用户名: 密码: 验证码:
长江中游棉区转Cry1A基因棉花杀虫蛋白表达及对靶标和非靶标害虫的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪90年代后期以来,转Bt基因棉成为了世界范围内用来控制棉花害虫的重要工具。我国的华北棉区及长江流域棉区也先后对Bt棉逐步放开。为了摸清Bt棉在长江中游棉区的抗虫表现,更好地发挥Bt棉在长江中游棉区棉花害虫综合治理中的作用,本文以中国农科院生物技术中心提供的转Bt基因棉GK19(含Cry1A基因)和美国孟山都公司提供的转Bt基因棉BG1560(含Cry1Ac)为材料,研究了它们在长江中游棉区毒蛋白的季节性表达规律,对棉铃虫(Helicoverpa armigera)、红铃虫(Pectinophora gossypiella Saunders)、斜纹夜蛾(Spodoptera lituraFabricius)的抗性,以及对主要的非靶标害虫棉蚜(Aphis gossypii Glove)的生长发育及种群动态的影响。
     结果表明,在长江中游棉区,Bt棉毒蛋白的表达量随Bt棉组织、生育期及品种的不同而呈显著变化(P<0.05),但无年度间的差异(P=0.8362)。一般而言,杀虫蛋白的含量在棉花生长发育的前期较高,到中期时有所下降,但到晚期时则又有回升。在大多数标样日期里,Bt棉叶、蕾、花瓣及花柱内毒蛋白的含量要高于子房和铃。与BG1560相比,GK19对毒蛋白的表达在整个生长季节内的变化更大。
     用Bt棉各组织对棉铃虫的室内饲喂表明,Bt棉对棉铃虫表现出了较好的杀虫活性,其对棉铃虫的杀虫活性及体重抑制率随组织器官及棉花生长季节的不同而不同,主要表现为繁殖器官大于营养器官,前期活性高于后期活性。对Bt棉田棉铃虫幼虫的种群动态进行调查表明:与常规棉相比,Bt棉GK19田内棉铃虫幼虫数量在2001年和2002年里分别下降了92.04%和81.85%,BG1560田内棉铃虫的数量下降了96.84%和91.80%。但两Bt棉田棉铃虫的落卵量与常规棉田无显著差异(P>0.05),棉铃虫幼虫在Bt棉各组织上的分布与常规棉田也基本相同。
     对Bt棉田红铃虫的卵密度及幼虫密度的调查显示,两Bt棉田与常规棉田的红铃虫卵密度无显著差异(P>0.05),但是幼虫密度则显著低于常规棉田。与常规棉相比,Bt棉GK19对各代红铃虫的控制效果为73.14-100%,BG1560的控制效果为89.42-100%,它们均高于化防田54.32-87.83%的控制效果。
     通过室内饲喂Bt棉的不同组织和使用Bt杀虫剂对斜纹夜蛾进行毒力测定表明,取食不同品种棉叶、花瓣和花心的斜纹夜蛾的死亡率无显著差异,但取食Bt棉BG1560棉蕾的斜纹夜蛾的死亡率显著高于其它相应的处理。Bt杀虫剂对斜纹夜蛾的LC50高达1170Pm。大田调查表明,两Bt棉田斜纹夜蛾幼虫的种群动态与非Bt棉田的无显著差异。
     室内生测和大田试验表明,与常规棉泗棉3号相比,Bt棉6K19和BG1560对棉蚜的存活率、生活历期及繁殖力均无显著影响,Bt棉与常规棉田棉蚜的发生动态及为害情况也一致。
     对Bt棉在长江中游棉区对各种主要靶标及非靶标害虫影响的系统评价表明,在长江中游棉区种植Bt棉,将有助于控制该地区的棉铃虫和红铃虫的危害,减少棉田农药的使用次数,控制棉蚜的暴发,使棉田生态系统朝良性的方向发展。但同时我们也发现,由于Bt棉对棉田斜纹夜蛾几乎无毒杀作用,这有可能导致斜纹夜蛾成为Bt棉田的主要害虫,从而威胁Bt棉在该地区的成功使用。因此,有必要对该地区Bt棉田斜纹夜蛾的发生规律及种群动态进行跟踪调查,并对其灾变规律开展研究,以期能有效地控制其在Bt棉田的为害。
Bt transgenic cotton has been a worldwide important tool to control pests of cotton field since 1990s. Today, north China and Yantz River valley have deployed Bt cotton gradually. In order to undertand resistance level of Bt cotton to targeted insects in Yantz River valley and make the best use of its control effecicency to pests in this region, seasonal expression profile of insecticidal protein of two Bt cotton lines carrying a CrylA gene from Bacillus thuringiensis subsp. kurstaki (Berliner), developed, respectively, by Monsanto Co. and Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, and their influence on targeted pests and non-targeted pests were investigeted.
