用户名: 密码: 验证码:
普通小麦—华山新麦草衍生后代的细胞学鉴定和控制大豆种子低镉积累基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通小麦作为人类的主要粮食作物,具有广泛的种植面积。尽管其产量和品质在过去儿百年的育种改良进程中得到了显著性地提高,但由于狭窄的遗传背景以及贫乏的遗传多样性,普通小麦也很容易受到生物或非生物的胁迫,严重阻碍了产量以及品质的进一步提升。小麦属的野生近缘属具有丰富的遗传变异,是小麦遗传改良的重要资源。通过远缘杂交将野生近缘属物种中优良的农艺性状或基因转移到普通小麦中,从而丰富普通小麦的遗传多样性以及扩大其遗传变异性,是现今小麦遗传改良的主要途径。本文以普通小麦-华山新麦草杂种衍生后代为研究材料,通过田间农艺性状考察、细胞学、基因组原位杂交和储藏蛋白亚基分析等手段对衍生后代进行了筛选和评价,主要结果如下:
     1.596株BC2{[F1×CS]×CS,[F1×CSph26]×CSph26和[F1×J-11]×J-11}和BC1F1{[F1×CS]selfed,[F1×CSph2b]selfed和[F1×J-11]selfed}直株的体细胞染色体数目分布在2n=42-52,其中染色体数目为2n=45植株最多,占到19.6%。由于受到遗传因子的影响,群体染色体数目旱非正态分布。比较群体之间以及组合之间染色体数目的分布发现:染色体数目的分布受到回交亲本基因型的影响。在BC2群体中,CSph2b对染色体数日分布的影响效应最大,而CS和J-11的效应相似。然而在BC1F1群体中,J-11的影响效应大于CS。连续多代的回交能够加快染色体的丢失,不利于外源基因的重组。
     2.从BC1F2和BC1F3群体中筛选和鉴定了一系列小麦-华山新麦草外源附加系。5个染色体数目为44以及1个染色体数目为46的植株细胞学上表现稳定。基于染色体配对、GiemsaC-带以及基因组原位杂交的研究,材料编号为156-4、160-12、160-13、173-2以及197-16(2n=44)是附加了一对华山新麦草5Ns染色体的双体附加系。165-2具有46条染色体,分别附加了一对华山新麦草的3Ns和5Ns染色体,是一个双二体附加系。同时也筛选到9个单体附加系,分别附加一条华山新麦草的1Ns、2Ns、4Ns或者5Ns染色体。材料241-2以及241-10是两个罗宾逊易位系。在花粉母细胞减数分裂观察过程中,检测到一些异常的染色体行为,例如:端体、落后端体、姐妹染色端体在减数分裂后期Ⅰ移向同极、末期Ⅱ时的染色体不同步分离。这些结果表明,存在的华山新麦草染色休打乱了原有的减数分裂平衡。通过对这些附加系的农艺性状考察和比较,发现华山新麦草的5Ns染色体上携带有控制小麦芒有无的基因。
     3.对9个普通小麦-华山新麦草的异染色体系进行了Giemsa C-带、基因细原位杂交以及条锈病抗性的鉴定。结果表明:附加系163-5、165-1、183-5、240-3和240-3为附加了一条华山新麦草3Ns染色体的单体附加系:183-1和183-20是附加了一对华山新麦草3Ns染色体的双体附加系:165-20是附加了一对3Ns和一对4Ns染色体的双二体附加系;而219-1是分别附加了一对1Ns和3Ns染色体、而5A染色体丢失的一个双二体附加-代换系。这些含有华山新麦草3Ns染色体的附加系表现出对条锈病高抗或者免疫的特性。而含Ns、2Ns、4Ns和5Ns附加系均表现出高感小麦条锈病。这些结果强有力地揭示了华山新麦草3Ns染色体携带有对小麦条锈病高抗或免疫的基因。这些附加系是普通小麦抗病遗传改良新的重要抗性资源供体,将对小麦的条锈病抗性育种具有重要的作用。
     4.利用花粉母细胞检测、Giemsa C-带SDS-PAGE以及田间抗病性鉴定从普通小麦-华山新麦草衍生后代BC1F4群体中筛选和鉴定了两个部分双二倍体系列B113(32株)和B21(13株)。15个单株全部是非整倍体,2n=50(8株)、51(6株)和54(1株)。部分植株减数分裂正常。该群体包含了全部的华山新麦草染色体,尽管不是存在于一个单株中。34株具有华山新麦草高分子量谷蛋白亚基以及41株具有华山新麦草低分子量谷蛋白亚基或者一些新的亚基。全部植株对混合条锈病生理小种‘条中30’、‘条中31’、‘水源7’和‘水源14’均表现出高抗(10株)或者免疫(35)。因而,该部分双二倍体群体将是利用华山新麦草基因资源遗传改良普通小麦的重要桥梁材料,也是保护、研究和利用华山新麦草遗传资源的重要材料。
     来源于工业废料和农业磷肥的有毒重金属元素镉能够高度富集在土壤中,对各种生物有机体造成严重的毒害。富集在植物体中的镉能够引起植物体细胞的破坏,从而破坏相应的生理代谢进程,以及诱导相应的生理住化应答及其信号转导途径。镉能引起人类多种疾病,例如:肾小管功能障碍和骨质疏松等。不同大豆品种之间种子的镉积累能力不同,大部分的现有栽培大豆品种能够从镉污染的土壤中积累超过标准含量的镉在种子中。大豆长期作为人类的主要食品,能够加工成豆奶、豆腐或者大豆油。人们直接或者间接食用高镉积累的种子能够引起人类潜在的健康问题。在控制大豆种子低镉积累基因定位在大豆基因组连锁群K的Sat_119和SatK176之间的研究基础上,本文以两个大豆品种Westag97(低镉品种)和ACHime(高镉品种)为研究材料,对镉胁迫下的大豆各组织进行了用于量化目的基因表达水平的qRT-PCR内参基因表达稳定性的筛选和评价,以及克隆、表达和功能分析了控制大豆种子低镉积累的基因。主要研究结果如下:
     5.利用0、0.1和1.6μmol/L的镉处理发芽第14天的两个大豆品种Westag97和AC Hime,在处理后的第2、6、12、24h分别收集根、茎和叶,提取其RNA并反转录成cDNA用于qRT-PCR分析。通用的两个内参基因评估软件geNrom和NormFinder均表明所选的10个候选基因中,ACT3、PP2A、ELF IB和F-box在该实验条件下是最稳定的四个内参基因,可以用作后续基因表达的标准量化研究。而G6PD、UBC2、TUB和ELF1A是最不稳定的四个候选基因,不能在该实验条件下用作后续基因表达的研究。
     6.对候选基因区域内编码重金属元素转移蛋白的大豆重金属元素结合蛋白(GmHMA3)基因进行了克隆,表达和功能上的分析。GmHMA3a和GmHMA3w的序列一致,除了GmHMA3a在1823by处发生了单碱基的代换。20个现今流行的栽培品种中,所有的高镉品种均具有该单核苷酸多态性。在此基础上,建立了一个HRM标记,该标记与低镉性状紧密连锁且其遗传距离为0.3cM。标记和性状连锁分析表明GmHMA3w属于野生型基因。表达结果表明GmHMA3只在根部表达,且高、低镉品种之间没有表达上的差异。基因功能分析表明GmHMA3w具有转移和运输镉和锌的能力,它将根尖吸附的镉或者锌储藏到根部的液泡膜细胞或者其它根部细胞中,而阻止它们通过木质部向地上组织的转运,从而减少了大豆种了中镉的积累。
     7.部分金属元素转运蛋白能够转运多种金属元素。通过本研究发现,GmHMA3w除了转运镉和锌外,对铅、铁和钻都没有转运能力。通过含有GFP的重组载体转化,发现GmHMA3在酵母细胞的内质网上表达,从而解释了为什么含有pYES2.1-GmHMA3w的酵母菌株在镉和锌的培养基中表现出敏感性,而不是耐受性。
Bread wheat (Triticum aestivum L.,2n=6x-42AABBDD) as staple food of the world's population, is the most widely grown crop in the world. Although it has been bred intensively for hundred of years, significant improvements in yield and quality have been achieved. Due to its limited genetic diversity, bread wheat is constantly threatened by various abiotic and biotic factors, which has limited its improvements in yield and quality. The wild relatives of wheat possess a large number of useful genes, which will be the genetic donor of wheat breeding. An efficient strategy to broaden the genetic base of wheat is to introgress some useful genes of its wild relatives in the tertiary gene pool into wheat through distant crosses. In the present study, we selected and characterized some alien chromosome lines derived from wheat-Psathyrostachys huashanica Keng ex Kuo (2n=2x=14, NsNs) by agronomy, cytogenetics, GISH and SDS-PAGE. The results are as follows:
     1.596plants of the BC2{[F1×CS]×CS,[F1×CSph2b]×CSph2b and [F1×J-11]×J-11} and BC1F1{[F1×CS] selfed,[F1×CSph2b] selfed and [F1×J-11] selfed} were observed for analyzing the distribution of chromosome numbers. The chromosome numbers of the populations of BC2and BC1F1varied from2n=42to52, and plants with2n=45accounted for the highest frequency (19.6%). The distribution of chromosome numbers in all combinations didn't fit to normal distribution, indicating that the distribution of chromosome numbers was affected by some genetic factors. There were different main ranges of chromosome numbers and reduced chromosome numbers per a hundred of plants in BC2accessions and BC1F1accessions. These results indicated that the distribution of chromosome numbers was affected by the genotype of the backcrossing parents. The effect of CSph2b higher than CS and J-11, and the effect of CS and J-11were similar in BC2accessions. However, the efficiency of J-11was higher than CS in BC1F1accessions. And chromosome eliminated more rapidly by backcrossing than selfing, and selfing may be facilitated to the screening of recombination between wheat and P. huashanica chromosomes.
