用户名: 密码: 验证码:
食烟性夜蛾科昆虫对生物碱的适应及仿生型信号分子对烟草生物碱的抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究用烟草为模式植物,建立了烟草中四种主要生物碱及尼古丁的代谢物—可替宁的分离分析的常规方法。以斜纹夜蛾、烟青虫和棉铃虫三种夜蛾科昆虫为模式昆虫,通过测定它们取食烟叶后的虫体、虫粪,比较分析三种夜蛾科昆虫对烟草生物碱的适应机制。昆虫取食或机械性损伤都能激活烟草植株的系统性防卫反应,诱导根部尼古丁运输至受伤及相邻部位,正是在烟草与昆虫互作研究的基础上,选取了一种与烟株创伤信号相颉抗的仿生型信号分子(BSM),研究其与品种、施肥量以及打顶时期等栽培因素的互作效应。优化BSM的应用,从而将烟草生物碱总量及生物碱组成控制在合适的范围,为烟草生物碱的调控提供一条新途径。
     论文主要工作总结如下:
     1.通过大量实验,探索出了一种简单、快速和可靠的反相高效液相色谱法测定烟草中降烟碱、新烟草碱、假木贼碱、尼古丁及其代谢物可替宁的含量。系统的优化了前处理过程中萃取溶剂和萃取方式,应用C18固相小柱进行样品的纯化。通过优化色谱条件最终确定了最佳的仪器测定条件,并从线性范围、精密度和回收率等方面对分析方法进行了验证。实验结果表明,方法具有较宽的线性范围和较高的回收率,五种物质的相对标准偏差在0.89-3.56%之间,整个实验过程加标回收率均大于90%,适合于烟草中生物碱的分析测定。
     2.烟草是斜纹夜蛾、烟青虫和棉铃虫的共同寄主,利用反相高效液相色谱法测定虫体、虫粪和取食的烟叶中生物碱和可替宁的含量以确定昆虫摄取的生物碱是否被吸收、截留、代谢和排泄,从而确定三种夜蛾科昆虫对生物碱的适应机制。结果表明,只有少量生物碱被截留和解毒成可替宁,大部分生物碱是以原来的形式被排出体外。而且,烟青虫和棉铃虫具有比斜纹夜蛾更强的尼古丁代谢能力和生物碱排泄能力。虫粪放置后,可替宁的含量增加,而生物碱含量则降低,表明虫粪中的生物碱可以在外界环境如空气或微生物条件下自然降解。三种夜蛾科昆虫之所以能适应烟草作为寄主植物主要是因为他们拥有强有效的排泄机制。
     3.用源于取食烟草的寡食性昆虫口腔分泌物的仿生型信号分子(BSM)在不同条件下、对不同类型烟草在打顶后进行涂抹处理。用HPLC检测BSM处理株和对照株烟草主要生物碱的含量,分析探讨了BSM在不同条件下对烟草生物碱的抑制作用。结果表明:BSM物质对不同类型烟草打顶后叶片上生物碱的积聚均有不同程度的抑制作用。BSM对烤烟9717中降烟碱的影响最大,中部和上部叶分别降低55.78 %和63.40 %,上部叶各生物碱降幅均大于中部叶,其中尼古丁和总生物碱分别降低25.49 %和26.28 %。BSM浓度对白肋烟中生物碱的抑制效应也有影响,0.1 mol/L的BSM对尼古丁的影响最大,中、上部叶的降低率分别达22.99 %和42.45 %,总生物碱则分别降低22.21 %和37.73 %;0.2 mol/L的BSM可使降烟碱的量显著降低,中部和上部叶分别降低62.94 %和58.53 %。施氮量对BSM的抑制作用也有影响,在高的施氮量(9 kgN/667 m2)下抑制作用更大,可使K326上部叶总生物碱降低34.76 %。
     4.研究了烤烟云烟85在7kg N/667m2和9kg N/667m2施氮量时,在现蕾、初花、中花和盛花四个不同花期打顶后施用BSM对烟株中各生物碱含量的影响。结果表明,在两种施氮量时,BSM对不同花期处理的烟株中生物碱的积累均有抑制作用。在现蕾期处理可有效抑制尼古丁积累,在中花期处理可显著降低三种微量生物碱积累。就两种施氮量而言,在9kg N/667m2时各花期处理后的烟株中生物碱含量与对照相比降幅较大。
This paper seeked to explore a simple routine analytical method to separate and determine four major alkaloids in tobacco and cotinine of metabolism of nicotine, and apply this methodology to analyze alkaloids and cotinine of larvae, frass, and tobacco, in order to determine the adaptation mechanism of noctuid caterpillars to tobacco alkaloids. Herbivore feeding or mechanical wounding can activate some chemical defense system of tobacco, which induce a rapid increase of nicotine in roots and transport to damaged and adjacent parts. On the basis of the interaction between tobacco and insects, a bionics signal molecule which has a gainst responses to would signal of tobacco was selected to treated tobacco. The research on the interaction effects between bionics signal molecule and the cultivation factors of varieties, fertilizer, and topping time were studied. The contents of tobacco alkaloids and composition were controlled in a appropriate range by optimizing the application conditions of BSM. To provide a new way in the control of alkaloids content in tobacco leaves.
     Four main aspects were included in the dissertation:
     1. A novel, simple, quick and reliable method for analysis of nornicotine, anatabine, anabasine, nicotine and cotinine has been developed utilizing reverse high performance liquid chromatography. A series of optimization were done to find the most effective extraction solvent and technology for tobacco sample, and application of solid-phase C18 column for purification of samples. The best determination conditions were chosen after a series of optimization, and the method was validated by linearity, percision, repeatability and recovery. RSD value of five reference materials were from 0.89 to 3.56%, and the overall recovery was above 90%, all these datas showed that this improved method was feasible for tobacco analysis system.
     2. Tobacco is a common host plant of Helicoverpa armigera (Hübner), Helicoverpa assulta (Guenée) and Spodoptera litura (Fabricius) (Lepidoptera, Noctuidae). Larvae, frass and tobacco were analyzed by HPLC to determine if alkaloids were assimilated, sequestered, metabolized and excreted. In order to confirm the adaptation mechanism of this three noctuid caterpillars to tobacco alkaloids. The results of this investigation strongly suggest that only a small amount of alkaloids are sequestered and detoxified into cotinine by three noctuid insects, and alkaloids are excreted unmodified. Furthermore, H.assulta and H.armigera have stronger ability of nicotine metabolism and alkaloids excretion capacity than S.litura. Cotinine concentration in storaged frass of S.litura were increased with the growth of storage time, and alkaloids content were declined in this conditions. It is showed that alkaloids contained in the frass naturally degrades to cotinine in the presence of environmental conditions such as air , or microorganism. Three noctuid insects which have become adapted to tobacco as a host plant mainly because of an efficient excretory mechanism.