    Results showed that the toxin content in Bt cotton changed significantly over time, and that the structure, growth stage, and cultivar were significant sources of variability (P < 0.05), but there was no significant difference between the two years (P = 0.8362). Generally, insecticidal protein levels were high during the early stages of cotton growth; they declined in mid-season, and rebounded in late season. On most dates sampled, the toxin contents in leaf, square, petal and stamens (including non-ovule pistil tissue) were much higher than those in ovule and boll. Compared to BG1560, the expression of CrylAc/CrylAb protein in GK19 was more variable during the whole growth period of cotton.
    Bioassay fed on structures of two Bt transgenic cotton lines to cotton bollworm (Helicoverpa armigera) indicated that there were significant differences of resistance levels among various structures and developmental stages of both Bt transgenic cotton lines. In general, resistance level of reproduction organs were higher than leaves in two lines, and it decreased gradually as cotton growth from July to September; The field evaluation on larval population dynamics of H. armigera in Bt and conventional cotton showed that the larval densities in GK19 and BG1560 fields decreased, respectively, 92.04% and 81.85% in 2001, and 96.84% and 91.80% in 2002. However, egg densities of cotton bollworm in two Bt cotton fields were no significant difference from conventional lines, and distrubiton of cotton bollworm larvae on structures of two Bt cotton was similar to that on structures of conventional cotton.
    Survey on egg density and larval population dynamics of pink bollworm in Bt and non-Bt cotton fields showed that there were no significant differences in egg density among the two Bt cotton lines and conventional cotton lines, but larval densities on both Bt lines were significantly lower than on the conventional lines in both years. In comparison with the larval density on a conventional line without chemical control, the control efficacy in different growth stages of two Bt cotton lines were 73 - 100% for GK19 and 89 - 100% for BG1560, they were higer than control efficiency of 54 - 88% for chemically treated conventional cotton.
    Bioassay fed on structures of Bt cotton lines and Bt formulation, effects of Bt cotton on survival of common cutworm were studied. Results showed that mortalities of common cutworm fed on leaf, petal, and flower heart among lines were no difference, but compared with correponding treatments, mortality of common cutworm fed square of BG1560 was higher. LC50 of common cutworm to Bt insecticide was 1170PPm. Investigation in field displayed that larval densities in two Bt cotton lines were no
    
    
    
    significant difference from conventional cotton line. The life table analysis in the laboratory showed that there were no significant differences in survival rate, nympha duration, and fecundity between laboratory populations of aphids fed on Bt and non-Bt cotton. The field surveys also indicated that there were no significant differences in population dynamics of aphids and its damages to different cotton lines between Bt cotton and conventional cotton fields.
    By systematic evaluation on resistance of Bt cotton planted in Mid-Yangtze River valley to major targeted pests and potential impact on population dynamics of non-targeted
引文
[1] Bendict J. H., E. S. Sachs, and D. W. Altman. Impact of δ-endotoxin-producing transgenic cotton on insect-plant interactions with Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae).Environmental Entomology, 1993, 22 (1): 1-9.
    [2] 丰嵘,张保红,郭香墨.外源基因对棉花产量性状及抗虫性的影响.棉花学报,1996,8(1):10-13
    [3] 夏敬源,汪若海,文绍贵.抗虫棉在棉铃虫综合防治中的作用研究初报.中国棉花,1995,22(8):8-11.
    [4] 赵奎军,赵建周.转基因抗虫棉花与害虫的互作关系研究进展.北京:中国科学技术出版社,1998,137-141.
    [5] Wilson, E.D., H. M. Flint, W. R. Deaton, D. A. Fischhoff, E.J. Perlak, T. A. Armstrong, R. L.Fuchs, and B. R. Stapp. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. Journal of Economic Entomology, 1992, 85 (4):1516-1521.