     2. Alien chromosome lines were developed and identified from the BC1F2and BC1F3generations. Five lines with2n=44and one line with2n=46showed regular meiosis and were cytologically stable. Based on chromosome pairing, C-banding and GISH analysis, lines156-4,160-12,160-13,173-2and197-16(2n=44) were alien disomic addition lines with the addition of one pair of the P. huashanica5Ns chromosomes. Line165-2, which had each pair of the P. huashanica chromosomes3Ns and5Ns being added, was an alien double addition line. Nine lines with the P. huashanica chromosome1Ns,2Ns,4Ns or5Ns were alien monosomic addition lines. Robertsonian translocation was observed in lines241-2and241-10. Some chromosomal abnormalities were observed, such as telosomics, lagging of telosomics, and telosomic sister chromatids that moved to one pole at anaphase I and asynchronous chromosome separation at telophase Ⅱ. These results indicated that the presence of alien chromosomes from P. huashanica had influenced the meiosis. Meanwhile, by comparing the series of wheat-P. huashanica chromosome addition lines, the gene(s) for awns were mapped to the P. huashanica5Ns chromosome.
     3. Nine wheat-P.huashanica addition lines were characterized by Giemsa C-banding, genomic in situ hybridization (GISH) and disease resistance evaluation. Giemsa C-banding and GISH demonstrated that lines163-5,165-1,183-5,240-3and240-4are P. huashanica3Ns chromosome monosomic addition lines; lines183-1and183-20are P. huashanica3Ns chromosome disomic addition lines; line165-20is P. huashanica3Ns and4Ns chromosome double disomic addition lines; and line219-1is P. huashanica INs and3Ns/5A chromosome double disomic addition-substitution lines. All of these addition lines with P. huashanica3Ns chromosome(s) expressed high resistance or immunity to stripe rust. By comparing the series of whea1-P. huashanica chromosomes addition lines, we concluded that the P. huashanica3Ns chromosome carries the gene(s) for resistance or immunity to stripe rust. These addition lines can be used as a donor source of novel stripe rust resistance to wheat breeding programs.
     4. Two partial amphiploid lines, B113(32plants) and B21(13plants) which were BC1F4, were characterized by Giemsa C-banding and SDS-PAGE and evaluated for stripe rust resistance. All15partial amphiploid plants analysed were aneuploids with either50(8plants),51(6plants) or54(I plant) chromosomes. Some of them showed regular meiosis and all the P. huashanica chromosomes were included, although not in a single plant. SDS-PAGE analysis of the45plants showed that34expressed some specific bands representing high molecular weight glutenin subunit (HMW-GS) and41had bands representing P. huashanica low molecular weight glutenin subunit (LMW-GS), including two new subunits. All45plants were highly resistant (10) or immune (35) to stripe rust mixed races CYR-30, CYR-31, Shuiyuan7and Shuiyuan14. These amphiploid plants could be useful germplasm for enhancing stripe rust resistance and might improve wheat grain quality.
     Cadmium (Cd) is a toxic trace pollutant for all living organisms that can accumulate to high concentrations in soil from industrial processes and phosphate fertilizers. It can accumulate in plants causing cellular damage, leading to a disruption of physiological processes, and them inducing the responses at the biochemical-physiological level and on signal transduction pathways. Cd has been recognized as a contributing factor to human diseases, such as renal proximal tubular dysfunction and the bone disease called itai-itai. There are cultivar differences in seed Cd accumulation in soybean [Glycine Max (L.) Merr] and many cultivars accumulate high Cd concentrations in seed when grown on Cd-contaminated soils. These cultivars can exceed the proposed Codex upper limit. Soybean has long been a staple food for humans, especially as soymilk, tofu and oil. Consumption, either directly or indirectly, of seed with high levels of Cd could be a human health concern. In the present study, based on a major gene or QTL controlling seed Cd accumulation in soybean has been located on linkage group K between the SSR markers Sat119and SatK176, two cultivars, Westag97(a low Cd accumulator) and AC Hime (a high Cd accumulator), were used to evaluate reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to Cd, and clone, expressed and functionally analyze GmHMA3w limiting Cd translocation in soybean. The results are as follows:
     5. Due to no study has concentrated on identifying multiple reference genes for normalization of qRT-PCR data in soybean under exposure to heavy metal stress treatments, we evaluated the expression stability of ten candidate housekeeping genes in leaves, roots and stems of two soybean cultivars exposed to increased Cd concentrations. Under evaluation of geNorm' and NormFinder, ACT3, PP2A, ELF1B and F-box were the four best reference genes, based on geNorm and NormFinder analysis, for these gene expression studies. These four genes also may be suitable for normalization of gene expression in soybean under exposure to other heavy metals which have similar properties and effects as Cd. Both geNorm and NormFinder analyses revealed that G6PD, UBC2, TUB, and ELF1A could not be used as reference genes for normalization in these experimental conditions.
