌体,但乙醇产量较低。
Since the 1970's, renewable fuels and materials have attracted significant interest due to high petroleum prices and awareness of the depletion of fossil fuel reserves. Bioethanol production is considered to be a milestone for sustainable development. Hydrolyzate of biomas includes a number of pentoses and hexoses. There is no single organism yet shown to efficiently convert all these sugars to ethanol. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. E. coli is naturally able to use a wide spectrum of sugars. One of the research work has concentrated on engineering E. coli to selectively produce ethanol.
     Hemicellulose is a by-product currently under-utilized in the papermaking industry. It is a hetero-carbohydrate polymer, which can be hydrolyzed into monosaccharides by a dilute acid process. In addition to aromatics, acetic acid, formic acid and methanol released from woody biomass during the acid process and the hydrolysis of carbohydrates also generates toxic compounds. During dilute acid hydrolysis of biomass, monosaccharided are dehydrated and various toxic compounds are formed that can inhibit microorganism growth and ethanol fermentation, such as furfural and 5-hydroxymethylfurfural (HMF). Lignin byproducts during biomass hydrolysis are also inhibitory to microorganisms. Na2SO4 and CaSO4 formed during neutralization of the hydrolyzate contribute to a high osmotic pressure. This mixture of inhibitors will likely be a great challenge to those fermenting strains.
     In this study, the basic culture conditions of E. coli FBR5 were investigated. The optimal culture conditions are as following:12 mL phosphate buffer,35℃, inoculum size of 5% by volume,12~14 hour-old inoculum and 180 r/min of shake speed.
     Inhibitors were added into the pure xylose media to investigate the tolerance of E. coli FBR5 to those inhibitors. It's found that FBR5 was inhibited in the present of 5~10 g/L Na2SO4,10 g/L CaCl2,0.50 g/L FeSO4,2.0 g/L furfural and 0.2~0.4 g/L phenol, respectively. The results indicate that the salts in hot-water wood extract hydrolyzate can be inhibitory to FBR5.
     Sugar Maple hot-water extract hemicellulosic hydrolyzate was concentrated and fractionated by a Nano-filtration membrane process in our lab. In this study, E. coli FBR5 was challenged by concentrated hot-water wood extract hemicellulosic dilute sulfuric acid hydrolyzate. After repeated strain adaptation, a new improved strain:E. coli FBHW was obtained. Fermentation experiments indicated that FBHW was resistant to the toxicity of dilute sulfuric acid hydrolyzate in the fermentation media, and xylose was completely utilized by the strain to produce ethanol. Dilute sulfuric acid hydrolyzate was detoxified by ion-exchange, and FBHW can be grown rapidly in the desalted hydrolyzate with a yield of 22.6 g/L ethanol. To avoid the increase of production cost by ion-exchange, mixed-acid hydrolysis was carried out. Then the mixed-acid hydrolyzate was neutralized by mixed-base. Due to the balance of ions in the hydrolyzate, its inhibition to microorganism decreased. FBHW was grown in the concentrated mixed-acid hydrolyzate without any treatment and yielded 36.9 g/L ethanol.
     High concentration of metal ions could be inhibitory to microorganisms. On the other hand, some ions are essential to growth of microorganism. In this study, ICP method was used to analyze elements content of LB broth media, cells of E. coli FBHW and hydrolyzate. Except for Cu、K、Na and P, all the other metal ions are excess for FBHW to grow, especially for trace elements such as, Fe, Ni, Zn and Mn. To reduce the cost of medium, NH3·H2O was used as the only nitrogen source to replace LB in the hydrolyzate to grow E. coli FBHW. FBHW can be grown in the simplified medium with a low ethanol yield.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报.2008,42(3):345~359.
    [2]Lee R. L., Paul J. W., Willem H. van Zyl, et al.. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiology and Molecular Biology Reviews. 2002,66(3):506~577.
    [3]田泽.世界油气资源现状及未来趋势预测[J].新疆社会科学.2007,2:24~30.
    [4]李哲,冒泗农,张淑英.世界石油资源现状、供需状况预测分析和对策.技术经济与管理研究[J].2007,6:105~107.
    [5]段泽凯.中国油情与油资源可持续发展战略[J].天然气与经济.2005,2:26~30.