    [6] 崔金杰,夏敬源.转Bt基因棉对棉铃虫抗性的时空动态.棉花学报1999,11(3):141-146.
    [7] 吴孔明,郭予元,王武刚.部分GK系列Bt棉对棉铃虫抗性的田间评价.植物保护学报,2000,27(4):317-321.
    [8] Liu, Y., B. E. Tabashnik, T. J. Dennehy, Y. Carrie're, M. A. Sims, and S. K. Meyer. 2002.Oviposition on and Mining in Bolls of Bt and Non-Bt Cotton by Resistant and Susceptible Pink Bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol. 95(1): 143-148
    [9] 郭旺珍,张天真,潘家驹.转基因棉花的专利及可能带来的不良影响.生物工程进展,1998,18(6): 52-54.
    [10] 谭声江,陈晓峰,李典谟.昆虫对Bt毒素的抗性机理研究进展.昆虫知识,2001,38(1):12-17.
    [11] 欧阳立明,吴宏文,喻子牛,郭予元.害虫对转Bt基因植物抗性的治理策略.植物保护学报,2001,28(2):183-188.
    [12] 赵建周,赵奎军,范贤林,卢美光,芮昌辉,张慧珍,郭三堆.Bt棉不同品系对棉铃虫杀虫效果的比较.中国农业科学,2000,33(5):100-102.
    [13] Sachs E. S., J. H. Benedict, D. M. Stelly, J. E Taylor, D. W. Altman, S. A. Berberich, and S. K.Davis. Expression and Segregation of genes encoding CrylA insecticidal proteins in cotton. Crop Science, 1998, 38(1): 1-11.
    [14] Greenplate, J. T.. Quantification of Bacillus thuringiensis Insect Control Protein CrylAc Over Time in Bollgard Cotton Fruit and Terminals. Journal of Economic Entomology, 1999, 92 (6): 1377-1383.
    [15] 张永军,吴孔明,郭予元.转Bt基因棉花杀虫蛋白含量的时空表达及对棉铃虫的毒杀效果.植物保护学报,2001,28(1):1-6.
    [16] Jenkins, J. N., W. L. Parrott, J. C. McGarty, JR., F.E. Callahan, S. A. Berberich, and W. R. Deaton,.
    
    Growth and survival of Heliothis virescens (Lepidoptera: Noctuidae) on transgenic cotton containing a truncated form of the delta endotoxin gene form Bacillus thuringiensis. Journal of Economic Entomology, 1993, 86:181-185.
    [17] Henneberry, T. J., L. E Jech, and T. de la Torre. Effects of transgenic cotton on mortality and development of pink bollworm (Lepidoptera: Gelechiidae) larvae. The Southwestem Entomologist,2001, 26 (2): 115-128.
    [18] 李萍,朴永范.转基因棉的田间评估和田间生态效应.世界农业,1998.10:32-35.
    [19] 董双林,转Bt基因抗虫性研究.武汉: 华中农业大学硕士论文, 1996.
    [20] 赵奎军,赵建周,卢美光,范贤林.转基因抗虫棉花对棉铃虫生长发育影响的系统评价.植物保护学报,2000,27(3):205-209.
    [21] Smith, R. H.. Year two of Bollgard behind boll weevil eradication: Alabama observations. In P.Dugger and D. A. Richter [eds], Proceedings, Beltwide Cotton Conference. National Cotton Council,Memphis, TN, 1998, 965-966.
    [22] Flint, H. M. and N. J. parks. Seasonal infestation by pink bollworm, Pectinophora gossypiella (Saunders), of transgenic and non-transgenic cultivars of cotton, Gossypium hirsutum L., in central Arizona. The Southwestem Entomologist, 1999, 24 (1): 13-20.
    [23] Henneberry, T. J. and L.F.Jech. Seasonal pink bollworm, Pectinophora gossypiella (Saunders),infestations of transgenic and non-transgenic cottons. The Southwestem Entomologist, 2000, 125 (4):273-286.
    [24] Gould, F.and A. Anderson. Effects of Bacillus thuringiensis and HD-73 delta-endotoxin on growth, behavior, and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environmental Entomology, 1991, 20 (1): 30-38.