     6. A candidate gene, Glycine max heavy metal associated protein3(GmHMA3), which encodes a heavy metal transporter belonging to the P1B-type ATPase family, was selected for analysis. Sequence analysis of20diverse soybean cultivars detected a single nucleotide change in this gene in all high seed Cd accumulators. A single nucleotide polymorphism (SNP) marker was developed and used to genotype166F8RILs by high resolution melt (HRM) analysis. Segregation analysis mapped the GmHMA3to0.3cM away from the Cdal gene previously tagged by the SSR markers, SatK147, SacK149and Saatk150. Marker-trait association analysis also indicated that the wild type allele, GmHMA3w, is tightly associated with low seed Cd concentration. Expression level studies revealed that GmHMA3is only expressed in root. Functional assay of the GmHMA3gene in yeast indicated that GmHMA3w encodes a Cd/Zn transporter, which sequesters Cd and Zn into vacuoles or other place in roots, thereby limiting the Cd and Zn accumulations in soybean seed.
     7. Some metal transporters of plant can transport multi-metals. Although GmHMA3w is a Cd and Zn transporter, it can not transport Fe, Pb and Co. Due to GmHMA3was mis-localized on endoplasmic reticulum in yeast, GmHMA3w increased the sensitive of Cd and Zn.
引文
(1)曹张军,王献平,王美南,曹双河,井金学,商红生,李振岐,张相岐.2005.小麦背景中来自华山新麦草的抗条锈病基因的遗传学分析和分子标记.遗传学报32,739-743.
    (2)陈佩度,周波,齐莉莉,刘大钧.1995.用分子原位杂交鉴定小麦-簇毛麦双倍体、附加系、代换系和易位系.遗传学报22,206-210.
    (3)陈淑阳,侯文胜,张安静,傅杰,杨群慧.1996.普通小麦-华山新麦草异附加系的选育及细胞遗传学研究[J].遗传学报23,447-452.
    (4)陈淑阳,张安静,傅杰.1991.普通小麦与华山新麦草的杂交.遗传学报18,508-512.
    (5)陈淑阳,钟冠昌.1994.小麦远缘杂交育种的研究新进展.见:刘后利(主编),作物育种研究新进展.农业出版社,北京.
    (6)董玉琛.2000.小麦的基因源.麦类作物学报20,78-81.
    (7)傅杰,赵继新,陈淑阳,侯文胜,杨群慧.2003.小麦-华山新麦草抗全蚀病新种质的分了细胞遗传学研究.西北植物学报23,1905-1909.
    (8)耿以礼.1959.中国主要植物图说-禾本科.科学出版社,北京.
    (9)郭本兆.1987.中国植物志.北京:科学出版社.
    (10)韩方普,何孟元,郝水,马有志,辛志勇.1998. 应用荧光原位杂交技术研究小冰麦异附加系TAI-14中的冰草染色体变异.植物学报40,33-36.
    (11)杭焱,金燕,卢宝荣.2004.濒危植物华山新麦草的遗传多样性及其保护.复旦学报(自然科学版)43,260-266.
    (12)候文胜,张安静,杨群慧,傅杰,陈淑阳.1997. 普通小麦-华山新麦草异代换系的选育及细胞遗传学研究.西北植物学报17,368-373.
    (13)贾旭,庄家骏,陈淑阳,李海健,聂道泰,俞春江,王剑雄,钱幼亭,周广和.1995.创制小麦抗病种质新途径的研究.科学通报40,833-836.
    (14)金井学,傅杰,袁红旭,王美南,商红生,李振岐.1999.三个小麦野生近缘种抗条锈性传递的初步研究.植物病理学报29,147-150.
    (15)李振岐,曾士迈.2002.中国锈病学.北京:中国农业出版社.
    (16)廖进秋,康厚扬,杨瑞武,汤加勇,周永红.2007.中国春ph2b突变体×华山新麦草Fl自交和回交一代细胞遗传学研究.西北植物学报27,442-448.
    (17)罗明诚,颜济,杨俊良.1989.四川小麦地方品种与节节麦和黑麦的可杂交性.四川农业大学学报7,77-81.
    (18)马翎健,姚路畅,胡银岗,宋喜悦,何蓓如.2006.普通小麦与华山新麦草、簇毛麦杂交后代染色体形态观察.长江大学学报(自科版)3,173-175.
    (19)任正隆,张怀琼.1995.一个改良的染色体C-分带技术.四川农业大学学报13,1-5.
    (20)孙根楼,颜济,杨俊良.1992.普通小麦和新麦草属间杂种的产生及细胞遗传学研究.遗传学报19,322-326.
    (21)孙根楼,颜济,杨俊良.1994.华山新麦草属间杂种细胞间遗传物质的转移及其在物种演化中的意义.四川农业大学学报12,333-337.
    (22)万永芳,颜济,杨俊良.1997.小麦近缘野生植物的赤霉病抗性研究.植物病理学报27,107-111.
    (23)王洪刚,孔令让,李平路,元增军,刘树兵,孔凡晶,朱军.1999.中间堰麦草与小麦杂交后代的细胞遗传学及性状特点的研究.作物学报25,373-380.
    (24]王建伟,陈新宏,赵继新,武军,程雪妮,刘淑会,杨群慧,吉万全.2008.华山新麦草LMW-GS基因的克隆和序列分析.麦类作物学报25,733-737.
    (25)王美南,商鸿生.2000.华山新麦草对小麦全蚀病菌的抗病性研究.西北农业大学学报28,69-71.
    (26)王小利,张改生,陈新宏,赵继新,刘宏伟,王军卫.2004.种子贮藏蛋白凝胶电泳在小麦外源染色体鉴定中的应用.西北农林科技大学学报l,19-22.
    (27)上秀娥,李万隆,刘大钧.1998.新麦草属两物种的C-分带研究.南京农业大学学报21,10-13.
    (28)王益,康厚扬,原红军,蒋云,张海琴,周永红.2008.普通小麦与华山新麦草衍生后代的农艺性状和细胞遗传学研究.四川农业大学学报26,405-410.
    (29)辛志勇,徐惠君,陈孝,林志珊,周广和,钱幼亭,成卓敏.1991.应用生物技术向小麦导入黄矮病抗性研究.中国科学(B辑)1,36-42.
    (30)颜泽红.2001.山羊草物种高分子量麦谷蛋白基因的分子克隆[学位论文].四川农业大学,四川雅安.
    (31)杨艳,韩建国,孙彦,单战.2007.新麦草遗传多样性等位酶分析.草业科学8,337-340.
    (32)岳明,张林静,马凯,赵桂仿.2001.华山新麦草濒危原因及种群繁殖对策.生态学报8,1314-1320.
    (33)赵继新,陈新宏,王小利,武军,傅杰,何蓓如,宋亚珍,孙志刚.2004a.普通小麦-华山新麦草异代换系和附加系的C-分带鉴定.西北农林科技大学学报(自然科学版)31,1-5.