    [6]江苏,张麦花,张亚芬.我国石油依存度现状与发展趋势发展战略[J].天然气与经济.2006,3:30~31.
    [7]勇强.植物纤维资源高效生物利用[J].林业科技开发.2002,16(3):6~9.
    [8]中华人民共和国国家发展和改革委员会.能源发展“十一五”规划[EB/OL].2007年04月,http://www.ndrc.gov.cn/fzgh/ghwb/115zxgh/P020070925543261533041.pdf
    [9]中华人民共和国国家统计局.中国统计年鉴2008[M].北京:中国统计出版社,2008,http://www.stats.gov.cn/tjsj/ndsj/2008/indexch.htm
    [10]陈彪,叶红.植物纤维资源的利用[J].化工时刊.1999,8:8~10.
    [11]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[EB/OL].2007年09月.http://www.ndrc.gov.cn/fzgh/ghwb/115zxgh/P020070930491947302047. pdf
    [12]陈庆云,王云海.农作物秸秆综合利用新技术[J].再生资源研究.2002,2:33~35.
    [13]Liu S.. A kinetic model on autocatalytic reactions in woody biomass hydrolysis [J]. Journal of Biobased Materials and Bioenergy.2008,2:135~147.
    [14]Roca C., Olsson L.. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccaromyces cerevisiae [J]. Applied Microbiology and Biotechnology.2003,60(5):560~563.
    [15]Nick Nagie. A process economic to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass [J]. Applied Biotechnology.1999,79:599~607.
    [16]余燕春.利用农林纤维废弃物生产酒精的社会经济效益[J].江西林业科技.1998, 6:18~20.
    [17]Liu S., Amidon T. E., Wood C. D.. Membrane filtration:concentration and purification of hydrolyzates from biomass [J]. Journal of Biobased Materials and Bioenergy.2008, 2:121~134.
    [18]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989年12月.
    [19]Amidon T. E., Wood C. D., Shupe A. M. et al.. Biorefinery:conversion of woody biomass to chemicals, energy and materials [J]. Journal of Biobased Materials and Bioenergy.2008,2:100~120.
    [20]陈国符,邬义明.植物纤维化学[M].北京:轻工业出版社,1980年12月.
    [21]岑沛霖,穆江华,赵春晖等.从可再生资源获得新型绿色“平台化合物”乙酰丙酸的研究与开发[J].生物加工过程.2003,1(1):17~23.
    [22]谭天伟,王芳.生物炼制发展现状及前景展望[J].现代化工.2006,26(4):6~11.
    [23]林鹿,陈嘉翔,余家鸾等.降解木素酶和降解木聚糖酶的生物漂白及机理[J].中国造纸学报.1997,12:48~53.
    [24]黄峰,陈嘉翔,卢雪梅等.木聚糖酶漂白废液分析[J].中国造纸学报.1997(增刊),12:81~86.
    [25]高慧,丁佐龙,潘祖耀.木聚糖酶在稻草浆漂白中的应用[J].安徽农业大学学报.1998,25(3):317~319.
    [26]Michel Gilbert, Colette Breuil, Makoto Yaguchi et al.. Purification and characterization of a xylanase from the thermophilic ascomycete Thielavia terrestris 255B [J]. Applied Biochemistry and Biotechnology.1992,34/35:247~259.
    [27]王沁,赵学慧.黑曲霉(Aspergillus niger)纤维素酶系中β-内切葡聚糖酶性质的研究[J].微生物学报.1993,33(6):439~445.
    [28]官家发,卢世珩,陈晓林等.芽孢杆菌E2菌株纤维素酶性质的研究[J].微生物学报.1993,33(6):434~438.
    [29]张永亮,汪玉松,张玉静等.纤维素酶的化学修饰[J].兽医大学学报.1993,13(3):225~227.
    [30]张金龙,杨叶东,丁有防.纤维素酶的生产及其在纺织上的应用[J].广东化工.1999,2:107~108.
    [31]Ziegler M. T., Thomas S. R., Danna K. J.. Accumulation of a thermostable endo-1,4-β-D-glucanase in the apoplast of Arabidopsis thaliana leaves [J]. Molecular breeding.2000,6:37-46.
    [32]Hesham Oraby, Balan Venkatesh, Bruce Dale et al.. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol [J]. Transgenic Res.2007, DOI 10.1007/s 11248-006-9064-9.
