用户名: 密码: 验证码:
猪皮下和内脏脂肪组织microRNA转录组的鉴定与差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪(Sus scrofa)在肉类产业中占有重要地位,随着高通量测序技术(Solexa sequencing)在miRNA测序中的广泛应用,利用niRNA-seq技术挖掘到大量与特定生物学或组织学功能相关的miRNAs。通过比较组织或生物学过程中miRNAs的表达差异,可以为解释脂肪组织中的成脂和脂肪细胞分化差异提供依据,同时,发掘与脂肪沉积调控相关的miRNA,为猪肉质改良提供后备基因。
     本文选取3头210日龄的健康长白母猪,测定了猪背部皮下上层脂肪(Upper layer of backfat, ULB)、背部皮下下层脂肪(Inner layer of backfat,ILB)、心脏包膜脂肪(Pericardial adipose, PAD)、腹膜后脂肪(Retroperitoneal adipose, RAD)、肠系膜脂肪(Mesenteric adipose, MAD)和大网膜脂肪(Greater omentum, GOM)的脂肪细胞体积及炎症相关基因的表达差异。采用Solexa测序方法分析了6个文库的miRNAs表达谱。利用IDEG6.0等软件,分析了这6个脂肪组织中miRNA的表达差异。通过组织和基因的聚类分析,探讨6个脂肪组织中miRNAs的表达规律。利用靶基因预测软件MicroCosm,预测了高丰度差异niRNAs调控的靶基因。通过GO (Gene ontology)和Pathway分析,研究了这些靶基因参与的生物学过程,从而解释这些差异表达miRNA在不同部位脂肪组织中的生物学功能差异。
     荧光定量结果显示,巨噬细胞标志基因CD14在内脏脂肪中的表达量显著高于皮下脂肪组织(p<0.05),说明在VATs中的巨噬细胞数量高于SATs。组织石蜡切片研究结果显示,长白母猪在210日龄时,SATs (Subcutaneous adipose tissues)的脂肪细胞体积极显著大于VATs (Visceral adipose tissues)(p<0.01)。
     通过Solexa测序,在6个脂肪组织小RNA文库中共获得803条miRNAs,其中,199条miRNAs已在miRBase数据库中公布,新发现miRNAs604条。miRNAs表达种类分析结果显示,6个文库两两间的共表达基因数相似(326±9个)。SATs与VATs间的差异基因总数达到398个,这部分差异基因中,在VATs中特异性表达的有303个。
     共表达基因的聚类分析结果显示,2个SATs与4个VATs明显的聚为2类。共表达miRNAs表达量差异分析显示,198个基因在、VATs与SATs间存在显著差异。与4个VATs miRNAs表达量比较,49个miRNAs在ULB中上调,81个出现下调;ILB中94个miRNAs出现上调,59个呈现下调。
     对SATs和VATs差异表达前10位的miRNAs做靶基因预测及GO和Pathway注释,结果显示,在SATs中上调的miRNAs调控的基因主要富集于能量代谢和脂肪代谢过程中,在VATs中上调的miRNAs主要参与炎症反应和免疫应答过程。
     通过本文的研究,不仅增加了猪脂肪组织中表达的候选miRNAs数量,还从miRNAs的角度初步分析了SATs与VATs内的生物学调控通路差异。为猪肉质改良和研究不同部位脂肪组织生物学功能差异提供了依据。
The domestic pig (Sus scrofa) is an important economic animal for meet production, as high-throughput sequencing (Solexa sequencing) technology has been widely used to determine miRNA, which can obtain a large number of miRNAs play the different role in biological processes or organizational functions. Differential expression analysis of these miRNAs in organization or biological processes, can interpretation the miRNAs regulation and function differences in adipogenesis and fat deposition. At the same time, expand the repertoire of porcine miRNAs and further explore potential regulatory miRNAs which involved in adipogenesis and fat deposition, and provided genes for swine meat quality improvement.
     In order to identification the differential expression profile in six adipose tissues (i.e. upper layer of backfat (ULB), inner layer of backfat (ILB), pericardial adipose (PAD), retroperitoneal adipose (RAD), mesenteric adipose (MAD) and greater omentum (GOM)) of porcine, we adopted a deep sequencing approach to determine the miRNAs expression in three healthy Landrace female pigs (210-days old). And then analyzed the differential expression miRNAs in six libraries through the IDEG6.0software. Via organization and gene cluster analysis of miRNAs in the six fat to identify the depot expression pattern. At last, the target genes predicted by differential expression miRNAs were made GO term and Pathway enrichment to observe the involvement in biological processes, which may explaining the differential expression miRNA specific functions in different adipose sites. To test our hypothesis that the porcine VATs have higher inflammatory gene expression and adipocyte volume than SATs as previous observations in human studies, the inflammatory gene expression profiles and adipocyte volume of distinct porcine adipose tissues were measured.