    (34)赵继新,陈新宏,王小利,武军,傅杰,何蓓如,孙志刚.2004b.普通小麦-华山新麦草异附加系的分子细胞遗传学研究.西北农林科技大学学报(自然科学版)32,105-113.
    (35)郑有良,周永红,魏育明.2000.小麦分子生物学应用研究.四川科学技术出版社,成都.
    (36)庄巧生.2003.中国小麦品种改良及系谱分析.中国农业出版社,北京.
    (37)Ananiev EV, Riera Lizarazu O, Rines HW, Phillips RL.1997. Oat-maize chromosome addition lines:a new system for mapping the maize genome. PNAS 94,3524-3529.
    (38)Asay KH, Johnson DA, Jensen KB, Sarraj WM, Clark DH.1996. Potential of new tetraploid germplasm in Russian wildrye. J Range Manag 49,439-442.
    (39)Baden C.1991. A taxonomic revision of Psathyrostachys (Poaceae). Nord J Bot 11,3-26.
    (40)Bao Y, Li X, Liu S, Cui F, Wang HG.2009. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistance to powdery mildew and stripe rust. Cytogenet Genome Res 126,390-395.
    (41)Bothmer R von, Kotimaki M, Linde-Laursen I.1987. Genome relationships between Psathyrostachys huashanica and P. fragilis. PI Syst Evol 156,183-188.
    (42)Cai X, Chen PD, Xu SS, Oliver RE, Chen X.2005. Utilization of alien genes to enhance Fusarium head blight resistance in wheat-A review. Euphytica 142,309-318.
    (43)Castilho A, Miller TE, Heslop-Harrison JS.1996. Physical mapping of translocation breakpoints in a set of wheat-Aegilops umbellulata recombinant lines using in situ hybridization. Theor Appl Genet 93,816-825.
    (44)Chang SB, Jong HD.2005. Production of alien chromosome additions and their utility in plant genetics. Cytogenet Genome Res 109,335-343.
    (45)Chen Q, Friebe B, Conner RL, Laroche A, Thomas JB, Gill BS.1998. Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet 96, 1-7.
    (46)Chen XM.2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. Tritici] on wheat. Can J Plant Pathol 27,314-337.
    (47)Cho S, Garvin DF, Muehlbauer GJ.2006. Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172,1277-1285.
    (48)Cifuentes M, Benavente E.2009. Wheat-alien metaphase 1 pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theor Appl Genet 119,805-813.
    (49)Cimmity.2003. Wheat in the developing world. http://www.cimmyt.org/Research/wheal/map /developing world/index, htm.
    (50)Darlington CD, Thomas PT.1941. Morbid mitosis and the activity of inert chromosomes in Sorghum. Proc Roy Soc Lond B 130,127-150.
    (51)Davis EDG, Jones GH.1974. Chiasma variation and control in pollen mother cells and embryo-sac mother cells of rye. Genet Res 23,227-236.
    (52)De Tomasi JA.1936. Improving the technic of the feulgen stain. Biotech Histochem 11, 137-144.
    (53)Dewey DR.1984. The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gene Manipulation in Plant Improvement, New York, USA.
    (54)Dosba F, Doussinault G, Rivoal R.1978. Extraction, identification and utilization of the addition lines T. aestivum-Ae. ventricosa. Proc 5th Int Wheat Genet Symp, Indian Society of Genetics and Plant Breeding,332-337.
    (55)Doussinault G, Delibes A, Sanchez-Monge R, Garcia-Olmedo F.1983. Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303, 698-700.
    (56)Doyle JJ, Doyle JL.1990. Isolation of plant DNA from fresh tissue. Focus 12,13-15.
    (57)Endo TR, Gill BS.1984. Somatic karyotype, heterochromatics distribution and nature of chromosome differentiation in common wheat, Triticum aestivum L. Thell. Chromosome 89, 361-369.
    (58)Fedak G, Chen Q, Conner RL, Laroche A, Petroski R, Asmstrong KW.2000. Characterization of wheat-Thinopyrum partial amphiploid by meiotic analysis and genomic in situ hybridization. Genome 43,712-719.
    (59)Fedak G.1999. Molecular aids for integration of alien chromatin through wide crosses. Genome 42,584-591.
    (60)Friebe B, Gill BS.1994. C-band polymorphism and structural rearrangements detected in common wheat (Trticum aestivum). Euphytica 78,1-5.
    (61)Friebe B, Jiang J, Raupp WJ, Mclntosh RA, Gill BS.1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests:current status. Euphytica 91,59-87.
    (62)Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS.2000. Development of a complete set of Triticum aestivum-Aegilops speltoicles chromosome addition lines. Theor Appl Genet 101, 51-58.
    (63)Friebe B, Tuleen NA, Badaeva ED, Gill BS.1996. Cytogenetic identification of Triticum peregrinum chromosomes added common wheat. Genome 39,272-276.
    (64)Friebe B, Zhang P, Line G, Gill BS.2005. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase Ⅰ and rejoining of broken centromeres during interkinesis of meiosis Ⅱ. Cytogenet Genome Res 109,293-297.
    (65)Friebe B.1995. Nonhomoeologous wheat-rye translations conferring resistance to greenbug. Euphytica 84,121-125.
    (66)Gale MD, Miller TE.1987. The introduction of alien genetic variation in wheat. Wheat breeding, London, England.
    (67)Gill BS, Friebe B, Endo TR.1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34,830-839.
    (68)Gill BS, KimberG.1974. The Giemsa C-banded karyotype of rye. PNAS 71,1247-1249.
    (69)Grundbacher FJ.1963. The physiological function of the cereal awn. Botanical Rev 29, 366-381.
    (70)Hajjar R, Hodgkin T.2007. The use of wild relatives in crop improvement:A survey of developments over the last 20 years. Euphylica 156,1-13.
    (71)Han FP, Liu B, Fedak G, Liu ZH.2004. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109,1070-1076.
    (72)Han FP, Zhang XQ, Bu XL, He MY, Hao S, Ma YZ, Xin ZY.1998. Variation of wheatgrass chromosomes in wheat-wheatgrass alien addition line "TA1-27" revealed by fluorescene in stiu hybridization (FISH). Sci China Ser C 41,366-371.
    (73)Harlan JR, De Wet JMJ.1971. Towards a rational classification of cultivated plants. Taxon 20, 509-517.
    (74)Holmquist GP, Dancis B.1979. Telomere replication, kinetochore organizers, and satellite DNA evolution. PNAS 76,4566-4570.
    (75)Hu C, Hole DJ, Albrechtsen RS, Hu CJ.1996. Barley chromosome location and expression of dwarf bunt resistance in wheat addition lines. Plant Dis 80,1273-1276.
    (76)Islam AKMR, Shepherd KW.2000. Isolation of a fertile wheat-barley addition line carrying the entire barley chromosome 1H. Euphytica 111,145-149.
    (77)Islam AKMR.1983. Ditelosomic additions of barley chromosomes to wheat. Proc 6th Inter Wheat Genet Symp, Kyoto, Japan.
    (78)Jauhar PP, Peterson TS, Xu SS.2009. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 52, 467-483.
    (79)Jiang JM, Friebe B, Gill BS.1994. Recent advances in alien gene transfer in wheat. Euphytica 73,199-212.