    [33]Polaina J., MacCabe A. P. (Editors). Industrial Enzymes [M]. Xu Q., Adney W. S., Ding S. Y. et al. Chapter 3:Cellulases for biomass conversion.2007 Springer,35-50.
    [34]刘亮伟,杨海玉,胡瑜等.F/10木聚糖酶研究进展[J].食品与生物技术学报.2009,28(6):727~732.
    [35]王晓丹,郭丽琼,赵力超等.木聚糖酶酶活性测定方法及酶活性单位定义[J].食品与发酵工业.2009,35(9):128~131.
    [36]马文静,张美云,房桂干.木聚糖酶的应用研究进展[J].江苏造纸.2008,1:20~24.
    [37]Ayyachamy M., Vatsala T. M.. Production and partial characterization of cellulase free xylanase by Bacillus subtilis C 01 using agriresidues and its application in biobleaching of nonwoody plant pulps [J]. Applied Microbiology.2007,45:467-472.
    [38]Ninawe S., Kapoor M., Kuhad R. C.. Purification and characterization of extracellular xylanase from Streptanyces cyaneus SN32 [J]. Bioresource Technology.2008,99:1252-1258.
    [39]黄玖玫.山梨醇的开发应用[J].淀粉与淀粉糖.1999,3:4~7.
    [40]王海滨.国外生物质能转化技术与应用[J].能源基地建设.2003,(6):15~16.
    [41]Randerson P. F.,董宏林,Slater F. M..世界若干国家生物质能源利用及有关问题研究[J].宁夏农林科技.1999,(5):5~8.
    [42]沈雪亮,夏黎明.利用纤维原料在串联式生物反应器中协同酶解发酵乳酸[J].高校化学工程学报.2005,19(3):356~361.
    [43]张洪勋,罗海峰,庄绪亮.琥珀酸发酵研究进展[J].微生物学通报.2003,30(5):102~106.
    [44]Klinke H. B., Ahring B. K., Schmidt A. S. et al.. Characterization of degradation products from alkaline wet oxidation of wheat straw [J]. Bioresource Technology.2002, 82:15~26.
    [45]Negro M. J., Manzanares P., Ballesteros I. et al.. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass [J]. Applied Biochem Biotechnol.2003,105-108:87~100.
    [46]Thomsen M. H., Thomsen A. B., Jorgensen H. et al.. Preliminary results on optimizing hydrothermal treatment used in co-production of biofuels [J].27th symposium on biotechnology for fuels and chemicals, Denver Colorado, May 1-4,2005.
    [47]张炎治,聂锐.我国可再生能源发展战略思考[J].煤炭经济研究.2005,11:32~33.
    [48]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社.2003,5.
    [49]李景明.生物质能现状与发展[J].知识就是力量.2005,11:14~17.
    [50]肖军,段著春,王华等.生物质利用现状[J].安全与环境工程.2003,10(1):11~14.
    [51]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005.
    [52]Zaldivar J., Nielsen L., Olsson L.. Fuel ethanol production from lignocelluloses:a challenge for metabolic engineering and process integration [J]. Applied Microbiol Biotechnol.2001,56:17~34.
    [53]Karakashev D., Thomsen A. B., Angelidaki I.. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass [J]. Biotechnol Lett.2007, 29:1005~1012.
    [54]夏黎明,丁红卫,余世袁.固定化增殖酵母发酵半纤维素糖类的研究[J].食品与发酵工业.1994,20(1):1~6.
    [55]邓旭,郑重鸣,岑沛霖等.固定化酵母的双底物乙醇连续发酵[J].化学反应工程与工艺.1995,11(3):297~301.
    [56]邓旭,岑沛霖.固定化细胞的混合糖连续发酵动力学模型[J].生物工程学报.1997,13(3):246~251.
    [57]张继泉,王瑞明,孙玉英.利用木质纤维素生产燃料酒精的研究进展[J].酿酒科技.2003,1:39~42.
    [58]Korbitz W.. Biodiesel production in Europe and North America, an encouraging prospect [J]. Renewable Energy.1999,16:1078~1083.
    [59]Agu R. C., Amadife A. E., Ude C. M. et al.. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production [J]. Waste management.1997,17(1):91~96.
    [60]Fey A., Conrad R.. Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil [J]. Biology and Biochemistry.2003,35(1):1-8.