     3. The application of bionics signal molecule (BSM) from tobacco feeding oligophagous insect oral secretion to diverse types of tobacco after topping in different conditions. The major alkaloids concentrations in tobacco leaves treated with BSM and untreated control were analyzed by HPLC, and the impact of BSM on the alkaloids under different conditions were discussed. Results indicated that BSM could inhibit the alkaloids accumulation after topping in various tobacco leaves at different levels. Applied BSM on 9717 could markedly reduced the level of nornicotine in middle and upper leaves by 55.78% and 63.40% respectively, while alkaloids in upper leaves decrease more in comparison with middle leaves, there were 25.49% and 26.28% decline of nicotine and total alkaloids in upper leaves. The concentrations of BSM also have inhibitory effects on alkaloids accumulation in burley, with the biggest effect on nicotine by 0.1 mol/L and nornicotine by 0.2 mol/L. Applied 0.1 mol/L BSM to burley displayed a decrease of nicotine by 22.99% and 42.45%, total alkaloids by 22.21% and 37.73% in middle and upper leaves respectively ,While treated with 0.2 mol/L BSM showed a decrease of nornicotine by 62.94% and 58.53 % in middle and upper leaves respectively. Furthermore, there are some influence of nitrogen content on the regulating effect of BSM in K326 . The total alkaloids concentrations of upper leaves were lowest with 9 kg/667 m2 N applied , an decrease of 34.76 % compared with the control.
     4. The effects of the topping time in the budding, early-flowering, medium- flowering and full-blooming stage treated with BSM at nitrogen rate of 7kg N/667m2 and 9kg N/667m2 on the content of alkaloids in flue-cured tobacco yunyan 85 were studied, which indicated that both the early and late topping treated by BSM could inhibit the alkaloids accumulation in tobacco leaves. Tobacco treated by BSM aftertopping at budding stage were favorable for reducing the nicotine accumulation and the topping at medium-flowering stage could dramatically decrease the three minor alkaloids accumulation in tobacco leaves. The content of alkaloids in different topping time treated with BSM at nitrogenous fertilizer of 9kg N/667m2 has greater decline compared to 7kg N/667m2.
引文
段江燕.杜黎明,吴昊,等. 2006.番茄碱对棉铃虫的毒性作用机理初探[J].西北植物学报, 26(1):117-120.
    段江燕,徐志宏,丰举例,等. 2005.番茄碱对棉铃虫毒性分析[J].山西师范大学学报(自然科学版),19 (4):63-66.
    高桂芝,田振贵,白志诚. 1995.“926”植物生长调节剂对烤烟产量和质量的影响[J].延安大学学报:自然科学版,14(4):61-63.
    高锦明. 2003.植物化学[M].北京:科学出版社.
    高文霞,陈朝阳,江豪,等. 2005.施氮量、留叶数和喷施α-NAA对烤烟K326烟碱的影响[J].山西农业大学学报, 25(3) : 207-210.
    郭群召,刘卫群,陈良存,等. 2004.降低烤烟上部叶烟碱含量的综合措施[J].耕作与栽培, (1):58-59.
    韩锦锋,郝冬梅,刘华山,等.2001.不同植物激素处理方法对烤烟内烟碱含量的影响[J].中国烟草学报,7(2):22-25.
    韩锦峰. 1992.多胺对烟草生长发育及烤烟产质的生理效应[J].中国烟草, (1): 1-6.
    韩锦锋. 1988. GA3对烤烟烟叶产量和品质的影响[J].河南农业科学, (11) : 17 -19.
    韩锦峰,史宏志,官春云,等. 1991.不同施氮水平和氮素来源烟叶碳氮比及其与碳氮代谢的关系[J].中国烟草学报3(1):19-25.
    和丽忠,张晓林,陈锦玉,等. 2001.生长调节物质对烤烟增钾控氮的作用及其对烟叶品质的影响[J]. 17(4):10-14.
    籍越,李启任,何松林. 1997.生长素对烟草愈伤组织中尼古丁、氨基酸含量及GOT活性的影响[J].河南农业大学学报,31(1):70-74.
    李首昌,刘凤忻. 2002.生物农药的开发与应用[J].现代化农业, 7:10-11.
    李晓东,陈文奎,胡美英. 1995.印楝素、Rhodojaponin-Ⅲ对斜纹夜蛾的生活活性及作用机理的研究[J].华南农业大学学报, 16(2): 80-85 .
    林彩丽,杨铁钊,杨述元,等. 2003.不同基因型烟草生长过程中主要化学成分的变化[J].烟草科技, (1):30-34.
    林桂华,周冀衡. 2002.打顶技术对烤烟产质量和生物碱组成的影响[J].中国烟草科学, (4) : 8-12.
    刘芳,李永忠,文国松,等. 2005.不同植物生长调节剂对烤烟上部叶质量的影响[J].广西农业科学, 36(4):303-305.
    刘华山,韩锦峰,曾涛,等. 2005a.烤烟喷施降碱增钾制剂的生理效应及对品质的影响[J].华北农学报, 20(3):46-49.
    刘华山,朱大恒,韩峰,等. 2005b.外源植物生长调节物质对烟草根中烟碱含量和烟碱合成酶活性变化的生理效应[J].植物生理学通讯, 41(3) :319-321.
    龙德清,杨峰,2006.魔芋生物碱的开发应用[J].食品研究与开发, 27(1):101-104.
    陆永跃,梁广文. 2003.多种植物提取物对小菜蛾产卵的驱避作用[J].华南农业大学学报(自然科学版), (3):102-103.
    罗万春,李寿云,慕立义. 1997.几种苦豆子生物碱对小菜蛾部分生理指标的影响[J] .昆虫知识, 34(4):212-215.
    齐群刚. 1982.生长调节剂对烟草产质的影响[J].中国烟草, (3):24-26.
    钦俊德. 1987.昆虫与植物的关系[M].北京:科学出版社, 155.
