用户名: 密码: 验证码:
水稻微波散射特性研究及参数反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达遥感具有全天候、全天时和地物穿透性的特点,适用于多云、多雾、多雨地区地物目标的快速、宏观、定量探测;但是,由于不同地物尤其是植被微波散射机理的复杂性和相关理论研究的滞后性,严重阻碍了雷达遥感巨大的应用潜力。近年来,随着星载SAR观测平台的迅速发展,为了更高效、精确地挖掘雷达遥感数据的应用潜力,迫切需要研究地物的散射机理和参数定量反演算法。本论文以星载SAR和陆基散射计同步观测为数据基础,以正演、反演算法研究为理论依据,详细分析了水稻微波散射特性和参数敏感性,建立了水稻散射经验、半经验和理论散射模型,研究了以散射模型为基础的神经网络等反演算法,实现了SAR图像水稻覆盖区域制图和生物量反演。本论文的主要工作概括如下:
     (1)建立了具有不同频率、不同角度和不同极化测量能力的微波散射测量系统,研究了天线非平面波的近场散射效应和电磁波多路径叠加效应抑制技术,消除了收发天线间因通道不平衡和天线串扰带来的失真矩阵等误差。实现了充分的独立取样和定标,确保了陆基散射计测量的精度。
     (2)完成了2010和2012年两个水稻季的8个不同生长期的散射测量实验。包括:C波段、全极化(HH、HV、VH和VV)和不同入射角(0°-90°)的后向散射系数测量;水稻生物量、高度、LAI、密度、叶片和茎杆参数、下垫面淹水或土壤参数等稻田参数的获取。以水稻生长参数实验数据为基础,建立了水稻生长模型,并对模型的有效性和合理性进行了验证;分析了水稻的散射特性,包括:不同生长期水稻入射角散射特征,水稻时域散射特征,以及水稻散射值与生长参数的相关性特征。
     (3)建立了水稻经验、半经验和理论微波后向散射模型。根据不同输入参数,提出了多参数非线性建模的思路,建立了水稻的多生长参数经验模型。根据散射项的不同,分别建立了水稻的水云模型、改进的水云模型和简化MIMICS模型,并利用实测数据确立了模型的经验参数,对模型分析对比。根据蒙特卡洛方法建立水稻理论微波散射模型,针对水稻结构特征对模型进行了修正,并利用水稻生长模型提供的输出数据进行了仿真,对比模拟和实测数据,验证了模型的准确性。利用建立的理论模型分析了后向散射系数对水稻主要参数的灵敏性。
     (4)根据建立的水稻散射模型,发展了水稻参数经验、半经验和基于Monte-Carlo理论模型的神经网络反演算法,建立了分别针对单极化、双极化和全极化的反演模型。利用水稻散射实验测量数据,分别确立了水稻经验反演模型和不同极化的半经验模型参数,半经验模型包括水云反演算法、改进的水云反演算法和简化的MIMICS反演算法,并比较了算法的优劣性。研究了BP神经网络的设置、训练数据的生成、网络训练精度验证,散射实验测量数据验证了基于Monte-Carlo理论模型的神经网络反演算法的精度。
     (5)将建立的基于简化的MIMICS半经验模型的反演算法和基于Monte-Carlo模拟的神经网络反演算法,用于双极化的ASAR图像和全极化的RADARSAT-2图像上,实现了水稻生物量的反演和验证。其中,双极化ASAR图像水稻生物量反演部分,结合光学TM图像首先实现了水稻区域制图和SAR图像后向散射系数的提取,利用半经验反演算法得到了不同时期的水稻生物量分布,并结合地面实验的实测数据对反演结果进行了验证。全极化RADARSAT-2图像水稻生物量反演部分,给出了生物量反演流程,将水稻散射测量实验、生长模型和Monte-Carlo散射模型的建立、神经网络的训练、多时相RADARSAT-2图像的处理和生物量反演相互关联起来,利用多时相数据分类实现了RADARSAT-2图像上水稻区域的制图,进而利用训练好的神经网络实现了生物量的反演和验证,将反演算法推广到了更大观测区域,实现了大面积水稻的参数反演和长势监测。
     水稻生长参数与后向散射系数之间存在复杂的非线性关系,从有限的雷达观测数据中提取这些参数是一个典型的病态反演问题,难以获得精确量化结果。本文提出以水稻为对象的微波散射特性和参数反演算法研究,不但丰富了植被散射机理的理论和实验研究,也将推动SAR图像植被参数定量反演算法的研究,拓宽雷达遥感技术的应用研究领域,对实现基于雷达遥感的农作物长势监测及估产,乃至植被生态环境的监测具有重要的学科意义和巨大的潜在经济价值。
Radar remote sensing, which has characteristics as penetration and is available inall weather and all time, can be applied to detecting cloudy, foggy, rainy areas in aquick, macro and quantitative method. However, since microwave scatteringmechanism of the different surface features especially vegetation is complicated, whichmade the theoretical research lack of support; it is serious impediment to the radarremote sensing application potentiality. In recent years, several space-borne SARobservation platforms were constructed quickly, so it is possible to exploit moreefficient and accurate potential applications by studying the scattering mechanism of thesurface features and the quantitative inversion algorithm of the parameters. In thedissertation, with the theoretical basis of modeling and inversion algorithms, microwavescattering properties of rice, parameters and sensitivity was analyzed in detail, and thenempirical, semi-empirical and theoretical scattering model of rice were establishedbased on synchronization observations of space-borne SAR and ground-basedscatterometer data. Moreover, focus on neural network inversion algorithm based on thescattering model; the rice coverage area mapping and biomass inversion were achievedfrom SAR images. The main work of the dissertation is summarized as follows:
     (1) A microwave scattering measurement system was constructed with differentfrequencies, different angles and different polarization measurement capability. Thedistortion matrix of the transceiver antennas caused by the unbalanced channel andantenna crosstalk and other errors were eliminated after research on the non-planarwave antenna near-field electromagnetic wave scattering and suppression technology ofmulti-path superimposed effect. Enough independent sampling and precise calibrationguaranteed accurate measurement of the land-based scatterometer.
     (2) Eight different scattering measurements experiments were executed during tworice growing seasons (2010and2012). The measured C-band backscatteringcoefficients included that of full polarization (HH, HV, VH and VV) and differentincident angles (0°-90°). Sampling parameters of rice paddies included rice biomass,height, LAI, density, leaf and stem parameters, underlying surface parameters,waterlogged or soil parameters. The rice growth model was established and verified with the rice growth parameters, and the results were effective and reasonable. Thescattering properties of rice were analyzed, which included scattering characteristics ofangle at different rice growth periods, scattering characteristics of rice time domain, andthe correlation coefficient between scattering coefficients and the rice growthparameters.
     (3) The empirical, semi-empirical and theoretical microwave backscatteringmodels of rice were established. Based on different input parameters, the idea ofmulti-parameter nonlinear modeling was proposed, and then a multi rice growthparameters empirical model was established. According to the different scatteringmechanism, three semi-empirical model of rice, WC (Water Cloudy) model, theimproved WC model and the simplified MIMICS were established. These modelsparameters were acquired from the measured data and were compared and analyzedtheir accuracy separately. With Monte-Carlo method, the theory of microwavescattering model of rice was constructed and the model was modified with ricestructural characteristics. The rice growth model was used to provide input data for themodel simulation, and then the accuracy of the model was verified by comparing thesimulated data with that measured. The sensitivity between backscattering coefficientand the main rice parameters was analyzed by using the theoretical model.
     (4) Inversion algorithms of rice parameters were established according to the ricescattering model, including empirical, semi-empirical and neural network, which werebuilt based on Monte-Carlo theoretical models for single, dual and full polarizationsdata, respectively. The parameters of rice empirical inversion model and semi-empiricalinversion model at different polarization were obtained by using the measured data fromrice scattering experiments. The advantages and disadvantages of WC, improved WCand simplified MIMICS inversion models were compared and analyzed. The BP neuralnetwork (NN) was studied, including parameter settings of NN, the training datageneration, network training accuracy verification. The measured scattering dataverified the accuracy of NN inversion model based on Monte-Carlo model.