    [61]颜涌捷.纤维素连续催化水解研究[J].太阳能学报.1999,20(1):55~58.
    [62]Kim J. S., Lee Y. Y.. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions [J]. Applied Biochemistry and Biotechnology.2001,91-93: 331~340.
    [63]Laser M., Schulman D., Allen S. G. et al.. A comparison of liquid hot water and steam pretreatment of sugar cane basasse for bioconversion to ethanol [J]. Bioresource technology.2002,81(1):33~44.
    [64]Farone W. A., Cuzens J. E.. Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials [P]. US 5562777,1996.
    [65]Wooley R. Z., Wang M. N.. A Nine-Zone Simulating Moving Bed for the Recovery of Glucose and Xylose from Biomass Hydrolyzat [J]. Industry Engineering Chemistry Research.1998,37:3699~3709.
    [66]王立纲.纤维素物质浓硫酸水解工艺的进展[J].国外林业.1994,24(3):48~51.
    [67]岑沛霖,张军.植物纤维浓硫酸水解动力学研究[J].化学反应工程与工艺.1993,9(1):34~41.
    [68]Camacho F., Gonzalez-Tello P., Jurado E. et al.. Microcrystalline-Cellulose Hydrolysis with Concentrated Sulphuric Acid [J]. Journal of Chem. Tech. Biotechnol.1996, 67:350~356.
    [69]Iranmahboob J., Nadima F., Monemib S.. Optimizing acid-hydrolysis:a critical step for production of ethanol from mixed wood chips [J]. Biomass and Bioenergy.2002,22: 401~404.
    [70]Antoni D., Zverlov V. V., Schwarz W. H.. Biofuels from microbes [J]. Applied Microbiol Biotechnol.2007,77:23~35.
    [71]IE A. Biofuels for transport:an international perspective [J]. International Energy Agency.2002, Paris.
    [72]路明.巴西甘蔗作物的燃料酒精转化和对我国发展燃料酒精的启示[J].作物杂志.2004,5:1~4.
    [73]Finlay M. R.. Old efforts at new uses:a brief history of chemurgy and the American search for biobased materials [J]. Journal of Ind Ecol.2004,7:33~46.
    [74]Kovarid B.. Henry Ford, Charles Kettering, and the "fuel of the future." [J]. Automot Hist Rev.1998,32:7~27.
    [75]田春龙,郭斌,刘春朝.能源植物研究现状和展望[J].生物加工过程.2005,3(1):14~19.
    [76]谭显平.能源甘蔗---生产燃料酒精的最佳原料[J].甘蔗.2004,11(2):30~32.
    [77]张君,刘德华.世界燃料酒精工业发展现状与展望[J].酿酒科技.2004,125(5):118~121.
    [78]李苗苗,于淑娟.甘蔗生产燃料酒精的发展现状及前景展望[J].酿酒科技.2007,156(6):111~113.
    [79]Newman R. H., Hemmingson J. A.. Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy [J]. Holzforschung.1990,44(5):351~355.
    [80]廖永德,林英,何忠良等.纯青竹亚硫酸盐法制浆生产实践[J].造纸科学与技术.2006,25(4):50~53.
    [81]Lynd L. R., Elander R. T., Wyman C. E.. Likely features and costs of mature biomass ethanol technology [J]. Applied Biochem Biotech.1996,57-58:741~761.
    [82]Tailliez P., Girard H., Longin R. et al.. Cellulose fermentation by an asporogenous mutant and an ethanol-tolerant mutant of Clostridium thermocellum [J]. Applied Env Microb.1989,55(1):203~296.
    [83]Sudha K. R., Swamy M. V., Seenayya G. High ethanol production by new isolates of Clostridium thermocellum [J]. Biotechnol Lett.1996,18(8):957~962.
    [84]Larsen L., Nielsen P., Ahring B. K.. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland [J]. Arch Microbiol.1997,168:114~119.
    [85]Claasen PAM., van Lier J. B., Lopez Contreras A. M. et al.. Utilisation of biomass for the supply of energy carriers [J]. Applied Microbiol Biotechnol.1999,52:741~755.
    [86]Hahn-Hagerdal B., Jeppson H., Skoog K. et al.. Biochemistry and physiology of xylose fermentation by yeasts [J]. Enzyme Microbiol Technol.1994,16:933~943.