    秦秋菊,高希武. 2005.昆虫取食诱导的植物防御反应[J].昆虫学报, 48(1) : 125-134 .
    徐美娟,管致和. 1994.番茄植株中生物碱类对菜青虫(Pieris rapae L.)活性组分的分离及提纯[J].北京农业大学学报, 20(4):153-156.
    许刚,等. 1987.实夜蛾属二近缘种对寄主植物次生物质的反应:次生物质对幼虫生长和食物利用的影响[J].昆虫学报, 30(4):35 9-366.
    徐晓燕,王华松,武雪萍,等. 2002.施肥及生长调节剂对烟草烟碱和钾含量的影响[J] .山西农学,22(1):18-21.
    杨撮德,朱膊,赵博光,等. 2005.昔豆草生物碱对分月扇舟蛾的取食、生长和繁殖的抑制作用[J].林业科学,41(4):106-111.
    杨宇虹,杨硕媛,崔国明,等. 1999.不同形态氮素配比对地膜烟的生长及烟叶品质和产量影响[J].云南农业大学学报, 14(3):245-249.
    曾凌,张丹,孙五三,等. 2002.农艺栽培措施对烟草烟碱合成与积累的影响[J].辽宁农业科学, (6) : 8-10.
    张思谦译. 1962.各种不同品种的烟草烟草甲发育的适宜性[J].生物学文摘昆虫学部分, (3):35
    张鑫,叶非. 2007.植物源农药中生物碱提取和纯化技术进展[J].农药科学与管理, 25(2):28-31.
    张兴.1993.川楝索引致菜青虫中毒症状研究[J].西北农林科技大学学报(自然科学版), 21(1):27-30.
    张秀英,韩锦峰,岳彩鹏,等. 2002.丙二酸对烤烟烟碱含量的影响研究初报[J].中国烟草科学, (3):23- 24.
    钟国华,胡美英,翁群芳. 2000.黄杜鹃提取物对甜菜夜蛾的生物活性[J].西北农业大学学报,28(2) : 98-102 .
    周冀衡,朱小平,王彦亭,等. 1996.烟草生理与生物化学[M].合肥:中国科学技术大学出版社.
    周冀衡.1995.应用植物生长调节剂培养烟草壮苗技术[J].种子科技, (5) : 35.
    周琳. 2007.植物生物碱的杀虫作用及应用[J].河南林业科技, 27(1):32-36.
    宗娜. 2004.棉铃虫和烟青虫取食对烟草防御反应的诱导[D].中国科学院动物研究所.
    祖艳群,林克惠. 2002.氮、钾营养对烤烟品质的影响[J].土壤通报, 33(6): 417-420.
    左天觉著.朱尊权等译. 1993.烟草昆虫和生物碱,烟草的生产,生理和生物化学[M] .上海远东出版社, 337-338.
    Dowd P F.等著.陈德巧译,1991.共生酵母对烟草甲有毒物质抗性的作用[J].国外植物保护文摘, (2):8.
    Johnson J C.等著.郭承芳译. 1994.烟草腺毛的遗传[J].国外烟草,(2) :3 1- 34.
    Milne D L . 1962.用尼古丁延缓烟草甲Lasioderma serricorne生长的机制[M],农业文摘第三分册. (11):14.
    Self L S , Guthrie F E .等. 1965.取食烟草的昆虫对尼古丁的代谢[J],农业文摘经济昆虫学, (6):33.
    Adler L S. 2000. Alkaloid uptake increases fitness in a hemiparasitic plant via reduced herbivory and increased pollination[J]. Am Natl, 156(1): 92-99.
    Adler L S, Karban R, Strauss S Y. 2001. Direct and indirect effects of alkaloids on plant fitness via herbivory and pollination[J]. Ecology, 82(7) : 2032-2044 .
    Bais H P, Vepachedu R, Gilroy S. 2003. Allelopathy and Exotic Plant Invasion: From Molecules and Genes to Species Interactions [J]. Science, 301:1377-1380 .
    Baldwin I T. 2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco[J].Plant Physiology, 127(4) : 1449-1458.
    Baldwin I T. 1998a. Jasmonate-induced responses are costly but benefit plants under attack in native Populations[J]. Proc. Natl. Acad. Sci. USA, 95 :8113-8118.
    Baldwin I T.1988b. Damage-induced alkaloids in tobacco: pot-bound plants are not inducible [J]. J Chem Ecol, 14(4):1113-1120.
    Baldwin I T. 1996. Methyl jasmonate-induced nicotine production in Nicotiana attenuata: Inducing defenses in the field without wounding [J]. Entomol Exp Appl, 80:213-220.
    Baldwin I T.1991. Damage-induced alkaloids in wild tobacco [C]//Raupp M J, Tallamy D W. Phytochemical Induction by Herbivores. New York: John Wiley & Sons,47-49.
    Baldwin I T, Gorham D, Schmelz EA, et al. 1998. Allocation of nitrogen to an inducibled efense and seed production in Nicotiana attenuata[J]. Oecologia, 115:541-552.
    Baldwin I T and Karb M J. 1995. Plasticity in allocation of nicotine to reproductive parts in nicotiana-attenuata[J]. J Chem .Ecol.,21 :897-909.
    Baldwin I T, Schemlz E A, and Ohnmeiss T E. 1994. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes[J]. J. Chem. Ecol, 20 : 2139-2157.
    Baldwin I T, Zhang Z P, Diab N, et al.1997. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris[J]. Planta , 201:397-404.
    Barbosa P, Saunders J A, Kemper J, et al. 1986. Plant allelochemicals and insect parasitoids effects of nicotine on Cotesia congregata (Say) (Hymenoptera, Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera, Ichneumonidae) [J]. J. Chem. Ecol, 12: 1319-1328 .
    Bennett R N, Wallsgrove R M. 1994. Secondary metabolites in plant defense mechanisms [J]. New Phytol, 127:617–633.
    Berenbaum M R. 1990. Evolution of specialization in insect-umbellifer associations [J]. Ann. Rev. Entomol, 35 : 319-343 .
    Bernasconi M L, Turlings T C J, Ambrosetti L. et al.1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Ent Exp Appl, 87, 133-142.
    Bernays E A, Chapman R F.2000. Plant secondary compounds and grasshoppers: Beyond plant defenses [J]. J Chem.Ecol.26 :1773-1794.
    Blades D, Mitchell B K. 1986. Effect of alkaloids on feeding by phormia regina [J]. Entomologia Exprimentalist App Hcata, 4(3):299-304.