     (5) The semi-empirical model as simplified MIMICS and NN inversion algorithmbased on Monte-Carlo model were used to inverse rice biomass from dual polarizationASAR images and full polarization RADARSAT-2images, respectively. The ricemappings were achieved by combining the dual polarization ASAR images with opticalTM images, and then backscattering coefficients of rice area were extracted from SAR images. The rice biomass distribution of different periods was inversed by using thesemi-empirical inversion algorithm, and the inversion results were verified with theground measured data. Biomass inversion process of full polarization RADARSAT-2image was achieved, which involved the rice scattering measurement experiments,growth model and the Monte-Carlo scattering model, neural network training,multi-temporal RADARSAT-2image processing and biomass inversion. Rice areamappings were obtained by using the multi-temporal RADARSAT-2images, and ricebiomasses were inversed and validated by using the trained neural network andmeasured biomass data. The inversion algorithm was extended to the larger observationarea, and the rice biomass inversion of large area and growth monitoring was achieved.
     The complex nonlinear relationship between rice growth parameters andbackscattering coefficient is a typical ill-posed inversion problem, when the limitedradar data were used to extract these rice parameters, which is difficult to obtainaccurate quantitative results. The dissertation studied rice microwave scatteringcharacteristics and parameters inversion algorithm, which can enrich theoretical andexperimental research of the vegetation scattering mechanisms, and promote the SARimage research of quantification inversion algorithm of vegetation parameters. theresearch also expands the application field of radar remote sensing technology, and isproved to own enormous potential economic values for crop growth monitoring,yieldestimation, and even vegetation ecological environment monitoring.
引文
[1] C. Kuenzer, K. Knauer. Remote Sensing of Rice Crop Areas-a Review[J]. InternationalJournal of Remote Sensing,2013,34(6):2101-2139
    [2] FAO. Proceedings of the FAO Rice Conference-Rice Is Life[C]. International RiceCommission Newsletter, Rome, Italy,2004,12-13
    [3] FAO. Rice Market Monitor[J]. Information Update XV,2012,2:1-36
    [4] IRRI (International Rice Research Institute). Bringing Hope, Improving Lives, Strategic Plan2007-2015[C]. Manila, IRRI,2006,61-68
    [5] T. Sakamoto, P. Cao Van, A. Kotera, et al.. Detection of Yearly Change in Farming Systems inthe Vietnamese Mekong Delta from MODIS Time-Series Imagery[J]. Japan AgricultureResearch Quarterly,2009,43:173-85
    [6] J. L. Shang, H. McNairn, C. Champagne, et al.. Application of Multi-Frequency SyntheticAperture Radar (SAR) in Crop Classification[J]. Advances in Geoscience and Remote Sensing,2009,27:557-568
    [7] A. Bouvet, T. Le Toan, L. D. Nguyen. Monitoring of the Rice Cropping System in the MekongDelta Using ENVISAT/ASAR Dual Polarization Data[J]. IEEE Transactions on Geoscienceand Remote Sensing,2009,47(2):517-526
    [8] C. Yonezawa, M. Negishi, K. Azuma, et al.. Growth Monitoring and Classification of RiceFields Using Multitemporal RADARSAT-2Full-Polarimetric Data[J]. International Journal ofRemote Sensing,2012,33(18):5696-5711
    [9] F. T. Ulaby. Radar Response to Vegetation[J]. IEEE Transactions Antennas and Propagation,1975,23(1):36-45
    [10] F. T. Ulaby, T. F. Bush. Radar Response to Vegetation2:8-18GHs Band[J]. IEEE TransactionsAntennas and Propagation,1975,23(5):608-618
    [11] T. F. Bush, F. T. Ulaby. Fading Characteristics of Panchromatic Radar Backscatter fromSelected Agricultural Targets[J]. IEEE Transactions on Geoscience Electronics,1975,13(4):149-157
    [12] J. R. Wang, E. T. Engman, J. C. Shiue, et al.. The SIR-B Observation of MicrowaveBackscatter Dependence on Soil Moisture, Surface Roughness and Vegetation Covers[J]. IEEETransactions on Geoscience and Remote Sensing,1986,24(4):510-516
    [13] T. Suitz, T. Kurosu, T. Umehara. A Measurement of Microwave Backscattering Coefficients ofRice Plants[C]. IEEE International Geoscience and Remote Sensing Symposium (IGRASS),Edinburgh, Scotland,1988,1283-1286
    [14] P. Snoeij, P. J. F. Swart, E. P. W. Attema. The General Behavior of the Radar Signature ofDifferent European Test Sites as a Function of Frequency and Polarization[C]. Proceedings ofthe10th International Geoscience and Remote Sensing Symposium, College Park, Maryland,USA,1990,2315-2318
    [15] T. Le Toan, H. Lanr, E. Mougin, et al.. Multitemporal and Dual-Polarization Observations ofAgricultural Vegetation Covers by X-Band SAR Images[J]. IEEE Transactions on Geoscienceand Remote Sensing,1989,27(6):709-718
    [16] S. Mohan, N. S. Mehta, R. L. Mehta, et al.. Monitoring of Paddy Crop at5.0GHz[J].Scientific Note SAR/RCA/RSAG/SIR-C/SN/01/92, Space Application Centre (ISRO),Ahmedabad, India,1992,38(53):31
    [17] P. Lacomme, J. C. Marchais, E. Normant. Air and Spaceborne Radar systems: anintroduction[M]. New York: William andrew Publishing,2001
    [18] K. S. Rao, Y. S. Rao, R. Gurusamy. Frequency Dependence of Polarization Phase Differenceand Polarization Index for Vegetation Covered Fields Using Polarimetric AirSAR Data[C].Proceedings of the International Geoscience and Remote Sensing Symposium, Tokyo, Japan,1993,37-39
    [19] L. Prevot, I. Campion, G. Guyot. Estimating Surface Soil Moisture and Leaf Area Index of aWheat Canopy Using a Dual-Frequency (C and X bands) Scatterometer[J]. Remote Sensing ofEnvironment,1993,46(3):331-339
    [20] G. G. Lemonie, G. F. De Grandi, A. J. Sieber. Polarimetric Contrast Classification ofAgricultureal Fields Using MASTRO1AirSAR Data[J]. International Journal of RemoteSensing,1994,15(14):2851-2869
    [21] T. Kurosu, M. Fujita, K. Chiba. Monitoring of Rice Crop Growth from Space Using the ERS-1C-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33:1092-1096
    [22] T. Le Toan, F. Ribbes, L. F.Wang, et al.. Rice Crop Mapping and Monitoring Using ERS-1Data Based on Experiment and Modeling Results[J]. IEEE Transactions on Geoscience andRemote Sensing,1997,35:41-56
    [23] S. Kim, B. Kim, Y. Kong, et al.. Radar Backscattering Measurements of Rice Crop UsingX-band Scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(3):1467-1471
    [24] Y. Inoue, T. Kurosu, H. Maeno, et al.. Season-long Daily Measurements of Multifrequency(Ka,Ku,X,C,and L) and Full-Polarization Backscatter Signatures over Paddy Rice Field andtheir Relationship with Biological Variables[J]. Remote Sensing of Environment,2002,81:194-204
    [25] V. C. Koo, B. K. Chung, H. T. Chuah. Development of a Ground-Based Radar for ScatteringMeasurements[J]. IEEE Antennas and Propagation Magazine,2003,45(2):36-42