    [87]Fu N., Peiris P.. Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus [J]. World Journal of Microbiology and Biotechnology.2008,24:1091~1097.
    [88]Dien B. S., Cotta M. A., Jeffries T. W. et al.. Bacteria engineered for fuel ethanol production:current status [J]. Applied Microbiol Biotechnol.2003,63:258~266.
    [89]Bothast R. J., Nichols N. N., Dien B. S.. Fermentation with new recombinant organisms [J]. Biotechnol Prog.1999,15(5):867~875.
    [90]Fekdmann S. D., Sahm H., Sprenger G. A.. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains [J]. Applied Microbiol Biotechnol.1992, 38:354~361.
    [91]高卫华,张敏华,刘成等.能利用五碳糖和六碳糖生产乙醇的基因工程菌菌株的构建[J].工业微生物.2004,34(1):56~62.
    [92]Zhang M., Eddy C., Deanda K. et al.. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis [J]. Science.1995,267:240~243.
    [93]Deanda K., Zhang M., Eddy C. et al.. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering [J]. Applied Envir Microbiol.1996,62:4465~4470.
    [94]Zhang M., Chou Y.. Single Zymomonas mobilis strain for xylose and arabinose fermentation. U.S.5,843,760.
    [95]Chou Y. C., Zhang M., Mohagheghi A. et al.. Construction and evaluation of a xylose/ arabinose fermenting strain of Zymomonas mobilis [J].19th Symposium on Biotechnology Fuels. Chemical Abstracts, Colorado Springs,1997, May 4~8.
    [96]Ingram L. O., Conway T., Clark D. P. et al.. Genetic engineering of ethanol production in Escherichia coli [J]. Applied and Environmental Microbiology.1987, 53(10):2420~2425.
    [97]Alterthum F., Ingram L. O.. Efficient ethanol production from glucose, lactose and xylose by recombinant Escherichia coli [J]. Applied Environ Microbiol.1989, 55:1943~1948.
    [98]Ohta K., Beall D. S., Mejia J. P. et al.. Genetic improvement of Escherichia coli for ethanol production:chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase Ⅱ [J]. Applied Environ Microbiol. 1991,57:893~900.
    [99]Gary S., August B.. Novel transcriptional control of the pyruvate formate lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression [J]. Journal Bacterial.1989,171:2485~2498.
    [100]Gary S., August B.. Regulation of pyruvate formate lyase from Escherichia coli K-12 [J]. Journal Bacterial.1988,170:5330~5336.
    [101]孙金凤,诸葛健,王正祥.重组肠道细菌作为产乙醇生物催化剂的研究进展[J].工业微生物.2004,34(3):44~48.
    [102]Underwood S. A., Buszko M. L., Shanmugam K. T.. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation [J]. Applied Environ Microbiol.2002,68(3):1071~1081.
    [103]Hasona A., York S. W., Yomano L. P. et al.. Decreasing the level of ethyl acetate in ethanolic fermentation broths of Escherichia coli KO11 by expression of Pseudomonas putida esrZ esterase [J]. Applied Environ Microbiol.2002,68(6):2651~2659.
    [104]Hespell R. B., Wyckoff H. A., Dien B. S. et al.. Stabilization of PET operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities [J]. Applied Environ Microbiol.1996,62:4594~4597.
    [105]Dien B. S., Hespell R. B., Wyckoff H. A. et al.. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain [J]. Enzyme and Microbial Technology.1998,23:366~371.
    [106]Dien B. S., Nichols N. N., Bryan P. J. O. et al.. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass [J]. Applied Biochem Biotechnol.2000,84-86:181~196.
    [107]Lawford H. G., Rousseau J. D.. Loss of ethanologenicity in Escherichia coli B recombinants pLOI297 and KO11 during growth in the absence of antibiotics [J]. Biotechnol Lett.1995,17:751~756.
    [108]Lawford H. G., Rousseau J. D.. Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pLOI297 and KO11 [J]. Applied Biochem Biotechnol.1996,57:293~305.
    [109]Yomano L. P., York S. W., Ingram L. O.. Isolation and characterization of ethanol- tolerant mutants of Escherichia coli KO11 for fuel ethanol production [J]. Journal Ind Microbiol Biotechnol.1998,20:132~138.