    Champagne D E, Koul O, Isman M B, et al. 1992. Biological cativity of limoniods from the rutales[J]. Phytochemistry, 31: 377-394.
    Dangl J L, McDowell J M. 2006. Two modes of pathogen recognition by plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 8575-8576.
    Delpech V R, Ihara M, Coddou C, et al. 2003. Action of Nereistoxin on Recombinant Neuronal Nicotinc Acetylcboline Receptors Expressed in Xenopus laevis Oocytes[J].Invertebrate Neuroscience, 5(1):29-35.
    Dicke M. 1994. Local and systemic Production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism[J]. Plant Physiol, 143, 465-472.
    Dobler S. 2001. Evolutionary aspects of defense by recycled plant compounds in herbivorous Insects[J]. Basic Appl. Ecol.,2: 15 -26.
    Eichenseer H, Mathews M C, Bi J L, et al. 1999. Salivary glucose oxidase: Multifunctional roles for Helicoverpa zea?[J]. Arch. Insect Biochem.Physiol. ,42 (1):99 -109.
    Ehrlich P R, Raven P H.1964. Butterflies and plants:a study in coevolution [J]. Evolution, 18 : 586 -608.
    Faini F, Labbe C. 1997. Chemistry, toxicity and antifeedant activity of the resin of Flourensia thurifera [J]. Biochemical Systematics and Ecology, 25(3): 189-193.
    Felton G W. 2005. Indigestion is a plant’s best defense[J]. Proceedings of the National Academyof Sciences of the United States of America, 102(52) : 18771-18772 .
    Ferry N, Edwards M G, Gatehouse J A, et al. 2004. Plant-insect interactions: Molecular approaches to insect resistance[J]. Current Opinion in Biotechnology, 15, 155-161.
    Fowler S V, Lawton J H .1985. Rapidly induced defenses and talking trees; the Devil's advocated position[J]. Am Nat 126:181-195
    Girard C, Le Métayer M, Bonadé-Bottino M. 1998. High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae[J]. Insect Biochem. Mol. Biol , 28 :229-237.
    Glendinning J I. 2002. How do herbivorous insects cope with noxious secondary plant compounds in their diet?[J]. Entomol Exp. Appl, 104: 15-25 .
    Green T R, Ryan C A .1972. Wound-induced proteinase inhibitors in plant leaves: a possible defense mechanism against insects[J].Science 175 : 776-777
    Guillet G, Podeszfinski C Regnault-Roger C, et al.2000. Behavioral and biochemical adaptations of generalist and specialist herbivorous insects feeding on Hypericum perforatum (Guttiferae) Environ[J]. Entomol.,29:135- 139.
    Guthrie F E, Campbel W V ,and Baron R L . 1962 . Feeding Sites of green peac aphid with respect to its adapation to tobacco[J]. Ann. Ent. Soc. Am ,55:42-46.
    Halitschke R, Schittko U, Pohnert G, et al. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata.Ⅲ. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses[J].Plant Physiol.,125:711-717.
    Halitschke R, Kessler A, Kahl J, et al . 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata[J]. Oecologia,124:408- 417.
    Harbome J B. 1988. Introduction to Ecological Biochemistry (3rd) [M]. London: Academic Press. Haukioja E. 1990. Induction of defenses in trees[J]. Annual Review of Entomology, 36: 25-42.
    Heil M and Baldwin I T. 2002. Fitness costs of induced resistance: Emerging experimental support for a slippery concept[J].Trends Plant Sci.,7: 61 -67.
    Heijar J, Nerg A-M, Kainulainen P, et al. 2005. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings [J]. Entomol Exp Appl, 115:17–124.
    Herbert R B. 1989. The Biosynthesis of Secondary Metabolites. 2nd edn, Chapman and Hall, London. 232 pp.
    Hu M Y, Kolcke J A, Chiu S F. 1993. Response of five insects to botanical insecticides, Rhodojaponin-Ⅲ[J]. J. Econ. Entomol, 86(3) : 706-711 .
    Jander G, Cui J P, Nhan B, et al. 2001. The TASTY locus on chromosome 1 of Arabidopsis affects feeding of the insect herbivore Trichoplusia ni [J]. Plant Physiol.,126:890-898.
    Johnson R, Narvvaez J, An G, Ryan C A. 1989. Expression of proteinase inhibitorsⅠandⅡin transgenic tobacco plants: Effects on natural defense against Manduca sexta larve. Proc Natl Acad Sci USA, 86, 9871-9975.
    Kahl J, Siemens D H, Aerts R J, et al. 2000. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore[J]. Planta, 210: 336-342.
    Keinanen M, Oldham N J, Baldwin I T. 2001. Rapid HPLC screening of jasmonate-induced increase in tobacco alkaloids, phenolics and diterpene glycosides in Nicotiana attenuata[J]. J Agric Food Chem, 49, 3553-3558.
    Kessler A, Baldwin IT. 2002. Plant responses to insect herbiovory: The emerging molecular analysis [J]. Annual Review of Plant Biology, 53 : 299-328 .
    Kessler A, Baldwin I T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 291 : 2141-2144 .
    Korth K L and Dixon R A. 1997, Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves[J] . Plant Physiol.,115:1299 -1305.
    Li X ,Schuler M A,Berenbaum M R.2002. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes[J]. Nature, 419(17):712-715.
    Lombardero M J, Ayres M P, Lorio P L Jr, et a1. 2000 . Environmental effects on constitutive and inducible resin defences of Pinus taeda[J]. Ecology Letters. 3 : 329-339 .
    Lou Y, Baldwin I T. 2003. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants[J].Proceedings of the National Academy of Sciences of the United States of Ame rica, 100 : 14581-14586.
    Martin D, F?ldt J, Bohlmann J. 2004. Functional characterization of nine Norway spruce TPS gene and evolution of Gymnosperm terpene synthases of the TPS-d subfamily[J]. Plant Physiology, 135(4) : 1908-1927 .
    McCloud E S and Baldwin I T. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris[J]. Planta,203:43 0-435.
    McNaughton S J, Tarrants J L .1983. Grass leaf silicification: Natural selection for an inducible defense against herbivores[J]. Proc Natl Acad Sci. USA 80:790-791.
    Meada M. 1987. Nauromus cular action of insecticidal domoic acid on the America cockroach[J]. Pestic Biochem and Physi, (28):85-92.