    [26] K. S. Lim, C. P. Tan, J. Y. Koay, et al.. Multitemporal C-band Radar Measurement on RiceFields[J]. PIERS Online,2007,3(1):44-47
    [27] F. Mattia, T. Le Toan, G. Picard, et al.. Multitemporal C-band Radar Measurements on WheatFields[J]. IEEE Transactions on Geoscience and Remote Sensing,2003.41(7):1551-1560
    [28] J. Y. Hong, Y. Oh, S. Hong. Polarimetric Measurements of Radar Backscatters of a Wet-LandRice Field throughout a Growth Period at L-and C-Bands[C]. IEEE International Geoscienceand Remote Sensing Symposium (IGRASS),2007,3663-3666
    [29] Y. H. Kim, S. Y. Hong, H. Lee. Radar Backscattering Measurement of a Paddy Rice FieldUsing Multi-frequency(L, C and X) and Full-polarization[C]. IEEE International Geoscienceand Remote Sensing Symposium (IGRASS),2008,553-556
    [30] Y. Oh, S. Y. Hong, Y. Kim, et al.. Polarimetric Backscattering Coefficients of Flooded RiceFields at L-and C-Bands Measurements[J], Modeling, and Data Analysis, IEEE Transactionson Geoscience and Remote Sensing,2009,47:2714-2721
    [31] K. S. Lim, V. C. Koo. Design and Construction of a Near Real-Time Advanced AutomatedC-Band Scatterometer System[C]. Progress in Electromagnetics Research (PIER),2008,86:53-70
    [32] K. S. Lim, V. C. Koo, H. T. Ewe. Multi-angular Scatterometer Measurements for VariousStages of Rice Growth[J]. Progress in Electromagnetics Research (PIER),2008,83:385-396
    [33] K.-S. Lim, J. Y. Koay, V.-C. Koo, et al.. High Angular Resolution Measurements of theMonostatic Backscattering Coefficient of Rice Fields[J]. J. of Electromagn. Waves and Appl.,2009,23:1-10
    [34] J. M. Lopez-Sanchez, J. Fortuny-Guasch, S. R. Cloude, et al.. Indoor Polarimetric RadarMeasurements on Vegetation Samples at L, S, C and X Band[J]. Journal of ElectromagneticWaves and Applications,2000,14(2):205-231
    [35] S. C. M. Brown, S. Quegan, K. Morrison, et al.. High-Resolution Measurements of Scatteringin Wheat Canopies-Implications for Crop Parameter Retrieval[J]. IEEE Transactions onGeoscience and Remote Sensing,2003,41(7):1602-1610
    [36] J. Fortuny-Guasch, A. Martinez-Vazquez, D.Riccio, et al.. Experimental Validation of anElectromagnetic Model for Rice Crops Using a Wide-Band Polarimetric Radar[C]. Proceedingof IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2003,2866-2868
    [37] J. L. Gómez-Dans, S. Quegan, J. C. Bennett. Indoor C-band Polarimetric InterferometryObservations of a Mature Wheat Canopy[J]. IEEE Transactions on Geoscience and RemoteSensing,2006,44(4):768-777
    [38] J. Susaki. Measurement of Scattering in X, C and L Bands on Wet and Inundated Soil Surfacefor the Monitoring of Paddy Fields Using SAR Data[C]. Global Environmental Studies, Japan,2008,1-4
    [39]汤明.裸地散射特性分析[J].电波科学学报,1994,9(4):69-75
    [40]温如芳.水稻、小麦后向散射特性的实验研究[J].电波科学学报,1994,9(1):36-47
    [41]汤明,吉健康,任康,等.植被散射实验数据的特性分析[J].电波科学学报,1996,16(3):69-75
    [42]王丽巍,吴季,张玮,等. FM-CW制式陆基微波散射计与IEM模型联合反演地表土壤湿度研究[J].电子学报,2002,30(3):404-406
    [43]贾明权,陈彦,童玲.室内微波散射测量系统[J].材料导报,2009,23(11):143-145
    [44]徐春亮,陈彦,贾明权,等.典型地物后向散射特性的测量与分析[J].地球科学进展,200924(7):810-816
    [45] Z. C. Liu, C. Yan, M. Q. Jia, et al.. Study on the Backscattering Characteristic of Typical EarthSubstances in Northwest of China[C]. Proceeding of IEEE International Geoscience andRemote Sensing Symposium (IGARSS),2009,710-713
    [46] M. Q. Jia, L. Tong, Y. Chen, et al.. S-Band Polarimetric Radar Scattering Measurement fromDifferent Random Rough Surface[C]. International Conference on Advanced Materials inMicrowaves and Optics (AMMO), Bangkok, Thailand,2011,416-421
    [47] C. W. Zhao, Y. Chen, L. Tong, et al.. Multi-Frequency and Multi-Polarization RadarMeasurements over Paddy Rice Field and their Relationship with Ground Parameters[C].IEEE International Geoscience and Remote Sensing Symposium (IGRASS), Vancouver,Canada,2011,1958-1960
    [48] M. Q. Jia, L. Tong, Y. Chen. Multifrequency and Multitemporal Ground-Based ScatterometersMeasurements on Rice Fields[C]. Proceeding of IEEE International Geoscience and RemoteSensing Symposium (IGARSS), Munich, Germany,2012,462-465
    [49] M. Q. Jia, L. Tong, Y. Chen. Multi-Temporal Radar Backscattering Measurement of WheatFields and their Relationship with Biological Variables[C]. Proceeding of IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS), Munich, Germany,2012,4590-4593
    [50] M. Q. Jia, L. Tong, Y. Z. Zhang, et al.. Multitemporal Radar Backscattering Measurement ofWheat Fields Using Multifrequency (L, S, C, and X) and Full-Polarization[J], Radio Science,2014,48, doi:10.1002/rds.20048
    [51] R. H. Lang. Electromagnetic Backscattering from a Sparse Distribution of Lossy DielectricScatterers[J]. Radio Science,1981,16(1):15-30
    [52] R. H. Lang, J. S. Sidhu. Electromagnetic Backscattering from a Layer of Vegetation: aDiscrete Approach[J]. IEEE Transactions on Geoscience and Remote Sensing,1983,21(1):62-71
    [53] S. Rosenbaum, L. W. Bowles. Clutter Return from Vegetated Areas[J]. IEEE TransactionsAntennas and Propagation,1974,22(2):227-236
    [54] P. Beckman, A. Spizzichino. The Scattering of Electromagnetic Waves from RoughSurfaces[J]. Norwood, MA, Artech House, Inc.,1987,511
    [55] M. L. Sancer. Shadow-Corrected Electromagnetic Scattering from a Randomly RoughSurface[J]. IEEE Transaction Antennas and Propagation,1969,17(5):577-585
    [56] C. R.Valenzuela. Depolarization of EM Waves ny Slightly Rough Surfaces[J]. IEEETransaction Antennas and Propagation,1967,15(5):552-557
    [57] S. O. Rice. Reflection of Electromagnetic Waves from Slightly Rough Surfaces[J].Communication on Pure and Applied Mathematics,1951,4(2):351-378
    [58] F. T. Ulaby, R. K. Moore, A. K. Fung. Microwave Remote Sensing: Active and passive.Volume2-Radar Remote Sensing and Surface Scattering and Emission Theory[M]. ArtechHouse, Norwood, MA,1982
    [59] G. Soriano, M. Saillard. A two-Scale Model for the Ocean Surface Bistatic Scattering[C].Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGRASS),2003,4147-4149
    [60] A. K. Fung, Z. Q. Li, K. S. Chen. Backscattering from a Randomly Rough DielectricSurface[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):356-369
    [61] A. K. Fung. Backscattering and Emission Signatures of Random Rough Surface Based onIEM[C]. Proceeding of IEEE International Geoscience and Remote Sensing Symposium(IGRASS),1993,1006-1008
    [62] A. K. Fung. Microwave Scattering and Emission Models and their Applications[M]. Norwood,MA: Artech House,1994
    [63] Y. Du, J. A. Kong, W. Yan, et al.. A Statistical Integral Equation Model for Shadow-CorrectedEM Scattering from Gaussian Rough Surface[J]. IEEE Transaction Antennas and Propagation,2007,55(6):1843-1855.