     Our results indicated that the monocyte/macrophage marker gene (CD14) exhibited a higher expression level in VATs vs. SATs (p<0.05), which indicated a smaller rate of macrophage infiltration in SATs in comparison to VATs, even though there was no significant difference between MAD and ILB. The results showed that two SATs (Subcutaneous adipose tissues)(i.e. ULB, ILB) had a significant higher adipocyte volume than the compartmental VATs (Visceral adipose tissues)(i.e. GOM, RAD, MAD and PAD)(p<0.01). Solexa sequencing identified803unique miRNAs in the six adipose tissue, of which199miRNAs has been released in the database, and604were novel predicted miRNAs. Although six miRNAs libraries had a similar co-expression number (326±9) between each other, we also found a large number of specific expression types (398) among SATs and VATs, of which303specific expression in VATs.
     Clustering of co-expression miRNAs results showed that two SATs (i.e. ILB and ULB) were tightly clustered into a subgroup, and other four VATs (i.e. GOM, MAD, RAD and PAD) were clustered together into another subgroup. Differential expression analysis of co-expression miRNAs showed that198genes were significantly different expression between VATs and SATs. Compared with VATs,49miRNAs up-regulated and81miRNAs down-regulated in the ULB. About another SATs,94and59miRNAs significantly raised and declined respectively in ILB versus VATs.
     GO and Pathway annotation of target gene of top10most differential expression miRNAs showed that miRNAs highly expressed in the SATs were mainly enriched in the biological process of energy metabolism and fat metabolism, and the miRNAs highly expression in VATs were mainly involved in inflammation and immune response.
     This study present that six adipose tissue characteristics significant difference can be classified as SATs and VATs group. From the phenotype, SATs had a significantly big adipocyte volumes than VATs. And expression profiling analysis also indicated that differentially expressed miRNAs cataloged by SATs and VATs were correspond the biological characteristics of SATs and VATs. The miRNAs highly expressed in SATs were involved in the process of lipose synthesis and metabolism, and miRNAs highly expressed in VATs is involved in the immune and inflammatory responses.
     Our results predicted many novel candidate miRNAs, which required further experimental validation. In addition, provide new information for biological process regulation different between SATs and VATs of miRNAs. Take together, these studies may help with the genomic analysis of economic traits in the pig that can be used to improve the selection of more efficient and healthier pork production.
引文
[1]Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease[J]. Nature.2006,444(7121):875-880.
    [2]Cone RD, Simerly RB. Leptin grows up and gets a neural network[J]. Neuron.2011,71(1):4-6.
    [3]Puhl RM, Heuer CA. The stigma of obesity:a review and update[J]. Obesity. 2009,17(5):941-964.
    [4]Ahima RS, Flier JS. Adipose tissue as an endocrine organ[J]. Trends in Endocrinology and Metabolism.2000,11(8):327-332.
    [5]Kershaw EE, Flier JS. Adipose tissue as an endocrine organ[J]. Journal of Clinical Endocrinology & Metabolism.2004,89(6):2548.
    [6]Hutley L, Prins JB. Fat as an endocrine organ:relationship to the metabolic syndrome[J]. The American journal of the medical sciences.2005,330(6): 280.
    [7]Ahima RS. Adipose tissue as an endocrine organ[J]. Obesity.2006,14: 242S-249S.
    [8]Fantuzzi G. Adipose tissue, adipokines, and inflammation[J]. Journal of Allergy and Clinical Immunology.2005,115(5):911-919.
    [9]Hackl H, Burkard TR, Sturn A et al. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation[J]. Genome Biol.2005,6(13):R108.
    [10]Esau C, Kang X, Peralta E et al. MicroRNA-143 regulates adipocyte differentiation[J]. J Biol Chem.2004,279(50):52361-52365.
    [11]Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation[J]. RNA.2006,12(9):1626-1632.
    [12]Wang Q, Li YC, Wang J et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130[J]. Proc Natl Acad Sci U S A.2008,105(8):2889-2894.
    [13]Bauer S, Weigert J, Neumeier M et al. Low-abundant adiponectin receptors in visceral adipose tissue of humans and rats are further reduced in diabetic animals[J]. Arch Med Res.2010,41(2):75-82.
    [14]Park KW, Halperin DS, Tontonoz P. Before they were fat:adipocyte progenitors[J]. Cell Metab.2008,8(6):454-457.
    [15]Seale P, Bjork B, Yang W et al. PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature.2008,454(7207):961-967.
    [16]Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis[J]. Nature.2006,444(7121):847-853.
    [17]Lafontan M. Advances in adipose tissue metabolism [J]. Int J Obes (Lond). 2008,32Suppl7:S39-51.
    [18]Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance[J]. Physiol Rev.2004,84(1):277-359.
    [19]Lean ME, James WP, Jennings G et al. Brown adipose tissue uncoupling protein content in human infants, children and adults[J]. Clin Sci (Lond). 1986,71(3):291-297.
    [20]Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ[J]. Cell Metab.2010,11(4):253-256.