    Miller J S, Feeny P. 1983. Effects of benzylisoquinoline alkaloids on the larvae of polyphagous (Lepidoptera)[J].Oecologia, 58(3):332-339.
    Miyoshi H, Major I T, Mary E C, et al. 2001. A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx) : cloning, functional expression, and induction by wounding and herbivory. Plant Mol Biol, 46, 347-359.
    Musser R O, Hum-Musser S M, Eichenseer H, et al. 2002. Caterpillar saliva beats plant defenses[J]. Nature,416:599-600.
    Nielsen J K, Hansen M L, Agerbirk N, et al.2001. Responses of the flea beetles Phyllotret a nemorum and P.cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile[J].Chemoecology, ll : 75 -83.
    Nitza Y, Ephraim C. 2002. Acetylchoinlinesterase of the California red scale Anoidiella aurantii Mask:Catalysis,inhibition and reactivation [J]. Pestic Biochem Physiol, 72:133-141.
    OhnmeissT E and Baldwin I T .2000. Optimal Defense theory predicts the ontogeny of an induced nicotine defense[J]. Ecology,81:1765-1783.
    Ohnmeiss T, McCloud E S, Lynds G Y, et al. 1997. Within-plant relationships among wounding, jasmonic acid, and nicotine: Implications for defense in Nicotiana sylvestris [J]. New Phytol, 137:441-452.
    Orozco-Cardenas M L, Narvaez-Vasquez J, Ryan C A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin,and methyl jasmonate[J]. Plant Cell,13 :179-191.
    Paiva N L.2000. An Introduction to the Biosynthesis of Chemicals Used in Plant-Microbe Communication [J]. Journal Plant Growth Regulation, 19:131-143.
    Parr J C and Thursten R . 1972. Toxicity of tobacco nicotine in Synthetic to larvae of the tobacco homworm Ann. Ent Soc . Amer, 65 :1185– 1188.
    Rhoades D F .1979. Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores:Their Interactions with Secondary Plant Compounds[M]. NY Academic Press, pp 4-54.
    Roda A L, Baldwin I T. 2003. Molecular technology reveals how the induced direct defenses of plants work[J]. Basic and Applied Ecology, 4 : 15-26 .
    Ryan C A. 1978. Proteinase inhibitors in plant leaves: a biochemical model for pest-induced natural plant protection[J].Trends Biochem. Sci .,3: 148-150.
    Schittko U, Preston C A, Baldwin I T. 2000. Eating the evidence? Manduca sexta larvae can not disrupt specific jasmonate induction in Nicotiana attenuata by rapid consumption[J]. Planta, 210:343-346.
    Schmeltz I. 1971. Nicotine and other tobacco alkalioids [C]// Jacobson M, Crosby D G. Naturally Occurring Insecticides. New York: Mercel Dekker, 99–136.
    Schults J C.1983. Habitat selection and foraging tactics of caterpillars in hetergoenous trees, in : Denno R F &McClure M S(ed) Variable plant and herbivres in natural and managed system, Academic Press, New York.
    Schultz J C, Baldwin IT.1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae[J]. Science 217 : 149-151.
    Self L S, Guthrie F E, Hodgson E. 1964. Metabolism of nicotine by tobacco-feeding insects[J]. Nature, 204, 300–301.
    Shen B , Zheng Z , Dooner H K. 2000. A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: Characterization of wild-type and mutant alleles[J]. Proc. Nati Acad Sci, 97(26) : 14808-14812 .
    Shoji T, Yamada Y, Hashimoto T. 2000. Jasmonate induction of Putrescine N-Methyltransferase genes in the root of Nicotinana sylvestris [J]. Plant Cell Physiol, 41(7):831-839. Simms E L and Fritz R S.1990.The ecology and evolution of host plant resistance to insects[J]. Trends Ecol. Evol .,5 :356-360.
    Snyder M J, Hsu E L, Feyereisen R .1993. Induction of cytochrome P -450 activities by nicotine in the tobacco homworm Manducas exta[J]. J Chem. Ecol., 19:2903-2916.
    Srivastava S, Gupta M M, Prajapati V, et al. 2001. Sesamin a potent antifeedant principal from Piper mullesua[J], Phytother. Res, 15(1): 70-72.
    Steppuhn A, Gase K, Krock B, et al. 2004. Nicotine,s defensive function in nature[J]. Pub Lib Sci Biol, 2(8): 1074-1080.
    Stout M J, Workman K V, Bostock R M, et al. 1998. Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum) foliage. Entomol Exp Appl, 86, 267-279.
    Takabayashi J, Dicke M. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants[J]. TIPS, 1:109-113.
    Tattersall D B, Bak S, Jones P R, et al . 2001. Resistance to an herbivore through engineered cyanogenic glucoside synthesis[J]. Science, 293:1826-1828.
    Taylor M F J, Forno I W. 1987. Ovipodition preferences of the salvinia moth Samea multiplicalis Guenee (Lep., Pyralidae) in relation to hostplant quality and damage[J]. J. Appl. Entomol, 104: 73-78 .
    Thaler J S, Stout M J, Richard K, et al. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol Entomol, 26, 312-324.
    Tscharntke T, Thiessen S, Dolch R, et al. 2001. Herbivory, induced resistance, and interplant signal transfer in Alunus glutinosa. Biochem System Ecol, 29, 1025-1047.
    Tumlinson J H, Turlings T C J, Lewis W J. 1993. The semiochemically mediated foraging behavior in beneficial parasitic insects[J]. Arch Insect Biochem. Physiol, 22 : 385-391.
    Turlings T C J, Tumlinson J H, Lewis W J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps[J]. Science, 250 : 1251-1253 .
    Turlings T C J, Loughrin J H, McCall P J, et al. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps[J] . Proc. Natl. Acad. Sci. U.S.A. 92 : 4169-4174.
    Underwood N, Rausher M D. 2002. Comparing the consequences of induced and constitutive plant resistance for herbivore population dynamics [J]. Am Nat1, 160(1):20-30.
    Underwood N, Rausher M D. 2000. The efects of host-plant genolype on herbivore population dynamics[J].Ecology, 1565-1576 .
    Van Dam N M, Horn M, Mares M, et a1. 2001. Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata [J]. Journal of Chemical Ecology, 22(3) : 547-568 .
    Vinson S B. 1976. Host selection by insect parasitoid [J]. Ann. Rev, 21 : 109-134 .