    [25] Adamczyk, J. J. Jr., J. W. Holloway, G. E. Church, B. R. Leonard, and J. B. Graves. Development and behavior of Spodoptera exigua (Lepidoptera: Noctuidae) larvae in choice tests with food substrates containing toxins of Bacillus thuringiensis. Biological Control, 1998, 11 (1): 29-37.
    [26] Muhammad, A., S. Y. Young, and R. W. McNew. Development of Spodoptera exigua and Helicoverpa zea (lepidoptera:noctuidae) on transgenic cotton containing eryAc insecticidal protein,Journal of Entomological Science, 2000, 35 (4): 360-372.
    [27] 夏敬源,崔金杰,常蕊芹.转基因抗虫棉对甜菜夜蛾的抗性研究.中国棉花,2000,27(9):10-11.
    [28] 武予清,郭予元,曾庆龄.转Bt基因棉单宁及总酚含量的初步测定.河南农业大学学报,2000,34(2):134-136.
    [29] Lane, H. C. and A. Schuster. Condensed tannins of cotton leaves. Phytochemistry, 1981, 20 (3):425-427.
    [30] 武予清. 棉花品种抗螨机制的研究.中国农业科学,1996,29(3):1-7.
    [31] Yu, L, R. E. Berry, and B. A. Croft. Effect of Bacillus thuringiensis toxins in transgenic cotton and potato on Folsomia candida (collembola: Isotomidae) and Oppia nitens (Acari: Oribatidae). Joumal of Economic Entomology, 1997, 90 (1):113-118.40
    
    
    [32] Hardee, D. D., and W. W. Bryan. Influence of Bacillus thuringiensis-transgenic and nectariless cotton on insect populations with emphasis on the tarnished plant bug (Heteroptera: Miridae). Journal of Economic Entomology, 1997, 90 (2): 663-668.
    [33] Gould, F..Sustainabiility of transgenic insecticidal cultivars: integrating pest genetics and ecology.Annual Review of Entomology, 1998, 43:701-726.
    [34] Greene, J. K., M. J. Sullivan, G. A. Herzog, and S. G.. Tumipseed. Boil damage by southern green stink bug (Hemipteia: pentatanidae) and tarnished plant bug (Hemiptera: Miridae) caged on transgenic Bacillus thuringiensis cotton. Journal of Economic Entomology, 1999, 192 (4): 941-994.
    [35] Layton, M. B.. Biology and damage of the tarnished plant bug, Lygus lineolaris, in cotton.Southwestern Entomologists, 2002:7-20.
    [36] Pray, C., J. Humang, D. Ma, F Qiao. Impact of Bt cotton in China. World Developent.2001,29:813~825.
    [37] 崔金杰,夏敬源.麦套夏播转Bt基因棉田主要害虫及其天敌的发生规律.棉花学报,1998,10(5):255-262.
    [38] 崔金杰,夏敬源.麦套夏播转Bt基因棉R93-6对昆虫群落的影响.昆虫学报,2000,43(1):43-51.
    [39] 王武刚,吴孔明,李修立.Bt棉对主要棉虫的发生影响及防治对策.植物保护,1999,25(1) :3-5.
    [40] 吴孔明.Bt抗虫棉田棉花害虫的发生规律及控制技术.见:贾士荣,郭三堆,安道昌主编,转基因棉花.北京:科学出版社,2001,218-224.
    [41] Pilcher C. D., J.J. Obrycki, M. E. Rice, and L. C. Lewis. Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environmental Entomology, 1997, 26(2): 446-454.
    [42] Hilbeck A., M. Baumgartner, P. M. Fried, and F.Bigler. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 1998, 27(2): 480-487.
    [43] 杨益众,余月书,任璐,邵益栋,钱坤,王建军,戴志一. 2001. 转基因棉花对棉铃虫天敌寄生率的影响.昆虫知识,38(6):435-437.
    [44] Schyler T. H., R. P. J. Potting, L. Denholm, G. M. Poppy. 1999. Nature, 400: 825-826.
    [45] H. Arnold Bruns and Craig A. Abel. Nitrogen Fertility Effects on Bt _-Endotoxin and Nitrogen Concentrations of Maize during Early Growth.
    [46] 孟风霞,沈晋良,褚妹频.2003.Bt棉叶对棉铃虫抗虫性的时空变化及气象因素的影响.昆虫学报,46(3):299-304.