    [64] C. Y. Hsieh, A. K. Fung. A Further Study of the IEM Surface Scattering Mode[J]. IEEETransactions on Geoscience and Remote Sensing,1997,35(4):901-909
    [65] C. Hsieh, A. K. Fung. Application of an Extended IEM to Multiple Surface Scattering andBackscatter Enhancement[J]. Journal of Electromagnetic Waves and Applications,1999,13(1):121-136
    [66] A. K. Fung, K. S. Chen. An Update on the IEM Surface Backscattering Model[J]. IEEETransactions on Geoscience and Remote Sensing,2004,1(2):75-77
    [67] A. K. Fung, N. C. Kuo. Backscattering from Muti-Scal and Exponentially CorrelatedSurfaces[J]. Journal of Electromagnetic Waves and Applications,2006,20(1):3-11
    [68]金亚秋.随机粗糙面上后向散射的增强[J].物理学报,1989,38(10):51-66
    [69]金亚秋.强起伏连续随机介质的辐射传输理论[J].中国科学,1990,5:1611-1620
    [70] N. Liu, Z. Q. Li. Bi-Spectrum Scattering Model for Dielectric Randomly Rough Surface[J].TsingHua Science and Technology,2003,8(5):617-623
    [71] R. T. Shin, J. A. Kong. Radiative Transfer Theory for Active Remote Sensing of Two-LayerRandom Medium[C]. Progress in Electromagnetics Research (PIER),1989,1(4):359-417
    [72] L. Tsang, J. A. Kong, R. T. Shin. Theory of Microwave Remote Sensing[M].Wiley-Interscience, New York,1985
    [73] L. Tsang, J. A. Kong, R. T. Shin. Radiative Transfer Theory for Active Remote Sensing of aLayer of Nonspherical Particles[J]. Radio Science,1984,19:629-642
    [74] E. P. W. Attema, F. T. U1aby. Vegetation Modeled as a Water Cloud[J]. Radio Science,1978,13(2):357-364
    [75] M. Borgeaud, S. V. Nghiem, R. T. Shin, et al.. Theoretical Models for Polarimetric MicrowaveRemote Sensing of Earth Terrain[J]. J. Electromagnetic Waves and Applications,1989,3(1):61-81
    [76] A. K. Fung, H. S. Fung. Application of First-Order Renormalization Method to Scatteringfrom a Vegetation-Like Half-Space[J]. IEEE Transactions on Geoscience Electronics,1977,15:189-195
    [77] A. K. Fung, F. T. Ulaby. A Scatter Model for Leafy Vegetation[J]. IEEE Transactions onGeoscience Electronics,1978,16:281-285
    [78] M. A. Karam, A. K. Fung. Propagation and Scattering in Multi-Layered Random Media withRough Interfaces[J]. Electromagnetics,1982,2:239—256
    [79] M. A. Karam, A. K. Fung, Y. M. M. Antar. Electromagnetic Wave Scattering from SomeVegetation Samples[J]. IEEE Transactions on Geoscience and Remote Sensing,1988,26(6):799-808
    [80] M. A. Karam, A. K. Fung, Electromagnetic Scattering from a Layer of Finite Length,Randomly Oriented, Dielectric, Circular Cylinders over a Rough Interface with Application toVegetation[J]. Remote Sensing,1988,9(6):1109-1134
    [81] M. A. Karam, A. K. Fung. Leaf-shape Effects in Electromagnetic Wave Scattering fromVegetation[J]. IEEE Transactions on Geoscience and Remote Sensing,1989,27(6):687-697
    [82] M. A. Karam, A. K. Fung. R. H. Lang, et al.. A Microwave Scattering Model for LayeredVegetation[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(4):767-784
    [83] M. A. Karam, F. Amar, A. K. Fung, et al.. A Microwave Polarimetric Scattering Model forForest Canopies Based on Vector Radiative Transfer Theory[J]. Remote Sensing ofEnvironment,1995,53(1):16-30
    [84] J. P. Wigneron, J. C. Calvet, A. Chanzy, et al.. A Composite Discrete-Continuous Approach toModel the Microwave Emission of Vegetation[J]. IEEE Transactions on Geoscience andRemote Sensing,1995,33(1):201-211
    [85] F. T. Ulaby, K. Sarrabandi, K. Mcdonald. et al.. Michigan Microwave Canopy ScatteringModel[J]. INT. J. Remote Sensing,1990,11(7):223-1253
    [86] R. D. De Roo, Y. Du, F. T. Ulaby, et al.. A Semi-Empirical Backscattering Model at L-Bandand C-Band for a Soybean Canopy with Soil Moisture Inversion[J]. IEEE Transactions onGeoscience and Remote Sensing,2001,39(4):864-872
    [87] S. H. Yueh, J. A. Kong, J. K. Jao, et al.. Branching Model for Vegetation[J]. IEEE Transactionson Geoscience and Remote Sensing,1992,30(2):390-402
    [88] A. K. Fung, S. Tjuatja, J. W. Bredow, et al.. Dense Medium Phase and Amplitude CorrectionTheory for Spatially and Electrically Dense Media[J]. Geoscience and Remote SensingSymposium,1995,2:1336-1338
    [89] L. Tsang, J. A. Kong, K. H. Ding, et al.. Scattering of Electromagnetic Waves: NumericalSimulations[M]. Wiley-Interscience, New York,2001
    [90] J. T. Johnson. Application of Numerical Models for Rough Surface Scattering[D]. Ph.D.Dissertation, MIT,1996
    [91] K. Pak, L. Tsang, C. H. Chan, et al.. Backscattering Enhancement of Electromagnetic Wavesfrom2-D Perfectly Conducting Random Rough Surfaces Based on Monte CarloSimulations[J]. Journal of the Optical Society of American (Optics, Image Science and Vision),1995,12:2491-2499
    [92] L. Tsang, C. H. Chan, K. Pak. Backscattering enhancement of a Twodimensional RandomRough Surface (Three-Dimensional Scattering) Based on Monte Carlo Simulations[J]. Journalof the Optical Society of America a (Optics, Image Science and Vision),1994,11:711-715
    [93] L. Tsang, C. Mandt, K. H. Ding. Monte Carlo Simulations of the Extinction Rate of DenseMedia with Randomly Distributed Dielectric Spheres Based on Solution of Maxwell'sEquations[J]. Opt. Lett.,1992,17(5):314-316
    [94] L. M. Zurk, L. Tsang, K. H. Ding, et al.. Monte Carlo Simulations of the Extinction Rate ofDensely Packed Spheres with Clustered and Non-Clustered Geometries[J]. Journal of theOptical Society of America a (Optics, Image Science and Vision),1995,12:1772-1781
    [95] L. Tsang, K. H. Ding, G. Zhang, et al.. Backscattering Enhancement and Clustering Effects ofRandomly Distributed Dielectric Cylinders Overlying a Dielectric Half Space Based onMonte-Carlo Simulations[J]. IEEE Transactions Antennas Propagetion,1995,43(5):488-499
    [96] L. Wang, J. A. Kong, K. H. Ding, et al.. Electromagnetic Scattering Model for Rice CanopyBased on Monte Carlo Simulation[C]. Progress in Electromagnetics Research (PIER),2005,52:153-171
    [97] Y. Oh, J. Y. Hong. Moment Method-Monte Carlo Simulation of the Microwave Backscatter ofWet-Land Rice Fields[C]. Proceeding of IEEE International Geoscience and Remote SensingSymposium (IGRASS),2007,69-72