    (80)Jiang JM, Gill BS.1993. Sequential chromosome banding and in situ hybridization analysis. Genome 36,792-795.
    (81)K Koul KK, Raina SN.1996. Male and female meiosis in diploid and colchitetraploid Phlox drummondii Hook (Polemoniaceae). Bot J Linn Soc 122,243-251.
    (82)Kang HY, Chen Q, Wang Y, Zhong MY, Zhang HQ, Zhou YH.2010. Molecular cytogenetic characterization of the amphiploid between wheat and Psathyrostachys huashanica. Genet Res Crop Evol 57,111-118.
    (83)Kang HY, Wang Y, Sun GL, Zhang HQ, Fan X, Zhou YH.2009. Production and characterization of an amphiploid between common wheat and Psathyrostachys huashanica Keng ex Kuo. Plant Breed 128,36-40.
    (84)Kang HY, Zang HQ, Fan X, Zhou YH.2008. Morphological and cytogenetic studies on the hybrid between common wheat and Psathyrostachys huashanica Keng ex Kuo. Euphytica 162, 441-448.
    (85)Khan IA.2000. Molecular and agronomic characterization of wheat-Agropyron intermedium recombinant chromosomes. Plant Breed 119,25-29.
    (86)Knott DR, Dvorak J, Nanda JS.1977. The transfer to wheat and homology of an Agropyron elongatum chromosome carrying a resistance gene to stem rust. Can J Genet Cytol 19,75-79.
    (87)Koul KK,'Nagpal N, Sharma A.2000. Chromosome behaviour in the male and female sex mother cells of wheat(Triticum aestivum L.), oat(Avena sativa L.) and pearl millet (Pennisetum americanum (L.) Leeke). Caryologia 53,175-183.
    (88)Koul KK, Raina SN, Nagpal R.1995. Differential chromosome behaviour in the male and female sex cells of Brassica oxyrhina Coss. Caryologia 48,335-339.
    (89)Koul KK, Ranjna N, Anuradha S.2000. Chromosome behaviour in the male and female sex mother cells of wheat(Triticum aestivum L.), oat (Avena sativa L.) and pearl millet (Pennisetum americanum (L.) Leeke). Caryologa 53,175-183.
    (90)Krolow KD.1970. Untersuchungen uber die Kreuzbarkeit zwischen Weizen und Roggen. Z. Pflanzenzucht 64,44-72.
    (91)Lammer D, Cai XW, Arterburn M, Chatelain J, Murray T, Jones S.2004. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot 55,1715-1720.
    (92)Lawrence GJ, Shepherd KW.1980. Variation in glutenin protein subunits of wheat. Aust J Biol Sci 33,221-234.
    (93)Le HT, Armstrong KC, Miki B.1989. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Report 7,150-158.
    (94)Li YL, Huang CY, Sui XX, Fan QQ, Li GY, Chu XS.2009. Genetic variation of wheat glutenin subunits between landraces and varieties and their contribution to wheat quality improvement in China. Euphytica 169,159-168.
    (95)Liang D, Tang JW, Pena RJ, Singh R, He XY, Shen XY, Yao DN, Xia XC, He ZH.2010. Characterization of CIMMYT bread wheat for high-and low-molecular weight glutenin subunit and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172,235-250.
    (96)Lin F, Sun Q, Xu SC, Chen XM, Zhang LJ, Zhang CY, Xu YF, Miao Q, Qu B, Li N, Zhai Q. 2009. Identification of wheat-Thinopyrum intermedium alien disomic addition lines conferring resistance to stripe rust. Can J Plant Sci 89,569-574.
    (97)Lin ZS, Cui ZF, Zeng XY, Ma YZ, Zhang ZY, Nakamura T, Ishikawa G, Nakamura K, Yoshida H, Xin ZY.2007. Analysis of wheat-Thinopyrum intermedium derivatives with BYDV-resistance. Euphytica 158,109-118.
    (98)Linde-Laursen 1, Baden C.1994a. Comparison ofthe Giemsa C-banded karyotypes of the threesubspecies of Psathyrostachys fragilis, subspp. villosus (2x), secaliformis (2x,4x), and fragilis (2x) (Poaceae), with notes on chromosome pairing. Plant Syst Evol 191,183-198.
    (99)Linde-Laursen I, Baden C.1994b. Giemsa C-banded karyotypes of two cytotypes (2x,4x) of Psathyrostachys lanuginosa (Poaceae; Triticeae). Hereditas 120,113-120.
    (100)Linde-Laursen I, Bothmer R von.1984. Identification of the somatic chromosomes of Psathyrostachys fragilis (Poaceae). Can J Genet Cytol 26,430-435.
    (101)Linde-Laursen I, Bothmer R.1986. Comparison of the karyotypes of Psathyrostachys juncea and P. huashanica (Poaceae) studied by banding techniques. Plant Syst Evol 151,203-213.
    (102)Love A.1984. Conspectus of the Triticeae. Feddes Report 95,425-521.
    (103)Lukaszewski AJ, Gustafson JP.1983. Translocations and modifications of chromosomes in Triticale×wheat hybrids. Theor Appl Genet 64,239-248.
    (104)Lukaszewski AJ, Gustafson JP.1987. Cytogenetics of triticale. Plant Breeding Reviews, New York, USA.
    (105)Luo PG, Ren ZL, Zhang HQ, Zhang HY.2005. Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology 95,1266-1270.
    (106)McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM.2008. Catalogue of Gene Symbols for Wheat. Proc 11th Int Wheat Genet Symp, Brisbane, 24-29.
    (107)Mica E, Gianfranceschi L, Pe ME.2006. Characterization of five microRNA families in maize. J Exp Bot 57,2601-2612.
    (108)Muehlbauer GJ, Riera Lizarazu O, Kynast RG, Martin D, Phillips RL, Rines HW.2000. A maize chromosome 3 addition line of oat exhibits expression of the maize homeobox gene liguleless-3 and alteration of cell fates. Genome 43,1055-1064.
    (109)Mujeeb-Kazi A, Cortes A, Riera-Lizarazu O.1995. The cytogenetics of a Triticum turgidum×Psathyrostachys juncea hybrid and its backcross derivatives. Theor Appl Genet 90, 430-437.
    (110)Mulcai Y, Nakahara Y, Yamamoto M.1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36,489-494.
    (111)Muntzing A, Adik S.1948. Cytological disturbances in the first inbred generation of rye. Hered 34,485-509.
    (112)Okagaki RJ, Kynast RG, Livingston SM, Russell CD, Rines HW, Phillips RL.2001. Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol 125,1228-1235.
    (113)Okamoto M.1957. Asynaptic effect of chromosome V. Wheat infor Serv 1957,5-6.
    (114)Petersen G, Seberg O, Baden C.2004. A phylogenetic analysis of the genus Psathyrostachys (Poaceae) based on one nuclear gene, three plastid genes, and morphology. Plant Syst Evol 249,99-110.
    (115)Plourde A, Fedak G, St-Pierre CA, Comeau A.1990. A novel intergeneric hybrid in the Triticeae:Triticum aestivum-Psathyrostachys juneea. Theor Appl Genet 79,45-48.