    Walling L L. 2000. The myriad plant responses to herbivores[J]. Journal of Plant Growth Regulation, 19, 195-216.
    Whiteman D W. 1988. Alleolochemical interaction among plants, herbivores, and their predators[A] . In: Barbosa, P.(eds). Novel Aspects of Insect-Plant Interaction[C]. John Wiley& Sons: VCH Press, 11-64.
    Wink M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective[J]. Phytochemistry, 64: 3-19.
    Wink M, Schimmer O. 1999. In: Wink E, ed. Function of plant secondary metabolites and their exploitation in biotechnology, Annual Plant Reviews[C]. Sheffield: Sheffield Academic Press and CRC Press,17-133.
    Wink M, Theile V. 2002. Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae) [J]. Chemoecology, 12:29-46.
    Zhu-Salzman K, Bi J, Liu T. 2005. Molecular strategies of plant defense and insect counter- defens[J]. Insect Science, 12(1) : 3-15.
    Zong, N. and Wang, C Z. 2004. Induction of nicotine in tobacco by herbi-vory and its relation to glucose oxidase activity in the labial gland of three noctuid caterpillars[J]. Chinese Sci. Bulletin, 49: 1596–1601.
    郭孝武. 1993.超声技术在中草药成分提取中的应用[J].中草药,24(10) : 548-549 .
    黄注传,朱子高,罗家基,等. 1997.用HPLC法测定卷烟总粒相物及烟碱盐中的烟碱含量[J].烟草科技, 125(4) : 29-30 .
    黄注传,罗毅,罗家基,等. 1996.利用HPLC法测定烟叶烟碱含量的一种方法[J].烟草科技,(3): 19-20 .
    单卫青,李华儒.1992.烟草中烟碱的水相萃取和液相色谱分析[J].分析测试通报,11(5): 53-56 .
    杨金辉,孙敏,杨文凡等. 2001. GC法快速测定烟样中生物碱含量[J].云南大学学报(自然科学版), 23(1) : 53-54 .
    杨景量. 1992.中医药成分提取中的应用[M].北京:中国中医药出版社, 145 .
    杨娟,张迪亚,何照范,等. 1999.高效液相色谱法测定烟草中烟碱含量[J].烟草科技, (1): 27-28.
    张建勋,李克安,刘慧芳等. 2004.热解与气相色谱-质谱联用技术在烟草分析中的应用. 32(5) : 573-578 .
    张槐苓,葛翠英,穆怀静,等. 1994.烟草分析与检验[M].郑州:河南科学技术出版社.
    Burns D T, Collin E J. 1977. Rapid determination of certain alkaloids, other than nicotine, in tobacco [J]. J. Chromatogr. A , 133(2) : 378-381 .
    Buszewski B, Lodkowski R. 1991. Isolation and determination of sugars in nicotiana-tabacum on aminopropyl chemically bonded phase using SPE and HPLC [J]. Journal of Liquid Chromatography, 14(6) :1185-1201 .
    Calull M , Marce R M , Borull F. 1992. Determination of carboxylic acids, sugars, glycerol and ethanol in wine and grape must by ion-exchange high-performance liquid chromatography with refractive index detection [J]. J. Chromatogr . 590 (2) : 215-22 .
    Chizzola R . 1994. Rapid sample preparation technique for the determination of pyrrolizidine alkaloids in plant extracts[J]. J. Chromatogr. A , 668 : 427-433 .
    Harvey W R, Stahr H M , Smith W C. 1969. Automated determination of reducing sugars and nicotine alkaloids on the same extract of tobacco leaf[J]. Tob . Sci, 13:13-15 .
    Holstege D M , Seiber J N , Galey F D. 1995. Rapid multiresidue screen for alkaloids in plant material and bioligcal samples [J]. J. Agric. Food Chem. 43 (3) : 691-699 .
    James A S , Denise E B. 1981. Quantitation of major tobacco alkaloids by high-performance liquid chromatography [J]. J . Chromatogr , 205 : 147-154 .
    Jones N M, Bernardo Gil M G, Lourenco M G. 2001. Comparision of methods for extraction of tobacco alkaloids[J]. J . AOAC, 84(2) : 309-416 .
    Kyerematen G A , Damiano M D , Dvorchik B H, et al. 1982. Smoking-induced changes innicotine disposition: application of a new HPLC assay for nicotine and its metabolites [J]. Clin. Pharmacol. Ther. 32 (6) :769-80 .
    Lay-Keow N G. Michel Hupe. 2003. Effects of moisture content in cigar tobacco on nicotine extraction similarity between Soxhlet and focused open-vessel microwaveassisted techniques[J]. J . Chromatogr. A, 101l(1-2) : 213-219 .
    Lourenco M D C, Matos A , Oliveira M C. 2000 .Gas-liquid Chromatographic determination Of major tobacco alkaloids[J]. J. Chromatogr. A , 898(2) : 235-243 .
    McCalley D V . 1993. Evaluation of reversed-phase columns for the analysis of very basic compounds by high-performance liquid chromatography : Application to the determination of the tobacco alkaloids [J]. J. Chromatogr. A. 636(2) : 213-220 .
    Ogg C L, Willits C O, Ricciuti C. 1939. Effect of ammonium on determination of Nicotine[J]. Industrial and Engineering Chemistry, Analytical Edition, 11 : 505-508 .
    Pacifici R, Pichini S, Altieri I, et al. 1993. Determination of nicotine and two major metabolites in serum by solid-phase extraction and high-performance liquid chromatography, and high- performance liquid chromatography-particle beam mass spectrometry[J]. J. Chromatogr , 612 (2) : 209-213 .
    Pakhale S S , Maru G B. 1998 . Distribution of major and minor alkaloids in tobacco, mainstream and sidestream smoke of popular indian smoking products [J]. Food and Chemical Toxicology , 36 (12) : 1131-1138 .
    Piade J J , Hoffmann D. 1980. Chemical studies on tobacco smoke LXVII. Quantitative determination of alkaloids in tobacco by liquid chromatography [J]. J. Liq. Chromatogr. 3 (10) : 1505-1515 .
    Romani A, Baldi A , Tattini M, et al. 1994 . Extraction, purification procedures and HPLC-RI analysis of carbohydrates in olive (Olea europaea L.) plants [J]. Chromatographia, 32: 35-39.