    [98] J. C. Shi, K. S. Chen, Q. Li, et al.. A Parameterized Surface Reflectivity Model and Estimationof Bare-Surface Soil Moisture with L-Band Radiometer[J], IEEE Transactions on Geoscienceand Remote Sensing,2002,40(12):2674-2686
    [99]曾琪明,马洪兵,张涛,等.水稻微波后向散射模型研究与计算[J].北京大学学报,2000,36(1):131-141
    [100]齐震.水稻的微波散射模型[J].中国科学院研究生院学报,1999,16(2):177-184
    [101]戈建军,王超.冬小麦微波散射特性研究[J].遥感信息,理论研究,2002,3:7-10
    [102]李淑青,方静,汪文秉.应用辐射传输理论对农作物电磁散射的研究[J].西安交大学报,1997,31(21):32-39
    [103]李淑青.植被电磁散射的建模与分析[D].西安:西安交通大学,1998
    [104]陈彦,徐春亮,贾明权,等.冬小麦后向散射特性的测量分析与模拟研究[J].电子科技大学学报,2009,38(5):707-711
    [105]金亚秋.电磁散射与热辐射的遥感理论[M].北京:科学出版社,1993
    [106]金亚秋.多成分密集随机散射粒子多层随机介质的辐射传输[J].中国科学,1992,12:1311-1317
    [107]张巍,金亚秋.非均匀植被地表全极化散射的高分辨率雷达图像的模拟[J].遥感学报,2001,5(2):86-89
    [108]罗贤云,张忠治.小麦水稻后向电磁散射建模研究σo与入射角的关系[J].电波科学学报1994,9(2):20-30
    [109]罗贤云,张忠治.蒙特卡罗方法在小麦后向电磁散射中的应用[J].1994,9(3):13-25
    [110]陈轶,金亚秋.非均匀植被地表散射的Monte Carlo数值模拟与实验观测[J].电波科学学报,2001,16(1):61-65
    [111] Y. Shao, J. J. Liao, C. Z. Wang. Analysis of Temporal Radar Backscatter of Rice: aComparison of SAR Observations with Modelling Results[J]. Can.J. Remote Sensing,2002,28(2):128-138
    [112]贾明权,童玲,陈彦.水稻后向散射模拟、验证及参数敏感性分析[J].电子科技大学学报,2014
    [113]唐世浩,朱启疆,闫广建.地表参量遥感反演理论与方法研究[J].北京师范大学学报(自然科学版),2001,37(2):266-273
    [114] R. H. Lang, H.A. Saleh. Microwave Inversion of Leaf Area and Inclination Angle Bistributionfrom Backscattered Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1985,5:685-694
    [115] L. Le Toan, A. K. Fung. Retrieving Vegetation and Soil Parameters from RadarMeasurements[C]. Proceedings of Progess in Electromagnetics Research Symposium, Bostion,Massachusetts,1985
    [116] E. S. Kasischke, N. L. Christensen Jr. Connecting Forest Ecosystem and MicrowaveBackscatter Models[J]. International Journal of Remote Sensing,1990,11(7):1277-1298
    [117]乌拉比,穆尔,冯建超.微波遥感第二卷:雷达遥感和面目标的散射、辐射理论[M].北京:科学出版社,1987
    [118] M. R. Sabebi, F. Bonn, Q. H. J. Gwyn. Estimation of the Moisture Content of Bare Soil fromRADARSAT-1SAR Using Simple Empirical Models[J]. International joumal of RemoteSensing,2003,24(12):2575-2582
    [119] Y. Oh, K. Sarabandi, F. T. Ulaby. An Empirical Model and an Inversion Technique for RadarScattering from Bare Soil Surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):370-381
    [120] P. C. Dubois, Z. J. Van, T. Engman. Measuring Soil Moisture with Imaging Radars[J]. IEEETransactions on Geoscience and Remote Sensing,1995,33(4):915-926
    [121] John D B, V. Lakshmi, E.G. Njoku. Soil Moisture Retrieval Using the Passive/Active L-andS-Band Radar/Radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):2792-2801
    [122] F. T. Ulaby, A. Aslam, M. C. Dobson. Effects of Vegetation Cover on the Radar Sensitivity toSoil Moisture[J]. Transactions on Geoscience and Remote Sensing,1982,20(4):476-481
    [123] Y. Oh. Quantitative Retrieval of Soil Moisture Content and Surface Roughness fromMultipo1arized Radar Observations of Bare Soil Surfaces[J]. IEEE Transactions onGeoscience and Remote Sensing,2004,42(3):596-601
    [124] Y. Oh, K. Sarabandi, F. T. Ulaby. Semi-empritical Model of the Ensemble-AveragedDifferential Mueller Matrix for Microwave Backscattering from Bare Soil Surface[J]. IEEETransactions on Geoscience and Remote Sensing,2002,40:1348-1355
    [125] M. Zribi, N. Baghdadi, C. Guérin. Analysis of Surface Roughness Heterogeneity andScattering Behavior for Radar Measurements[J]. IEEE Transactions on Geoscience andRemote Sensing,2006,44(9):2438-2444
    [126] J. Shi, J. Wang, A. Y. Hsu, et al.. Estimation of Bare Surface Soil Moisture and SurfaceRoughness Parameter Using L Band SAR Image Data[J]. IEEE Transactions on Geoscienceand Remote Sensing,1997,35(5):1254-1266
    [127] K. Rao, S. Raju, J. Wang. Estimation of Soil Moisture and Surface Roughness Parametersfrom Backscattering Coefficients[J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31(31):1094-1099
    [128] A. Loew, W. A. Mauser. Semi-empirical surface backscattering Model for Bare Soil SurfaceBase on a generalized power Law spectrum Approach[J]. IEEE Transactions on Geoscienceand Remote Sensing,2006,44(4):1022-1035
    [129] N. Baghdsdi, N. Holah, M. Zribi. Soil Moisture Estimation Using Multi-Incidence andMulti-Poarization ASAR Data[J]. International journal of Remote Sensing,2006,27(10):1907-1920
    [130] M. Zribi, N. Baghdadi, N. Holah, et al.. New Methodology for Soil Surface MoistureEstimation and Its Application To ENV-ISAT-ASAR Mu1ti-Incidence Data Inversion[J].Remote Sensing of Environment,2005,96:485-496
    [131]鲍艳松.多源遥感数据冬小麦长势监测研究[D].北京:北京师范大学,2006
    [132]鲍艳松,刘良云,王纪华,等.利用ASAR图像监测土壤含水量和小麦覆盖度[J].遥感学报,2006,10(2):263-271
    [133] C. Q. Qiu, Y. Chen, L. Tong, et al.. The Method for Soil Moisture Inversion Based onGround-Based Scattering Measurement[C]. Proceeding of IEEE International Geoscience andRemote Sensing Symposium (IGARSS), Vancouver, Canada,2011,3086-3088
    [134] L. He, L. Tong, Y. Chen, et al.. Soil Moisture Monitoring Based on HJ-1C S-Band SAR Imageand Experimental Data[C]. Proceeding of IEEE International Geoscience and Remote SensingSymposium (IGARSS), Melbourne, Australia,2013
    [135] N. S. Goel. Models of Vegetation Canopy Reflectance and their Use in Estimation ofBiophysical Parameters from Reflectance Data[J]. Remote Sensing Reviews,1988,4(1):1-212
    [136] X. Li, A. H. Strahler, C. E. Woodcock. A Hybrid Geometric Optical Radiative TransferApproach for Modeling Albedo and Directional Reflectance of Discontinuous Canopies[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33:466-480
    [137] R. B. A. Bindish. Multi-frequency Soil Moisture Inversion from SAR Measurements with theUse of IEM-EFE-DA-Spain and HAPEX-SAHEL Case Studies[J]. Remote Sensing ofEnvironment,2000,71:67-88
    [138] N. S. Goel, R. L. Thompson. Inversion of Vegetation Canopy Reflectance Models forEstimating Agronomic Variables III: Estimation Using Only Canopy Reflectance Data asIllustrated by the Suits Model[J]. Remote Sensing of Environment,1984,15:223-236