    [47] Adamczyk, J. J., Jr., D. D. Hardee, L. C. Adams, and D. V. Snmerford. Correlating differences in larval survival and development of bollworm (Lepidoptera: Noctuidae) and fall armyworm (Lepidoptera:Noctuidae) to differential expression of CrylA(c) endotoxin in various plant parts among commercial cultivars of transgenic Bacillus thuringiensis cotton. Journal of Economic Entomology, 2001, 94 (1):284-290.
    
    
    [48] Adamczyk, J. J., L. C. Adams, and D. D. Hardee. Field efficacy and seasonal expression profilesfor terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. Journal of Economic Entomology, 2001, 94 (6): 1589-1593.
    [49] 郭予元. 1997. 棉铃虫的研究.北京.中国农业出版社.1-10.
    [50] 樊孝贤,齐立,石尚柏,黄民松,王瑞琪,万鹏.棉铃虫防治指标研究.湖北农业科学,2000(5): 46-48.
    [51] Carriere, Y., Christa E. K., M. Sisterson, L. Antilla, M. Whitlow, T. J. Dennehy, and B. E.Tabashnik. 2003. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton.Proceeding of the National Academy of Sciences, 100, 1519-1523.
    [52] Gould, F..Sustainabiility of transgenic insecticidal cultivars: integrating pest genetics and ecology.Annual Review of Entomology, 1998, 43: 701-726.
    [53] Tabashnik, B. E.. Seeking the root of insect resistance to transgenic plants. Proceeding of the National Academy of Sciences, 1997, 94, 3488-3490.
    [54] 松浦博一.斜纹夜蛾的耐寒性和越冬特点.国外农学——植物保护,1992,5(3)12-15.
    [55] 秦厚国,叶正襄,黄水金,李华.斜纹夜蛾对棉花的危害及防治指标的研究.中国棉花,2000,27(4)24-25.
    [56] 张文军,庞义,齐艳红,古德祥.斜纹夜蛾生长发育与温度的关系.中山大学学报(自然科学版),1997,36(2)6-9.
    [57] 蒋冬花、邓日强、庞义、龙新,对斜纹夜蛾高毒力的Bt新分离株及其特性的研究.微生物学通过报,1997,24(5):262-265.
    [58] 棉花害虫及其天敌图册.武汉:湖北人民出版社.1980:8-10.
    [59] 农业昆虫学.南京:江苏科学技术出版社.1991:286-291.
    [60] 陈佩龙,王昆,刘海南.麦套棉田苗期不施药保护天敌控制害虫的研究.生物防治通报,1991,7(2):74-76.
    [61] 郭慧芳,孙洪武,朱述钧,方继朝.2003.转基因棉对非靶标害虫棉蚜适台度研究.江苏农业学报,2003,19(1):9-12
    [62] 束春娥,孙以文,孙洪武.转基因抗虫棉承受棉铃虫风险压力研究初报.江苏农业科学,2000,(4):38-41.
    [63] 林毅.转基因抗虫棉对不同生态环境的适应性研究.应用生态学报,2000,11(2):246-248.
    [64] 施爱民,涂松林,胡国祥.转基因抗虫棉GK19生产试种示范与研究.湖北农业科学,2000,(1):18-21.
    [65] Liu, Y., B. E. Tabashnik, S. K. Meyer, Y. Carrie're, and A. C. Bartlett. 2002. Genetics of pink bollworm resistance to Bacillus thuringiensis toxin CrylAc. Journal of Economic Entomology, 94 (1):248-252.
    [66] Tanashnik, B. E., Y. Liu, T. J. Dennehy, M. A. Sims, M. S. Sisterson, R. W. Biggs, and Y. Carrie're.2002. Inheritance of Resistance to Bt Toxin CrylAc in a Field-Derived Strain of Pink Bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 95 (5): 1018-1026.
    [67] Olsen, K. M., and J. C. Daly. 2000. Plant-Toxin Interactions in Transgenic Bt Cotton and their Effect on Mortality of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology, 93
    
    (4): 1293-1299.
    [68] Garry, F., K. Olsen, L Lawvence. 1999. Factors affecting the efficacy of Bt cotton. Australia Cottongrowse. 20 (3): 28-30.
    [69] Sivamani, E., N. Rajendran. 1992. Influence of some plant phenolies on the activity of endotoxin Bacillus thuringiensis var. Galleiae on Heliothis armigera. Entomology of Experimental Application, 63: 243-248.