    Sellergren B, Zandera, Renner T, et a1. 1998. Rapid method for analysis of nicotine and nicotine-related substances in chewing gum formulations[J]. J. Chromatogr . A , 829 (1): 143-152.
    Troje Z ?, Fr?be Z , Perovic D. 1997. Analysis of selected alkaloids and sugars in tobacco extract[J]. J . Chromatogr . A, 775 : 101-107 .
    Willits C O, Swain M L, Connelly J A, et a1. 1949. Spectrophotometric determination of nicotine[J]. Anal Chem, 22 (3) : 430-433 .
    Wu C , Siems W F , Hill J H H , et al. 1998 . Analytical determination of nicotine in tobacco by supercritical fluid chromatography–ion mobility detection [J]. J . Chromatogr. A , 811 (1-2) : 157-161 .
    Yang S S , Smetena I , Goldsmith A I. 1996. Evaluation of micellar electrokinetic capillar chromatography for the analysis of selected tobacco alkaloids [J] . J . Chromatogr. A , 746(1) : 131-136 .
    Allen S F, Jason W F, Sandra S I, et al. 2007. No evidence of substantial nicotine metabolism by Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae) reared on tobacco [J]. Journal of Stored Products Research , 43 : 171–176 .
    Anon. 1985. Heliothis armigera Hubner, Noctuidae, Tomato noctuid. Fiches Techniques Sur les Ravageurs des Cultures Vivrieres Tropicales IRATCV, Montpellier, France .
    Ayyanna T, Subbaratnam G V, Dharmaraju E. 1978. Pest complex on sunflower, Helianthus annus Lin in Andhra Pradesh [J]. Indian J Entomol, 40 : 353–356 .
    Baldwin I T. 1999. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity [J]. J. Chem. Ecol , 25: 3–30 .
    Bede J C, Musser R O, Felton G W, et al. 2006. Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis [J]. Plant Molecular Biology, 60 : 519–531 .
    Blechert S, Brodschelm W, H?lder S. 1995. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways [J]. Proc. Natl. Acad. Sci. USA, 92(10) : 4099–4105.
    Cloyd R A. 2004. Natural indeed : are natural insecticides safer and better than conventional insecticides? Illinois Pesticide Review, 17 : 1–2.
    Dowd P F. 1990. Detoxification of plant substances by insects. In : Morgan E D, Mandava N B. (Eds.), CRC Handbook of Natural Pesticides: Insect Attractants and Repellents. CRC Press, Boca Raton, pp. 181–225.
    Eichenseer H, Mathews M C, Bi J L, et al. 1999. Salivary glucose oxidase: multifunctional roles for Helicoverpa zea [J]. Archives of Insect Biochemistry and Physiology , 42 : 99–109.
    Fitt G P. 1989. The ecology of Heliothis species in relation to agroecosystems [J]. Annual Review of Entomology , 34 : 17–52 .
    Green T R, Ryan C A. 1972. Wound induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects [J]. Science, 175: 776–777.
    Guthrie F E, Campbell W V, Baron R L. 1962. Feeding Sites of the Green Peach Aphid with Respect to its Adaptation to Tobacco [J]. Annals of the Entomological Society of America, 55(1) : 42-46 .
    Harvey W R, Stahr H M, Smith W C. 1969. Automated determination of reducing sugars and nicotine alkaloids on the same extract of tobacco leaf [J]. Tob. Sci, 13 : 13-15 .
    Hill D. 1975. Agricultural Insect Pests of the Tropics and their Control. Cambridge University Press, London.
    Jallow M F A, Cunningham J P & Zalucki M P. 2004. Intra-specific variation for host plant use in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): implications for management [J]. Crop Protection , 23 : 955–964 .
    Kumble V, Reed W. 1981. Heliothis : a global problem. Proc Int Workshop on Heliothis Management, ICRISAT Center, Patancheru, India, pp . 9–14 .
    Li S Q, Rahmann H. 1997. Cotton pest management in China. I:Insect pests [J] . Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 104: 611–621.
    Marek J, Navratilova M . 1995. A new glasshouse pest, Helicoverpa armigera (Noctuidae, Lepidoptera) [J]. Ochrana Rostlin, 31 : 143–147 .
    Merkx-Jacques M, Bede J C. 2005. Influence of diet on the larval beet armyworm, Spodoptera exigua, glucose oxidase activity [J]. Journal of Insect Science , 5 : 48 .
    Musser R O, Hum-Musser S M , Eichensser H. 2002. Caterpillar saliva beats plant defences [J] . Nature, 416(11) : 599–600 .
    Musser R O, Cipollino D F, Hum-Musser S M, et al. 2005a. Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in Solanaceous plants [J]. Archives of Insect Biochemistry and Physiology , 58 : 128–137 .
    Musser R O, Kwon H S, Williams S A, et al. 2005b. Evidence that caterpillar labial saliva suppresses infectivity of potential bacterial pathogens [J]. Archives of Insect Biochemistry and Physiology , 58 : 138–144 .
    O’Neil M J, Smith A, Heckelman P E. (Eds.). 2001. The Merck Index, 13th ed. Merck and Company, Whitehouse Station, N J.
    Perry A S, Buckner A J. 1959. The metabolic fate of prolan in a dilanresistant strain of house flies [J]. Journal of Economic Entomology, 52 : 997–1002 .
    Ribeiro J M C. 1995. Insect saliva: function, biochemistry, and physiology. In: Chapman R F, de Boer G. (Eds.), Regulatory Mechanisms in Insect Feeding. Chapman & Hall, New York, pp. 74–97.
    Ryan C A. 2000. The systemin signaling pathway: Differential activation of plant defensive genes [J] . BBA-Proteins and Proteomics, 1477: 112–121.
    Sahayaraj K, Paulraj M G. 1998. Screening the relative toxicity of some plant extracts to Spodoptera litura Fab. (Insecta: Lepidoptera: Noctuidae) of groundnut [J] . Fresenius Environ Bull, 7: 9–10 ; 557–560 .
    Self L S, Guthrie F E, Hodgson E. 1964a. Metabolism of nicotine by tobacco-feeding insects [J]. Nature, 204 : 300–301 .
    Self L S, Guthrie F E, Hodgson E. 1964b. Adaptation of tobacco hornworms to the ingestion ofnicotine [J] . Journal of Insect Physiology, 10 : 907–914 .
    Shanower T G, Romeis J, Minja E M. 1999. Insect pests of pigeonpea and their management[J]. Ann Rev Entomol , 44 : 77–96 .