    (116)Raina SN, Rani V.2001. GISH technology in plant genome research. Meth Cell Sci 23, 83-104.
    (117)Rees H.1955. Genotypic control of chromosome behaviour in rye Ⅰ Inbred lines. Heredity 9, 93-116.
    (118)Rees H.1955. Genotypic control of chromosome behaviour in rye. Ⅰ. Inbred lines. Heredity 9, 93-116.
    (119)Riley R, Chapman V, Johnson G.1968. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217,383-384.
    (120)Riley R, Chapman V, Kimber G.1959. Genetic control of chromosome pairing in intergeneric hybrids in wheat. Nature 183,1244-1246.
    (121)Riley R, Chapman V.1967. The inheritance in wheat of crossability with rye. Genet Res-Cambridge 9,259-267.
    (122)Riley R, Kimber G.1966. The transfer of alien genetic variation to wheat. Ann Report Plant Breed Institute Cambridge 6-36.
    (123)Rubiales D, Moral A, Martin A.1999. Chromosome location in H. chilense and expression of common bunt resistance in wheat addition lines. Euphytica 109,157-159.
    (124)Sandier L, Lindsley DL, Nicolettf B, Trippa G.1968. Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genet 60,525-558.
    (125)Schneider A, Molnar I, Molnar-Lang M.2008. Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163,1-19.
    (126)Schubert I, Rieger R.1985. A new mechanism for altering chromosome number during karyotype evolution. Theor Appl Genet 70,213-221.
    (127)Schwarzacher T, Anamthawat-Jonsson K, Harrison GE, Islam AKMR, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS.1992. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84,778-786.
    (128)Sear ER.1954. The aneuploids of common wheat. MO Agric Exper Stn Res Bull 572,1-59.
    (129)Sears E R.1958. Genetic control of chromosomie pairing in wheat. Ann Review Genet 10, 31-51.
    (130)Sears ER.1956. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9,1-22.
    (131)Sears ER.1977. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19,585-593.
    (132)Sears ER.1982. A wheat mutant conditioning an intermediate level of homoeologous pairing. Can J Genet Cytol 24,715-719.
    (133)Sears ER.1984. Mutations in wheat that raise the level of meiotic chromosome pairing. In Gustafson JP, Gene manipulation in plant improvement,295-300. Plenum Press, New York.
    (134)Sepsi A, Molnar I, Szalay D, Molnar-Lang M.2008. Characterization of a leaf rust-resistant heat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116,825-834.
    (135)Sharma HC, Gill BS.1983. New hybrids between Agropyron and wheat.2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. Theor Appl Genet 66,111-121.
    (136)Sharma HC.1995. How wide can a wide cross be? Euphytica 82,43-64.
    (137)Shepherd KW, Islam AKMR.1988. Fourth compendium of wheat-alien chromosome lines. Proc 7th Int Wheat Genet Symp, Cambridge,1373-1398.
    (138)Slijepcevic P.1998. Telomeres and mechanisms of Robertsonian fusion. Chromosoma 107, 136-140.
    (139)Teich AH.1982. Interaction of awns and environment on grain yield in winter wheat (Triticum aestivum L.). Cereal Res Commun 10,11-15.
    (140)Tsunewaki K.1966. Comparative genes analysis of common wheat and its ancestral specials. II. Waxiness, growth habit and awnedness. Jap J Bot 19,175-229.
    (141)Uauy C, Brevis JC, Chen XM, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J.2005. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112,97-105.
    (142)Vaccino P, Banfi R, Corbellini M, De Pace C.2010. Improving the wheat genetic diversity for end-use grain quality by chromatin introgression from the wheat wild relative Dasypyrum villosum. Crop Sci 50,528-540.
    (143)Van Heusden AW, Shigyo M, Tashiro Y, Vrielink-van Ginkel R, Kik C.2000. AFLP linkage group assignment to the chromosomes of Allium cepa L. via monosomic addition lines. Theor Appl Genet 100,480-486.
    (144)Vercelde GJ.1953. The agricultural value of awns in cereal. Neth J Agr Sci 1,2-5.
    (145)Wall A.M, Riley R, Chapman V.1971. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res 18,311-328.
    (146)Wang HQ, Yang XB, Ma ZH,2010. Long-distance spore transport of wheat rust pathogen from Sichuan, Yunnan, and Guizhou in southwestern China. Plant Dis 94,873-880.
    (147)Wang Y, Yu KF, Xie Q, Kang HY, Lin LJ, Fan X, Sha LN, Zhang HQ, Zhou YH.2011. Cytogenetic, genomic in situ hybridization (GISH) and agronomic characterization of alien addition lines derived from wheat-Psathyrostachys huashanica. Afr J Biotech 10,2201-2211.
    (148)Yan ZH, Wan YF, Liu KF, Zheng YL, Wang DW.2002. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. China Sci Bull 47,220-225.
    (149)Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL.2006. Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophrum. Euphytica 149,11-17.
    (150)Zhao JX, Ji WQ, Wu J, Chen XH, Cheng XN, Wang JW, Peng YH, Liu SH, Yang QH.2009. Development and identification of a wheat-Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genet Res Crop Ev 57,387-394.
    (151)Zheng YL, Luo MC, Yen C, Yang JL.1992. Chromosome location of a new crossability gene in common wheat. Wheat Inform Ser 75,36-40.
    (152)Zhou RH, Jia JZ, Dong YC, Schwarzacher T, Miller TE, Reader SM, Wu SB, Gale MD. 1997. Characterization of progenies of Triticum aestivum-Psathyrostachys juncea derivatives by using genomic in-situ hybridization. Sci China Ser C 40,657-664.
    (153)Zhou RH, Jia JZ, Dong YC, Schwarzacher T, Reader SM, Wu SB, Gale MD, Miller TE. 1998. Characterization of Triticum aestivum-Psathyrostachys juncea derivatives by genomic in-situ hybridization. Euphytica 99,85-88.
    (1)周启星,吴燕玉,熊先哲.金属Cd-Zn对水稻的复合勿让和生态效应.应用生态学报5,438-441.
    (2)周国华.2003.被污染十壤的植物修复研究.物探与化探27,473-476.
    (3)吴大付,吴艳兵,任秀娟,李东方,李广林.2010.我国金属污染土壤的利用研究.资源开发与市场26,63-65.
    (4)孙铁珩,周启星.2000.污染生态学的研究前沿与展望.农村生态环境16,42-50.
    (5)马启彬,韩天富,徐云远,种康.2003.GmNMH7基因在大豆成花诱导、花发育和开花逆转过程中的表达.分子植物育种1,579-580.
    (6)鲁如坤,熊礼明,时正元.1992.关于土壤-作物生态系统中Cd的研究.土壤24,129-132.
    (7)林岸清.2005.水稻花发育关键基因FZP的表达与功能的研究.福建农林大学硕士论文.
    (8)贺超英,吴晓雷,张劲松,盖钧镒,陈受宜.2001.栽培大豆中一个线粒体atp6基因的分离与鉴定.植物学报43,51-58.
    (9)何飞飞,杨君.2011.小白菜吸收积累镉的品种差异研究.中国农学通报27,172-175.
    (10)Ablett GR, Stirling BT, Fischer JD.1999. Westag 97 soybean. Can J Plant Sci 79,371-372.