    [70] 张永军,杨舰,郭予元,吴孔明.外源Bt杀虫蛋白和棉花主要抗虫烯类物质互作关系研究.2002.中国农业科学,35(5):514-519.
    [71] Carrie're, Y., C. Ellers-Kirk, A. L Patin, M. A. Sims, S. Meyer, Y. Liu, T. J. Dennehy, and B. E.Tabashnik. 2001. Overwintering cost associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 94 (4): 935-941.
    [72] Carrie're, Y., C. Ellers-Kirk, Y. Liu, M. A. Sims, A. L Patin, T. J. Dennehy, and B. E. Tabashnik.2001. Fitness Costs and Maternal Effects Associated with Resistance to Transgenic Cotton in the Pink Bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 94 (6): 1571-1576.
    [73] Halcomb, J. L, H. Benedict, B. Cook, and D. R. Ring. 1996. Survival and growth of bollworm and tobacco budworm on nontransgenic and transgenic cotton expression a Cryl insecticidal protein (Lepidoptera: Noctuidae). Environmental Entomology, 25: 250-255.
    [74] Wilson, F.D., H. M. Flint, W. R. Deaton, D. A. Fischhoff, E. J. Perlak, T. A. Armstrong, R. L Fuchs, S. A. Berberich, N. J. Parks, and B. R. Stapp. 1992. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Noctuidae) larvae. Journal of Economic Entomology, 76: 219-222.
    [75] MacIntosh, S. C., T. B. Stone, S. R. Sims, P. L Hunst, J. T. Greenplate, P. G. Marrone, F.J. Perlak,D. E Fischhoef, and R. L Fuchs. 1990. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. Journal of Vertebrate Pathology, 56: 258-266.
    [76] Adamczyk, J. J., Jr., and D. V. Sumerford. 2000. Increased tolerance of fall armyworms (Lepidoptera: Noctuidae) to CrylAc endotoxin when fed transgenic Bacillus thuringiensis cotton:impact on the development of subsequent generations. Florida Entomologist, 84: 1-6.
    [77] Asano, S., H. Sakakibara, T. Kitagaki, K. Nakamura, and Y. Matsusita. 1973. Laboratory and field evaluation of the effectiveness of Bacillus thuringiensis products "Thuricide" on some lepidopterous pests of crucifers. Japanese Application Entomology and Zoology, 17: 91-96.
    [78] 周晓梅 黄炳球.2002.斜纹夜蛾抗药性及其防治对策的研究进展.昆虫知识, 39(2),98-102.
    [79] 吴世昌,顾言真,王冬生.1995.斜纹夜蛾的抗药性及其防治.上海农业学报,11(2):39-43.
    [80] Wu, K. and Y. Guo. 2003. Influences of Bacillus thuringiensis Berliner Cotton Planting on Population Dynamics of the Cotton Aphid, Aphis gossypii Glover, in Northern China. Environmental Entomology, 32(2): 312-318.
    [81] 张少燕 谢宝瑜.2002.转基因棉花Bt毒蛋白的表达及其生态学效应.昆虫知识, 39(5):328-335.
    [82] Carrie're, Y., M. S. Sisterson, B. E. Tabashnik. 2004. Resistance management for sustainable use of Bacillus thuringiensis crops in intergrated pest management. A. R. Horowitz, I. Ishaaya (Eds.):Insect Pest Management, Springer-Verlag Berlin Heidelberg.
    [83] Schnepf, E., N. Crickmore, J. Vanrie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H.DEAN. 1998. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbilogy and Molecular
    
    Biology Reviews, 62(3): 775-806.
    [84] Tabashnik, B. E., Y. Carriere, T. J. Dennehy, S. Morin, M. S. Sisteron, R. T. Roush, A. M. Shelton and J. Zhao. Insect resistance to transgenic Bt crops: Lessons from the laboratory and field. Journal of Economic of Entomology, 2003, 96(4): 1031-1038.
    [85] Tabashnik, B. E., A. L. Patin, T. J. Dennehy, Y. Liu, Y. Carriere, M. A. Sims, and L.Antilla.Frequency of resistance to Bacillus thuringiensis in field population of pink bollworm. Proceedings of the National Academy Sciences of the United States of America, 2000, 97(24) :12980-12984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700