    Shen S K, Dowd P F. 1991. Detoxification spectrum of the CB symbiont Symbiotaphrina kochii in culture [J] . Experimental and Applied Entomology , 60 : 51–59 .
    Snyder M J, Walding J K, Feyereisen R. 1993. Metabolic fate of the allelo-chemical nicotine in the tobacco hornworm, Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 24 : 837–846 .
    Stotz H U, Kroymann J, Mittchell-Olds T. 1999. Plant-insect interactions [J] . Cur. Opin. Plant. Biol, 2 : 268–272 .
    Troje Z ?, Fr?be Z, Perovic D. 1997. Analysis of selected alkaloids and sugars in tobacco extract [J]. Journal of Chromatography A, 775 : 101-107 .
    Wang C Z, Dong J F. 2001. Interspecific hybridization of Helicoverpa armigera and H. assulta (Lepidoptera: Noctuidae) [J] . Chinese Sci. Bull, 46 : 489–491.
    Ware G W, Whitacre D M. 2004. The Pesticide Book, sixth ed. Meister Media Worldwide, Willoughby, OH.
    Wink M. 1993a. Production and application of phytochemicals from an agricultural perspective [J]. IN Phytochemistry and Agriculture, TA van Beek, H Breteler, eds. Proc. Phytochem. Soc. Europe Vol 34: 171–213, Oxford: Oxford University Press.
    Zaz G M, Kushwaha K S. 1984. Efficacy of Bacillus cereus Frankland and Frankland against different instars of Spodoptera litura (Fabricius) fed on treated cauliflower leaves[J]. J Entomol Res, 8: 216–219.
    Zong N, Wang C Z. 2004. Induction of nicotine in tobacco by herbi-vory and its relation to glucose oxidase activity in the labial gland of three noctuid caterpillars[J], Chinese Sci. Bulletin, 49 : 1596–1601.
    高贵,田野,邵忠顺,等. 2005.留叶数和留叶方式对上部叶烟碱含量的影响[J].耕作与栽培, (5) : 26-27.
    简永兴,杨磊,董道竹,等. 2005.种植密度对新K326上部烟叶农艺性状及烟碱含量的影响[J].作物杂志, (6) : 14-17.
    简永兴,易建华,蒲文宣,等. 2008.α-萘乙酸棉球扎顶对烤烟上部烟叶烟碱含量及糖碱比值的影响[J].作物杂志, (6): 22-25.
    李文卿,陈顺辉,江荣风,等. 2007.不同施氮量对烤烟总氮和烟碱积累的影响[J].中国烟草学报, 13(4) : 31-35 .
    林桂华,周冀衡,范启福,等. 2002.打顶技术对烤烟产质量和生物碱组成的影响[J].中国烟草科学, (4) : 8-12.
    史宏志,黄元炯,刘国顺,等. 2001.我国烟草和卷烟生物碱含量和组成比例分析[J].中国烟草学报, 7(2) : 8-12 .
    元建. 1999.烤烟打顶技术[J].烟草科技, (5) : 42-43 .
    Baldwin I T. 1999. Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity[J]. J Chem Ecol, 25(1) : 3-30.
    Baldwin I T.1988. Damage-induced alkaloids in tobacco: pot-bound plants are not inducible[J]. J Chem Ecol, l4(4): 1113-1120 .
    Bush L P, Fannin F F ,Chelvarajan R L, et al. 1993. Biosynthesis and metabolism of nicotine and related alkaloids. In : Gorrod J W and Wahren J (eds.). Nicotine and Related Alkaloids. Chapman&Hall, London .
    Bush L P. 1981. Physiology and biochemistry of tobacco alkaloids[J] . Recent Adv. in Tobacco Science, 7 : 75-106 .
    Harvey W R, Stahr H M, Smith W C. 1969. Automated determination of reducing sugar and nicotine alkaloid on the same extract of tobacco leaf [J].Tobacco Sci, 13 : 13-15.
    Heijar J, Nerg A M, Kainulainen P, et a1. 2005. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in scots pine sedlings[J]. Entomol Exp Appl, 115 : 117- 124.
    Musser R O, Hum-Musser S M, Eichenseer H, et al. 2002. Herbivory: caterpillar saliva beats plant defences[J]. Nature, 416 (6881) : 599-600.
    Roberts D L. 1988. Natural tobacco flavor [J]. Rec Adv Tob Sci, 14 : 49-81.
    Sharon Y S, Jennifer A R, Jennifer A L,et al. 2002. Direct and ecological costs of resistance to herbivory[J]. TRENDS in Ecology&Evolution, 17(6) : 278-285.
    Shi Q M, Li C J, Zhang F S. 2006. Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin[J]. J Exper Bot, 57(11) : 2899-2907.
    Shoji T, Yamada Y, Hashimoto T. 2000. Jasmonate induction of Putrescine N-Methyltransferase Genes in the root of Nicotinana Sylvestris [J]. Plant Cell Physiol, 41(7) : 831-839.
    Steppuhn A, Gase K, Krock B, et a1. 2004. Nicotine’s defensive function in nature[J]. Pub Lib Sci Biol, 2(8) : 1074– 1080.
    Troje Z S, Frobe Z, Perovie D. 1997. Analysis of selected alkaloids and sugars in tobacco extract[J]. Journal of Chromatography A, 775 : 101-107.
    胡国松,李志勇,穆林等. 2000.烤烟烟碱累积特点研究[J].中国烟草学报, 6(2) : 6-9 .
    史宏志,张建勋. 2004.烟草生物碱[ M].北京:中国农业出版社, 8 .
    元建. 1999.烤烟打顶技术[J].烟草科技, (5) : 42-43 .
    Akehurst B C. 1981. Flue-cured tobacco-areas, forms of production and field management[M]. 2rd ed. New York: Longman, 168-228 .
    Elliot J M. 1975.The effects of stage of topping flue-cured tobacco on certain properties of flue-cured leaves and smoke characteristics of cigarettes [J]. Tob Sci, (19) : 7-9 .
    Harvey W R, Stahr H M, Smith W C. 1969. Automated determination of reducing sugar and nicotine alkaloid on the same extract of tobacco leaf [J].Tobacco Sci, 13 : 13-15.
    Troje Z S, Frobe Z, Perovie D. 1997. Analysis of selected alkaloids and sugars in tobacco extract[J]. Journal of Chromatography A, 775 : 101-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700