    [139] N. S. Goel, R.L. Thompson. Inversion of Vegetation Canopy Reflectance Models forEstimating Agronomic Variables. IV. Total Inversion of the SAIL Model[J]. Remote Sensing ofEnvironment,1984,15(3):237-253
    [140] N. S. Goel, R.L. Thompson. Inversion of Vegetation Canopy Reflectance Models forEstimating Agronomic Variables. V. Estimation of Leaf Area Index and Average Leaf AngleUsing Measured Canopy Reflectances[J]. Remote Sensing of Environment,1984,16(1):69-85
    [141] J. L. Privette, R. B. Myneni, W. J. Emery, et al.. Optimal Sampling Conditions for EstimatingGrassland Parameters via Reflectance Model Inversions[J]. IEEE Transactions on Geoscienceand Remote Sensing,1996,34(1):272-284
    [142] X. W. Li, Z. Wan. Comments on Reciprocity in the Directional Reflectance Modeling[J].Progress in Natural Science,1998,8(3):354-358
    [143]李小文,高峰,王锦地,等.遥感反演中参数的不确定性与敏感性矩阵[J],遥感学报,1997,1:1-14
    [144]高峰.植被冠层多角度遥感反演研究[D].北京:北京师范大学,1997
    [145]闫广建.地表遥感要素反演研究[D].北京:中国科学院遥感应用研究所,1999
    [146] J. L. Privette, R. B. Myneni, C. J. Tucker, et al.. Invertibility of a1-D Discrete OrdinateCanopy Reflectance Model[J]. Remote Sensing of Environment,1994,48:89-105
    [147] F. D. Frate, P. Ferrazzoli, L. Guerriero, et al.. Wheat Cycle Monitoring Using Radar Data and aNeural Network Trained by a Model[J]. Transactions on Geoscience and Remote Sensing,2004,42(1):35-45
    [148] C. Notarnicola, E. Santib, M. Brogionib, et al.. Neural Network Adaptive Algorithm AppliedTo High Resolution C-Band SAR Images for Soil Moisture Retrieval in Bare and VegetatedAreas[C]. in SAR Image Analysis, Modeling, and Techniques X, Toulouse, France: SPIE,2010,7829-7839
    [149] H. T. Chuah. An Artificial Neural Network for Inversion of Vegetation Parameters from RadarBackscatter Coefficients[J]. Journal of Electromagnetics Vaves and Applications,1993,7(8):1075-1092
    [150] L. Pierce, K. Sarabandi, F. T. Ulaby. Application of an Artificial Neural Network in CanopyScattering Inversion[J]. Int. J. REMOTE SENSING,1994,15(16):3263-3270
    [151] Z. K. Liu, J. Y. Xiao. Classification of Remote-Sensed Image Data Using Artificial NeuralNetworks[J]. Int. J. Remote Sensing,1991,12:2433-2438
    [152] P. D. Heermann, N. Khazenie. Classification of Multispectral Remote Sensing Data Using aBack-Propagation Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(1):81-88
    [153] J. A. Smith, LAI Inversion Using a Back-Propagation Neural Network Trained with a MultipleScattering Model[J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31(5):1102-1106
    [154] D. Kimes, K. Ranson, G. Sun. Inversion of a Forest Backscatter Model Using NeuralNetworks[J]. International Journal of Remote Sensing,1997,18(10):2181-2199
    [155] Y. Q. Jin, C. Liu. Biomass Retrieval from High-Dimensional Active/Passive Remote SensingData by Using Artificial Neural Networks[J]. International Journal of Remote Sensing,1997,18(4):971-979
    [156] N. Baghdadi, S. Gaultier, C. King. Retrieving Surface Roughness and Soil Moisture from SARData Using Neural Network[J]. Canadian journal of Remote Sensing,2002,28:701-711
    [157] A. A. Abuelgasim, S. Gopal, A. H. Strahler. Forward and Inverse Modeling of CanopyDirectional Reflectance Using a Neural Network[J]. Int. J. Remote Sensing,1998,19(3):453-471
    [158] M. Q. Jia, Y. Chen, L. Tong, et al.. Land-Based Scatterometer Measurements and Retrieval ofSurface Parameters Using Neural Networks[C]. International Workshop on EducationTechnology and Training/International Workshop on Geoscience and Remote Sensing (ETTand GRS), Shanghai, China,2008,448-452
    [159]刘丽娜,陈彦,贾明权,等.室内散射测量系统与神经网络参数反演[J].电子测量技术,2010,33(9):35-38
    [160] M. Q. Jia, L. Tong. Ground-Based Scatterometer Measurements and Inversion of SurfaceParameters by Using Neural Networks[J]. International Journal of Remote SensingApplications (IJRSA),2011,2(1):29-35
    [161] X. W. Li, J. Wang, B. Hu, et al.. On Utilization of Prior Knowledge in Inversion of RemoteSensing Models[J]. Scienc e in China(Series D),1998,41(6):580-586
    [162] S. Liang. Quantitative Remote Sensing of Land Surfaces [M]. New York: John Wiley and Sons.Lnc.,2003
    [163] D. Kimes, J. G. Etchegorry, P. Esteve. Recovery of Forest Canopy Characteristics ThroughInversion of a Complex3D Model [J]. Remote Sensing of Environment,2002,9:320-328
    [164] C. Notarnicola, M. Angiulli, F. Posa. Soil Moisture Retrieval from Remotely Sensed Data:Neural Network Approach Versus Bayesian Method[J]. IEEE Transactions on Geosdence andRemote Sensing,2008,547-557
    [165] C. L. Xiao, Y. Chen, L. N. Liu, et al.. Soil Moisture Retrieval Based on ASAR Data andGenetic Neural Networks[C]. International Conference on Advanced Materials in Microwavesand Optics, AMMO, Bangkok, Thailand,2011,198-203
    [166]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997
    [167]孙艳丰,戴春荣.几种随机搜索算法的比较研究[J].系统工程与电子技术,1998,2:43-47
    [168] A. Corana, M. Marchesi, C. Martini, et al.. Minimizing Multimodal Functions of ContinuousVariables with the "Simulated Annealing" Algorithm[J]. ACM Transactions on MathematicalSoftware,1987,13(3):262-280
    [169]张纪会,徐心和.模拟进化算法研究进展[J],系统工程与电子技术,1998,8:44-47
    [170]张纪会,徐心和.一种新的进化算法—蚁群算法[J].系统工程理论与实践,1999,3:85-87
    [171]张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-8
    [172]王江晴,陈幼均.演化计算及其并行处理[J],中南民族学院学报(自然科学版),1997,16(3):73-76
    [173] C. Houck, J. Joines, M. Kay. Comparison of Genetic Algorithms, Random Restart, andTwo-Opt Switching for Solving Large Location-Allocation Problems[J].Computers&Operations Research,1996,23(6):587-597
    [174] J. M. Renders, S. P. Flasse. Hybrid Methods Using Genetic Algorithms for GlobalOptimization[J]. IEEE Trans Syst Man, Cybern,1996,26(2):243-258
    [175]庄昌文,范明钰,李春辉,等.基于协同工作方式的一种蚁群布线系统[J].半导体学报,1999,20(5):400-406
    [176]庄家礼,徐希儒.遗传算法在组分温度反演中的应用[J].国土资源遥感,2000,1:28-33
    [177] S. Madsen, N. Skou. Problems to be Addressed by SAR Systems in the21st Century: WhereAre We and Where Are We Heading[J]. IEEE Geosci. Remote Sensing Soc. News.,1998,6-13