    [110]Asghari A., Bothast R. J., Doran J. B. et al.. Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11 [J]. Journal Ind Microbiol.1996,16:42~47.
    [111]Dien B. S., Hespell R. B., Ingram L. O. et al.. Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strain KO11 and SL40 [J]. World Journal Microbiol Biotechnol.1997,13:619~625.
    [112]Dien B. S., Iten L. B., Bothast R. J.. Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3 [J]. Journal Ind Microbiol Biotechnol.1999,22:575~581.
    [113]Ohta K., Beall D. S., Mejia J. P. et al.. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol-production from xylose and glucose [J]. Applied Environ Microbiol.1991,57:2810~2815.
    [114]Bothast R. J., Saha B. C., Flosenzier V. A. et al.. Fermentation of L-arabinose, D-xylose, and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2 [J]. Biothchnol Lett.1994,16:401~406.
    [115]Mohagheghi A., Evans K., Chou Y. C. et al.. Cofermentation of glucose, xylose, and arabinose by genomic DNA integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101 [J]. Applied Biochem Biotechnol.2002,98:885~898.
    [116]Lawford H. G., Rousseau J. D.. The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations [J]. Applied Biochem Biotechnol.1999,77-79:235~249.
    [117]Lawford H. G., Rousseau J. D.. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose [J]. Applied Biochem Biotechnol.2002,98:429~448.
    [118]Lawford H. G., Rousseau J. D., Mohagheghi A. et al.. Fermentation performance characteristics of a prehydrolyzate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations [J]. Applied Biochem Biotechnol.1999, 77:191~204.
    [119]Zaldivar J., Martinez A., Ingram L. O.. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli [J]. Biotechnol Bioeng.2000,68:524~530.
    [120]Zaldivar J., Martinez A., Ingram L. O.. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli [J]. Biotechnol Bioeng.1999, 65:24~33.
    [121]Zaldivar J., Ingram L. O.. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01 [J]. Biotechnol Bioeng.1999,66:203~210.
    [122]Jarboe L. R., Grabar T. B. Yomano L. P. et al.. Development of ethanologenic bacteria [J]. Advanced Biochem Engin/Biotechnol.2007,108:237~261.
    [123]Moniruzzaman M., Ingram L. O.. Ethanol production from dilute acid hydrolysate of rice hulls using genetically engineered Escherichia coli [J]. Biotechnology Letters.1998, 22(10):943~947.
    [124]田沈,徐鑫,孟繁燕等.木质纤维素乙醇发酵研究进展[J].农业工程学报.2006,22(supp 1):221~224.
    [125]田沈,姚莹秋,蔺增曦等.木质纤维素稀酸水解糖液乙醇发酵研究进展[J].微生物学报.2007,34(2):355~358.
    [126]Simona L., Eva P., Barbel H. H. et al.. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood [J]. Enzyme and Microbial Technology.1999, 24(3-4):151~159.
    [127]Inan M., Meagher M. M.. The effect of ethanol and acetate on protein expression in Pichia pastoris [J]. Journal of Bioscience and Bioengineering.2001,92(4):337~341.
    [128]Palmqvist E., Hahn-Hagerdal B.. Fermentation of lignocellulosic hydrolysates Ⅱ: inhibitors and mechanisms of inhibition [J]. Bioresource Technology.2000, 74(1):25~33.
    [129]Oliva J. M., Negro M. J., Saez F. et al.. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus [J]. Process Biochemistry.2006,41:1223~1228.
    [130]Palmqvist E., Hahn-Hagerdal B.. Fermentation of lignocellulosic hydrolysates Ⅰ: inhibition and detoxification [J]. Bioresource Technology.2000,74(1):17~24.
    [131]薛珺,蒲欢,孙春宝.纤维素稀酸水解产物中发酵抑制物的去除方法[J].纤维素科 学与技术.2004,12(3):48~54.
    [132]Beall D. S., Ohta K., Ingram L. O.. Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli [J]. Biotechnology and Bioengineering.1991,38:296~303.
    [133]Hu R. F., Lin L., Liu T. J. et al.. Reducing sugar content in hemicelluloses hydrolysate by DNS method:a revisit [J]. Journal of Biobased Materials and Bioenergy.2008, 2:156~161.
    [134]Miller G. L.. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytical Chemistry.1959,31(3):426~428.