    (11)Andersen CL, Jensen JJ,Orntoft TF.2004. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64,5245-5250.
    (12)Arao T, Ae N, Sugiyama M, Takahashi M.2003. Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251,247-253.
    (13)Ashfield T, Keen NT, Buzzel RI, Innes RW.1995. Soybean resistance genes specific for different pseudomonas syringae avirulence genes are allelic, or closely linked, at the rpgl locus. Genetics 141,1597-1604.
    (14)Basa B, Solti A, Sarcari E, Tamas L.2009. Housekeeping gene selection in poplar plants under Cd-stress:comparative study for real-time PCR normalisation. Funct Plant Biol 26, 1079-1087.
    (15)Beilinson V, Chen Z, Shoemaker RC, Fischer RL, Goldberg RB, Neilsen NC.2002. Genomic organization of glycinin genes in soybean. Theor Appl Genet 104,1132-1140.
    (16)Benitez ER, Hajika M, Yamada T, Takahashi K, Oki N, Yamada N, Nakamura T, Kanamaru K. 2010. A major QTL controlling seed cadmium accumulation in soybean. Crop Sci 50, 1728-1734.
    (17)Bustin SA, Benes V, Nolan T, Pfaffi MW.2005. Quantitative real-time RT-PCR-a perspective. J Mol Endocrinol 34,597-601.
    (18)Cailliatte R, Lapeyre B, Briat.IF, Mari S, Curie C.2009. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422,217-228.
    (19)Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJ.2005. Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60,190-198.
    (20)Chen Q, Vierling E.1991. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol Gene Genet 226,425-431.
    (21)Clemens S, Palmgren MG, Kramer U.2002. A long way ahead:understanding and engineering plant metal accumulation. Trend Plant Sci 7,309-315.
    (22)Clemens S.2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212,475-486.
    (23)Codex Alimentrius Commission.2001. Report of the 33rd Session of the Codex Committee on Food Additives and Contaminants. Hague, Netherlands,285.
    (24)Cordoba EM, Die JV, Gonzalez-Verdejo Cl, Nadal S, Roman B.2011. Selection of reference genes in Hedysarum coronarium under carious stresses and stages of development. Anal Biochem 409,236-243.
    (25)Courbot M, Willems G, Motte P, Aridsson S.2007. A major quantitative trait locus for cadmium tolerance in Arubidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144,1052-1065.
    (26)Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W.2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Genome Anal 139,5-17.
    (27)Dixit P, Singh S, Vancheeswaran R, Patnala K, Eapen S.2010. Expression of a Neurospora crassu zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ 33,1697-1707.
    (28)Filby AL, Tyler CR.2007. Appropriate housekeeping genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 8,10.
    (29)Garritano S, Gemignani F, Voegele C, Nguyen-Dumont T, Calvez-Kelm FL, Silva DD, Lesueur F, Landi S, Tavtigian SV.2009. Determining the effectiveness of high resolution melting analysis for SNP genotyping and mutation scanning at the TP52 locus. BMC Genet 10, 5.
    (30)Giniger E, Varnum SM, Ptashne M.1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40,161-114.
    (31)Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P.2004. AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Letters 561,22-28.
    (32)Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Wuytswinkel OV.2008. The lack of a systematic validation of reference genes:a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6,609-618.
    (33)Hagihara T, Hashi M, Takeuchi Y, Yamaoka N.2004. Cloning of soybean genes induced during hypersensitive cell death caused by syringolide elicitor. Planta 218,606-614.
    (34)Hayes AJ, Yue YG, Maroof MAS.2000. Expression of two soybean resistance gene candidates shows divergence of paralogous single-copy genes. Theor Appl Genet 101,789-795.
    (35)Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH.2010. Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51,1694-1706.
    (36)Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF.2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10, 93.
    (37)Huang X, Wang G, Shen YZ, Huang ZJ.2012. The wheat gene TaST can increase the salt tolerance of transgenic Arabidopsis. Plant Cell Rep 31,339-347.
    (38)Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris K, Harper JF, Cobbett CS.2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16,1327-1339.
    (39)Ishikawa S, Abe T, Kuramata M, Yamaquchi M, Ando T, Yamamoto T, Yano M.2010. A major quantitative trait locus for increasing cadmium-specific concentration in tice grain is located on the short arm of chromosome 7. J EXP Bot 61:923-934.
    (40)Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM.1996. Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66,928-935.
    (41)Jegadeesan S, Yu K, Poysa V, Gawalko E, Morrison MJ, Shi C, Cober E.2010. Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor Appl Genet 121,283-294.
    (42)Jian B, Liu B, Bi YR, Hou WS, Wu CX, Han TF.2008. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9,59.
    (43)Jonak C, Nakagami H, Hirt H.2004. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136,3276-3283.
    (44)Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day D.2003. The soybean NRAMP homologue, Gm DMTl, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant.735,295-304.
    (45)Kazantzis G.2004. Cadmium, osteoporosis and calcium metabolism. Biometals 17, 493-498.
    (46)Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB.1999. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40, 37-44.
    (47)Kosambi DD.1944. The estimation of map distances from recombination values. Ann Eugen 12,172-175.
    (48)Kulcheski FR, Marcelino-Guimaraes FC, Nepomuceno AL, Abdelnoor RV, Margis R.2010. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal Biochem 406,185-192.
    (49)LaFayette PR, Nagao RT, O'Grady K, Vierling E, Key JL.1996. Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol Biol 30, 159-169.
    (50)Li C, Zhang YM.2011. Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.). Heredity 106,633-641.
    (51)Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G.2008. Identification of four soybean reference genes for gene expression normalization. Plant Genome 1,44-54.
    (52)Luo GZ, Wang YJ, Xie JM, Gai JY, Zhang JS, Chen SY.2006. The putative Ser/Thr protein kinase gene GmAAPK from Soybean is regulated by abiotic Stress. J Integ Plant Biol 48, 327-333.
    (53)Lux A, Martinka M, Vaculik M, White PJ.2011. Root responses to cadmium in the rhizosphere:a review. J Exp Bot 62,21-37.
    (54)Maistri S, DalCorso G, Vicentini V, Furini A.2011. Cadmium affects the expression of ELF4, a circadian clock gene in Arabidopsis. Environ Exp Bot 72, 115-122.
    (55)Maksymiec W, Krupa Z.2006. The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57,187-194.
    (56)Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD.2008. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56,169-179.
    (57)Maroufi A, Bockstaele EV, Loose MD.2010. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11,15.
    (58)McGrath SP, Zhao FJ, Lombi E.2001. Plant and rhizosphere processes involved in phytoremidiation of metal-contarninated soils. Plant Soil 232,207-214.
    (59)Mengel K, Kirkby EA, Kosegarten H, Appel T.2001. Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht.
    (60)Mittler R, Vanderauwera S, Gollery M, Van Breusegem F.2004. Reactive oxygen gene network of plant. Trends Plant Sci 9,490-498.
    (61)Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H.2011. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologisl 189,190-199.
    (62)Moran JF, Sun Z, Sarath G, Arredondo-Peter R, James EK, Becana M, Klucas RV.2002. Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase. Plant Physiol 128,300-313.
    (63)Moreau S, Thomson RM, Kaiser BN, Trevaski B, Guerinot ML, Udvard MK, Puppo A, Day DA.2002. GmZIPl encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277, 4738-4746.