    [178] J. F. Dallemand, J. lichtenegger, V. Kaufmann, et al.. Combined Analysis of ERS-1andVisible/Infrared Remote Sensing Data for Land Cover/Land Use Mapping in a Tropical Zone:a Case Study in Guinea[C]. Proceedings of the first ERS-1Symposium, Cannes, France,1992,2:555-561
    [179] T. Kurosu, T. Suitz, T. Moriya. Rice Crop Monitoring with ERS-1SAR: a First Year Result[C].in Proc. Second ERS-1Symp.(ESA SP-361, Jan.1994), Hamburg, Germany,1993,1:97-101
    [180] S. L. Durden, L. A. Morrissey, P. L. Gerald. Microwave Backscatter and AttenuationDependence on Leaf Area Index for Flooded Rice Fields[J]. IEEE Transactions on Geoscienceand Remote Sensing,1995,33(3):807-810
    [181] J. Aschbacher, A. Pongsrihadulchai, S. Karnchanasutham, et al.. Assessment of ERS-1Data forRice Crop Mapping and Monitoring[J]. InPro IGASS, Florence, Italy,1995,2183-2185
    [182] S. Panigrahy, M. Chakraborty, S. A. Sharma, et al.. Early Estimation of Rice Area UsingTemporal ERS-1Synthetic Aperture Radar Data a Case Study for the Howrah and HughlyDistricts of West Bengal, India[J]. International Journal of Remote Sensing,1997,18(8)1827-1833
    [183] T. Kurosu, M. Fujita, K. Chiba. The Identification of Rice Fields Using Multi-Temporal ERS-1C-Band SAR Data[J]. International Journal of Remote Sensing,1997,18(14):2953-2965
    [184] S. C. Liew, S. P. Kam, T. P. Tuong, et al.. Application of Multitemporal ERS-2SyntheticAperture Radar in Delineating Rice Cropping Systems in the Mekong River Delta, Vietnam[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1412-1420
    [185] F. Ribbes, T. Le Toan. Rice Field Mapping and Monitoring with RADARSAT Data[J].International Joumal of Remote Sensing,1999,20(4):745-765
    [186] A. Rosenqvist. Temporal and Spatial Characteristics of Irrigated Rice in JERS-1L-Band SARData[J]. International Joumal of Remote Sensing,1999,20(8):1567-1587
    [187] S. C. Liew, P. Chen, S. P. Kam, et al.. Rice Crops Monitoring in the Mekong River Delta UsingCombined ERS and RADARSAT Synthetic Aperture Radar[J]. IEEE Transactions onGeoscience and Remote Sensing,1998,5:2746-2748
    [188] M. Magsud, B. R. Parida, L. Samarakoon, et al.. Rainfed Rice Area Mapping and BackscatterAnalysis Using Multi-temporal RADARSAT-1Images in Pangasinan and Nueva EcijaProvinces of Philippines[C]. Agriculture and Crops,2006
    [189] J. Y. Koay, C. P. Tan, K. S. Lim, et al.. Paddy Fields as Electrically Dense Media: TheoreticalModeling and Measurement Comparisons[J]. IEEE Transactions on Geoscience and RemoteSensing,2007,45(9):2837-2849
    [190] I. Choudhury, M. Chakraborty, S. C. Santra, et al.. Methodology To Classify Rice CulturalTypes Based on Water Regimes Using Multi-Temporal RADARSAT-1Data[J]. InternationalJournal of Remote Sensing,2012.33(13): p.4135-4160.
    [191] S. Ogawa, Y. Inoue, A. Tomita, et al.. Monitoring of Rice Field Using SAR Data and OpticalData[J]. European Space Agency-Publications-ESA SP,1998,441:155-160
    [192] K. Okamoto, H. Kawashima. Estimation of Rice-Planted Area in the Tropical Zone Using aCombination of Optical and Microwave Satellite Sensor Data[J]. International Journal ofRemote Sensing,1999,20(5):1045-1048
    [193] M. F. Augusteijn, C. E. Warrender. Wetland Classification Using Optical and Radar Data andNeural Network Classification[J]. International Journal ofRemote Sensing,1998,19:1545-1560
    [194] K. S. Lee, S. I. Lee. Assessment of Post-Flooding Conditions of Rice Fields withMulti-Temporal Satellite SAR Data[J]. International Journal of Remote Sensing,2003,24(17):3457-3465
    [195] Y. Li, Q. Liao, X. Li, et al.. Towards an operational System for Regional-Scale Rice YieldEstimation Using a Time-Series of Radarsat Scansar Images[J]. International Journal ofRemote Sensing,2003,24(21):4207-4220
    [196] G. Picard, T. Le Toan, S. Quegan, et al.. Radiative Transfer Modeling of Cross-PolarizedBackscatter from a Pine Forest Using the Discrete Ordinate and Eigenvalue Method[J]. IEEETransactions on Geoscience and Remote Sensing,2004,42(8):1720-1730
    [197] A. Bouvet, T. Le Toan. Use of ENVISAT/ASAR Wide-Swath Data for Timely Rice FieldsMapping in the Mekong River Delta[J]. Remote Sensing of Environment,2011,115(4):1090-1101
    [198] L. D. Nguyen, H. P. Phung, H. Juliane, et al.. Estimation of the Rice Yield in the MekongDelta Using SAR Dual Polarisation Data[C]. Aisian Conference for Remote Sensing, Taiwan,2011,3-7
    [199] C. Yonezawa, T. Imai, D. Kunii, et al.. Polarimetric Observation for Rice Field byRADARSAT-2and ALOS/PALSAR[J]. Proceeding of IEEE International Geoscience andRemote Sensing Symposium (IGARSS), Vancouver, BC, Canada,2011,2282-2285
    [200] J. M. Lopez-Sanchez, S. R. Cloude, J. D. Ballester. Rice Phenology Monitoring by Means ofSAR Polarimetry at X-Band[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(7):2695-2709
    [201] S. Gebhardt, J. Huth, N. Lam Dao, et al.. A Comparison of Terrasar-X Quadpol Backscatteringwith Rapideye Multispectral Vegetation Indices Over Rice Fields in the Mekong Delta,Vietnam[J]. International Journal of Remote Sensing,2012,33(24):7644-7661
    [202]郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000
    [203]绍芸,郭华东,范湘涛,等.水稻时域散射特征分析及其应用研究[J].遥感学报,2001,5(5):340-345
    [204] Y. Shao, X. Fan, H. Liu, et al.. Rice Monitoring and Production Estimation UsingMulti-Temporal Radarsat[J]. Remote Sensing of Environment,2001,76:310-325
    [205]绍芸,廖静娟,范湘涛,等.水稻时域后向散射特性分析:雷达卫星观测与模型模拟结果对比[J].遥感学报,2002,6(6):440-450
    [206]绍芸,谭衢霖,肖建华,等. Radarsat SAR图像上水水稻边界提取研究[J].高技术通讯,2002,7:26-29
    [207]刘浩,邵芸,王翠珍.多时相Radarsat数据在广东肇庆地区水稻分类中的应用[J].国土资源遥感,1997,34(4):
    [208]李岩,彭少麟,廖其芳,等. RADARSAT SNB SAR数据在大面积水稻估产中的应用研究[J].中国科学D辑,地球科学,2005,35(7):682-689
    [209]谭炳香,李曾元. SAR数据在南方水稻分布图快速更新中的应用方法研究[J].国土资源遥感,2000,12(1):24-27
    [210]廖圣东,廖其芳,李岩,等. SNB-SAR数据在大范围水稻种植面积调查中的应用:以广东省早稻调查为例[J].热带地理,2001,21(4):346-359
    [211]张峰,吴炳方.泰国水稻种植面积月变化的遥感监测田[J].遥感学报,2004,8(6):664-671
    [212]董彦芳,孙国清,庞勇.基于ENVISAT ASAR数据的水稻监测[J].中国科学D辑地球科学,2005,35(7):682-689
    [213]董彦芳,庞勇,孙国清,等. ENVISAT ASAR数据用于水稻监测和参数反演[J].武汉大学学报,2006,31(2):124-127
    [214] J. Chen, H. Lin, A. Liu, et al.. A Semi-Empirical Backscattering Model Fore Stimation of LeafArea Index (LAI) of Rice in Southern China[J]. Intemational Journal of Remote Sensing,2006,27:5417-5425