    [135]Qureshi N., Dien B. S., Nichols N. N. et al.. Genetically engineered Escherichia coli for ethanol production from xylose:substrate and product inhibition and kinetic parameters [J]. IChemE:Food and Bioproducts Processing.2006,84(C2):114~122.
    [136]Skoog K., Hahn H. B.. Effect of oxygenation on xylose fermentation by Pichia stipitis [J]. Applied and Environmental Microbiology.1990,56(11):3389~3394.
    [137]Paul E., Mulard D., Blanc P. et al.. Effects of partial O2 pressure, partial CO2 pressure, and agitation on growth kinetics of Azospirillum lipoferum under fermentor conditions [J]. Applied and Environmental Microbiology.1990,56(11):3235~3239.
    [138]Gupta A., Rao G.. A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor [J]. Biotechnology and Bioengineering.2003,84(3):351~358.
    [139]Lefebvre B. G., Savelski M. J., Hecht G. B.. Ethanol resistant and furfural resistant strain of E. coli FBR5 for production of ethanol from cellulosic biomass [P]. International publication number:WO 2008/048513 A2.2008,24 April.
    [140]Lefebvre B. G., Savelski M. J., Hecht G. B.. Ethanologenic bacteria [P]. International application number:PCT/US2007/021892.2007,12 October.
    [141]沈萍,陈向东.微生物学(第2版)[M].北京:高等教育出版社.2006,5月:79~93.
    [142]张星元.发酵原理[M].北京:科学出版社.2005,3月:315~319.
    [143]王夔.生命科学中的微量元素[M].北京:中国计量出版社.1991,5月:1~53.
    [144]Jarrell K. F., Kalmokff M. L.. Nutritional requirements of the methanogenic archaebacteria [J]. Canadian Journal of Microbiology.1988,34:557~576.
    [145]Diekert G., Konheiser U., Piechulla K. et al.. Biosynthetic evidence of nickel tetrapyrrole structure of facter F430 from Methanobacterium thermoautotrophicum [J]. FEBS Letters.1980,119:118~120.
    [146]Scherer P.. Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry [J]. Biological Trace Element Research.1983,5:149~163.
    [147]Speece R. E.. Environmental requirements for anaerobic digestion of biomass [J]. Advances in Solar Energy.An Annual Review of Research and Development.1985, 2:51~123.
    [148]Zhang Z. Y., Maekawa T.. Effects of sulfur-containing compounds on the growth and methane production of acclimated-mixed methanogens [J]. Biomass and Bioenergy. 1996,10:45~56.
    [149]Zhang Y. S., Zhang Z. Y, Suzuki K. et al.. Uptake and mass balance of trace metals for methane producing bacteria [J]. Biomass and Bioenergy.2003,25:427~433.
    [150]Lodenius M., Tulisalo E.. Open digestion of some plant and fungus materials for mercury analysis using different temperature and sample sizes [J]. The Science of the Environment.1995,176:81~84.
    [151]Mierzwa J., Sun Y C., Chung Y T. et al.. Comparative determination of Ba, Cu, Fe, Pb and Zn in tea leaves by slurry sampling electrothermal atomic absorption and liquid sampling inductively coupled plasma atomic emission spectrometry [J]. Talanta.1998, 47:1263~1270.
    [152]Uchida S., Tagami K., Ruhm W. et al.. Separation of Tc-99 in soil and plant samples collected around the Chernobyl reactor using a Tc-selective chromatographic resin and determination of the nuclide by ICP-MS [J]. Applied Radiation and Isotopes.2000, 53:69~73.
    [153]Megazyme, Bray, Co. Wicklow, Ireland.2008. Website:http://secure.megazyme.com.
    [154]Shuler M. L., Kargi F.. Bioprocess Engineering:Basic Concepts (Second Edition) [M]. Prentice Hall:2001, NJ, USA, pp156.
    [155]Kiemle D. J., Stipanovic A. J., Mayo K. E.. ACS symposium series.2004,122:864.
    [156]Stipanovic A., Kiemle D. J.. Abstracts of Papers,223rd ACS National Meeting.2002, April 7.
    [157]Copur Y., Kiemle D. J., Stipanovic A. et al.. Paperi ja Puu.2003,85:158.
    [158]Standard.Methods Committee 5530 Phenols [M]. Aggregate organic constituents 5000.1988,5/48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700