    (64)Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P.2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149,894-904.
    (65)Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK.2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporter OsIRTI and OsIRT2 in rice. Soil Sci Plant Nutr 52,464-469.
    (66)Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK.2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRTI and OsIRT2 in rice. Soil Sci Plant Nutri 52,464-469.
    (67)Nicot N, Hausman JF, Hoffmann L, Evers D.2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.J Exp Bot 56,2907-2914.
    (68)Nielsen NC, Dickinson CD, Cho TJ, Thanh VH, Scallon BJ, Fischer RL, Simes TL, Drews GN, Goldberg RB.1989. Characterization of the glycinin gene family in soybean. Plant Cell 1, 313-328.
    (69)Nogawa K, Tsuritani I, Kido T, Honda R, Yamada Y, Ishizaki M.1987. Mechanism for bone disease found in inhabitants environmentally exposed to cadmium:decreased serum 1α, 25-dihydroxyvitamin D level. Int Arch Occup Environ Health 59,21-30.
    (70)Oomen RJFJ, Wu J, Lelievre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S.2009. Functional characterization of NRAMP3 and NRAMP4 from the metal huperaccumulator Thlaspi caerulescens. New Phyto 637-650.
    (71)Pandey N, Sharma CP.2002. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163,753-758.
    (72)Poysa V, Buzzell RI.2001. AC Hime Soybean. Can J Plant Sci 8,443-444.
    (73)Prak K, Nakatani K, Katsube T, Adachi M, Maruyama N, Utsumi S.2005. Structure-function relation relationships of soybean proglycinins at subunit levels. J Agric Food Chem 53, 3650-3657.
    (74)Prasad SM, Zeeshan M.2005. UV-B radiation and cadmium-induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum. Biol Plantarum 49,229-236.
    (75)Raychaudhuri A, Tipton PA.2002. Cloning and expression of the gene for soybean hydroxyisourate hydrolase localization and implications for function and mechanism. Plant Physiol 130,2061-2068.
    (76)Redjala T, Sterckeman T, Morel JL.2009. Cadmium uptake by root:Contribution of apoplast and high-and low-affinity membrane transport systems. Environ Exp Bot 67,235-242.
    (77)Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A.2008. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227,1343-1349.
    (78)Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry k, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsa D, Stacey G, Shoemaker RC, Jackson SA.2010. Genome sequence of the palaeopolyploid soybean. Nature 463,178-183.
    (79)Seehaus K, Tenhaken R.1998. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. Glycinea. Plant Mul Biol 38,1225-1234.
    (80)Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoiz E, Lee Y.2009. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21,4031-4043.
    (81)Sigh R, Green MR.1993. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259,365-368.
    (82)Smith RD, Walker JC.1996. Plant protein phosphatases. Ann Rev Plant Phys Plant Mol Biol 47,101-125.
    (83)Staswick PE, Hermodson MA, Nielsen NC.1984. The amino acid sequence of the A2Bla submit of glycinin. J Bio Chem 259,13424-13430.
    (84)Stinson LJ, Darmon AJ, Dagnino L, D'Souza SJ.2003. Delayed apoptosis post-cadmium injury in renal proximal tubule epithelial cells. Am J Nephrol 23,27-37.
    (85)Sugiyama M, Ae N, Arao T.2007. Role of roots in differences in seed cadmium concentration among soybean cultivars-proof by grafting experiment. Plant Soil 295,1-11.
    (86)Sugiyama M, Ae N, Hajika M.2011. Developing of a simple method for screening soybean seeding cadmium accumulation to select soybean genotypes with low seed cadmium. Plant Soil 341,413-422.
    (87)Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK.2011. The OsNRAMPl iron transporter is involved in Cd accumulation in rice. J Exp Bot 62,4843-4850.
    (88)Tay SL, Perera Co.2004. Phsiochemical properties of 7S and I IS protein mixtures coagulated by glucono-d-lacton. J Food Sci 69,139-143.
    (89)Taylor S, Scott R, Kurtz R, Fisher C, Patel V, Bizouarn F.2010. A practical guide to high resolution melt analysis genotyping. Bio-Rad Bulletin 6004.
    (90)Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaquchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akaqi H. 2010. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120,1175-1182.
    (91)The Arabidopsis Genome Initiative.2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408,796-815.
    (92)Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF.2009. A major quantitative trait locus controlling cadmium translocation in rice (Oryza saliva). New Phyto 182:644-653.
    (93)Ueno D, Koyama E, Yamaji N, Ma JF.2011. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.J Exp Bot 62,2265-2272.
    (94)Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF.2010. Gene limiting cadmium accumulation in rice. PNAS 107,16500-16505.
    (95)Uhlmann A, Ebel J.1993. Molecular cloning and expression of 4-coumarate:coenzyme a ligase, an enzyme involved in the resistance response of soybean (Glycine max L.) against pathogen attack. Plant Physiol 102,1147-1156.
    (96)Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S.2009. Root-to-root Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60,2677-2688.
    (97)Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.
    (98)Verbruggen N, Hermans C, Schat H.2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phyto 181,759-776.
    (99)Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters 576,306-312.
    (100)Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P.2005. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal Hisl 1 stretch. FEBS Letters 579,1515-1522.
    (101)Wang HW, Zhang JS, Gai JY, Chen SY.2006. Cloning and comparative analysis of the gene encoding diacylglycerol acyltransferase from wild type and cultivated soybean. Theor Appl Genet 112,1086-1097.
    (102)Wang Y, Yu, KF, Poysa V, Shi C, Zhou YH.2011. Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium. Mol Biol Report 10.1007/s11033-011-0897-9.
    (103)West RW, Yocum RR, Ptashne M.1984. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region:location and function of the upstream activating sequence USAG.Mol Cell Biol 4,2467-2478.
    (104)Williams LE, Mills R.2005. P1B-ATPase-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10,491-502.
    (105)Xu M, Zhang B, Su X, Zhang S, Huang M.2011. Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408,337-339.
    (106)Xiao H, Yin LP, Xu XF, Li TZ, Han ZH.2008. The Iron-regulated transorter, MbNRAMPl, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Annal Bot 102,881-889.
    (107)Yagasaki K, Kaizuma N, Kitamura K.1996. Inheritance of glycinin subunits and chatacterization of glycinin molecules lacking the subunits in soybean(Glycine max L. Merr.). Breed Sci 46,11-15.
    (107)Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S.2009. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum trovum. J Exp Bot 61,423-437.
    (109)Yamaji N, Ma JF.2007. Spatial distribution and temporal variation of the rice silicon transporter Lsi 1. Plant Physiol 143,1306-1313.
    (110)Yeboah NA, Arahira M, Mong VH, Zhang D, Kadokura K, Watanabe A, Fukazawa C.1998. A class Ⅲ acidic endochitinase is specifically expressed in the developing seeds of soybean (Glycine max [L.] Merr.). Plant Mol Biol 36,407-415.
    (111)Yeh CM, Chien PS, Huang HJ.2007. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58,659-671.
    (112)Yu J, Hu SN, Wang J, Wong GK, Li SG, Liu B, Deng YJ et al.2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296,79-92.
    (113)Zabala G, Vodkin L.2003. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3' hydroxylase. Genetics 163,295-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700