    [215] J. Chen, H. Lin, Z, Y. Pei. Application of ENVISAT ASAR Data in Mapping Rice CropGrowth in Southern China[J]. IEEE Geoscience and Remote Sensing Letters,2007,4(3):431-435
    [216]申双和,杨沈斌,李秉柏,等.基于ENVISAT ASAR数据的水稻估产方案[J].中国科学D辑,2009,39(6):763-773
    [217] S. Yang, S. Shen, B. Li, et al.. Rice Mapping and Monitoring Using ENVISAT ASAR Data[J].IEEE Geoscience and Remote Sensing Letters,2008,5(1):108-112
    [218] S. Yang, X. Y. Zhao, B. B. Li, et al.. Interpreting RADARSAT-2Quad-Polarization SARSignatures from Rice Paddy Based on Experiments[J]. IEEE Geoscience and Remote SensingLetters,2012,9(1):65-69
    [219] F. Wu, C. Wang, H. Zhang, et al.. Rice Crop Monitoring in South China with RADARSAT-2Quad-Polarization SAR Data[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(2):196-200
    [220]李坤,邵芸,张风丽.基于RadarSat-2全极化数据的水稻识别[J].遥感技术与应用,2012,27(1):86-93
    [221]张晓倩,刘湘南,谭正.基于全极化Radarsat-2数据的水稻生物量估算模型[J].农业现代化研究,2012,33(2):249-252
    [222] M. Q. Jia, L. Tong, Y. Chen, et al.. Rice Biomass Retrieval from Multi-TemporalGround-Based Scatterometer Data and RADARSAT-2Images Using Neural Networks[J],Journal of Applied Remote Sensing (JARS),2013,7(073509):1-18
    [223]张远.微波遥感水稻种植面积提取、生物量反演与水稻甲烷排放模拟[D].杭州:浙江大学,2008
    [224] M. Q. Jia, L. Tong, Y. Chen, et al.. Methane Emissions Monitoring of Rice Fields UsingRadarsat-2Data[C]. Proceeding of IEEE International Geoscience and Remote SensingSymposium (IGARSS), Melbourne, Australia,2013,3223-3226
    [225]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003
    [226]肖疆.合成孔径雷达天线技术的若干关键问题研究[D].北京:中国科学院电子研究所,2006
    [227]岳海霞.合成孔径雷达回波信号模拟研究[D].北京:中国科学院电子研究所,2005
    [228] G. Franceschetti, G. Schirinzi. A SAR Processor Based on Two-Dimensional FFT Codes[J].IEEE Trans. on Aerospace and Electronic Systems,1990,26(2):356-366
    [229] J. R. Huynen. Phenomenological Theory of Radar Targets[D]. Drukkerij Bronder-offset NV,1970.
    [230]张澄波.综合孔径雷达:原理、系统分析与应用[M].北京:科学出版社,1989
    [231] A. Ishimaru. Wave Propagation and Scattering in Randon Media[M]. New York: Academicpress,1978
    [232] H. B. Ma, L. G. Zhang, Y. Z. Chen. Recurrent Neural Network for Vehicle Dead-Reckoning[J].Journal of Systems Engineering and Electronics,2008,19(2):35l-355
    [233]陈宝林.最优化理论与算法(第2版)[M].北京:清华大学出版社,2005
    [234]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005
    [235]王被德.雷达极化理论和应用[M].北京: SSS丛书,1994
    [236] M. W. Whitt, F. T. Ulaby, P, Polatin, et al.. A General Polarimetric Radar CalibrationTechnique[J]. IEEE Trans. Antennas Propagat.,1991,39:62-67
    [237] R. M. Barnes. Polarimetric Calibration Using In-Scene Reflectors[M]. Rep. TT.65, MIT,Lincoln Lab., Lexington, MA,1986
    [238] K. Sarabandi, F. T. Ulaby, M. A. Tassoudji. Calibration of Polanmetnc Radar Systems withGood Polanzation Isolation[J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28:70-75
    [239] K. Sarabandi, F. T. Ulaby. A Convenient Technique for Polarimetric Calibration of RadarSystems[J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(6):1022-1033
    [240]乌拉比,穆尔,冯建超.微波遥感第一卷:微波遥感基础和辐射测量学[M].北京:科学出版社,1988
    [241] N. Lam-Dao, T. Le-Toan, A. Apan, et al.. Rice Monitoring in the Mekong Delta, Vietnam[C].in Proceedings of the33rd Asian Conference on Remote Sensing (ACRS), Asian Associationon Remote Sensing,2013
    [242] K. Miyaoka, M. Maki, J. Susaki, et al.. Rice-Planted Area Mapping Using Small Sets ofMulti-Temporal SAR Data[C].2013,1-5
    [243] J. M. Lopez-Sanchez, F. Vicente-Guijalba, J. D. Ballester-Berman, et al.. PolarimetricResponse of Rice Fields at C-Band: Analysis and Phenology Retrieval[C].2013,1-17
    [244] Z. Pei, S. Zhang, L. Guo, et al.. Rice Identification and Change Detection Using TerraSAR-Xdata[J]. Canadian Journal of Remote Sensing,2011,37(1):151-156
    [245] Y. Inoue, E. Sakaiya. Relationship Between X-Band Backscattering Coefficients fromHigh-Resolution Satellite SAR and Biophysical Variables in Paddy Rice[J]. Remote SensingLetters,2013,4(3):288-295
    [246] H. P. Lu, C. L. Xu, M. Q. Jia, et al.. A New Type and Facile Measuring System of SoilRoughness[C]. IITA Conference on Geoscience and Remote Sensing (IITA-GRS), Shanghai,China,2008,115-118
    [247] D. Singh. Scatterometer Performance with Polarization Discrimination Ratio Approach ToRetrieve Crop Soybean Parameter At X-Band[J]. International Journal of Remote Sensing,2006,27(19):4101-4115
    [248]贾明权.典型地物微波介电特性实验研究[D].成都:电子科技大学,2008
    [249] F. Del Frate, L. F. Wang. Sunflower Biomass Estimation Using a Scattering Model and aNeural Network Algorithm[J]. Int. J. Remote Sens.,2001,22:1235-1244
    [250] N. Baghdadi, R. Cresson, M. El Hajj, et al.. Estimation of Soil Parameters Over BareAgriculture Areas from C-Band Polarimetric SAR Data Using NN[J]. Hydrology and EarthSystem Sciences,2012,16(6):1607-1621
    [251] F. Del Frate, D. Solimini. on Neural Network Algorithms for Retrieving Forest Biomass fromSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):24-34
    [252] S. Englhart, V. Keuck, F. Siegert. Modeling Aboveground Biomass in Tropical Forests UsingMulti-Frequency SAR Data-A Comparison of Methods[J]. IEEE Journal of Selected Topics inApplied Earth Observations and Remote Sensing,2012,5(1):298-306
    [253] S. R. Cloude, E. Pottier. A Review of Target Decomposition Theorems in Radar Polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518
    [254]安文韬.基于极化SAR的目标极化分解与散射特征提取研究[D].北京:清华大学,2010
    [255] Y. A. Liou, Y. C. Tzeng, K. S. Chen. A Neural Network Approach To Radiometric Sensing ofLand Surface Parameters[J], IEEE Transactions on Geoscience and Remote Sensing,1999,37:2718-2724
    [256] C. Eisfelder, C. Kuenzer, S. Dech. Derivation of Biomass Information for Semi-Arid AreasUsing Remote-Sensing Data[J]. International Journal of Remote Sensing,2012,33(9):2937-2984
    [257] T. Le Toan. Rice Monitoring in Asia Using SAR Data[C].33rd Asian Conference on RemoteSensing, Pattaya, Thailand,2012,594-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700