    [21]Cypess AM, Lehman S, Williams G et al. Identification and importance of brown adipose tissue in adult humans[J]. N Engl J Med.2009,360(15): 1509-1517.
    [22]van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al. Cold-activated brown adipose tissue in healthy men[J]. N Engl J Med.2009, 360(15):1500-1508.
    [23]Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression[J]. The Journal of Nutrition.2000,130(12):3122S.
    [24]Wajchenberg BL. Subcutaneous and visceral adipose tissue:their relation to the metabolic syndrome[J]. Endocrine reviews.2000,21(6):697-738.
    [25]Ohashi K, Ouchi N, Matsuzawa Y. Adiponectin and hypertension [J]. Am J Hypertens.2011,24(3):263-269.
    [26]Trayhurn P, Wood IS. Adipokines:inflammation and the pleiotropic role of white adipose tissue[J]. British Journal of Nutrition.2004,92(03):347-355.
    [27]Matsuzawa Y. Therapy insight:adipocytokines in metabolic syndrome and related cardiovascular disease [J]. Nature Reviews Cardiology.2006,3(1): 35-42.
    [28]Lau DCW, Dhillon B, Yan H et al. Adipokines:molecular links between obesity and atheroslcerosis[J]. American Journal of Physiology-Heart and Circulatory Physiology.2005,288(5):H2031.
    [29]Tritos N, Mantzoros C. Leptin:its role in obesity and beyond[J]. Diabetologia.1997,40(12):1371-1379.
    [30]Maury E, Ehala-Aleksejev K, Guiot Y et al. Adipokines oversecreted by omental adipose tissue in human obesity [J]. American Journal of Physiology-Endocrinology And Metabolism.2007,293(3):E656.
    [31]Misra A, Vikram NK. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots[J]. Nutrition.2003, 19(5):457-466.
    [32]Marin P, Andersson B, Ottosson M et al. The morphology and metabolism of intraabdominal adipose tissue in men[J]. Metabolism.1992,41(11): 1242-1248.
    [33]Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome:implications for controlling dietary carbohydrates:a review[J]. Nutr Metab (Lond).2004,1(1):12.
    [34]Bjorntorp P. Do stress reactions cause abdominal obesity and comorbidities?[J]. Obesity Reviews.2001,2(2):73-86.
    [35]Amer P. Regional adipocity in man[J]. J Endocrinol.1997,155(2):191-192.
    [36]Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response[J]. Biochemical Journal.1990,265(3):621.
    [37]Vague J. The degree of masculine differentiation of obesities:a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease [J]. Am J Clin Nutr.1956,4(1):20-34.
    [38]Bruun JM, Lihn AS, Pedersen SB et al. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT[J]. Journal of Clinical Endocrinology & Metabolism.2005,90(4):2282.
    [39]Curat C, Wegner V, Sengenes C et al. Macrophages in human visceral adipose tissue:increased accumulation in obesity and a source of resistin and visfatin[J]. Diabetologia.2006,49(4):744-747.
    [40]Amer P. Insulin resistance in type 2 diabetes-role of the adipokines [J]. Curr Mol Med.2005,5(3):333-339.
    [41]Dogru T, Sonmez A, Tasci I et al. Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance[J]. Diabetes Res Clin Pract.2007,76(1):24-29.
    [42]Ikeoka D, Mader JK, Pieber TR. Adipose tissue, inflammation and cardiovascular disease[J], Rev Assoc Med Bras.2010,56(1):116-121.
    [43]Sam S, Haffner S, Davidson MH et al. Relationship of abdominal visceral and subcutaneous adipose tissue with lipoprotein particle number and size in type 2 diabetes[J]. Diabetes.2008,57(8):2022-2027.
    [44]Fox CS, Massaro JM, Hoffmann U et al. Abdominal visceral and subcutaneous adipose tissue compartments:association with metabolic risk factors in the Framingham Heart Study[J]. Circulation.2007,116(1):39-48.
    [45]Bjorndal B, Burri L, Staalesen V et al. Different adipose depots:their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents[J]. J Obes.2011,2011:490650.
    [46]Ibrahim MM. Subcutaneous and visceral adipose tissue:structural and functional differences [J]. Obes Rev.2010,11(1):11-18.
    [47]Abate N, Garg A, Peshock R et al. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM[J]. Diabetes.1996, 45(12):1684.
    [48]Frayn KN. Visceral fat and insulin resistance-causative or correlative?[J]. British Journal of Nutrition.2000,83(1):71.
    [49]Salans LB, Cushman SW, Weismann RE. Studies of human adipose tissue Adipose cell size and number in nonobese and obese patients[J]. Journal of Clinical Investigation.1973,52(4):929.
    [50]Bjorntorp P. Metabolic difference between visceral fat and subcutaneous abdominal fat][J]. Diabetes & metabolism.2000,26:10.
    [51]Marette A. Molecular Mechanism of Insulin Resistance in Obesity [J]. The Launch of the CMReJournal.2008:5.
    [52]Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues[J]. Annals of medicine.1995,27(4):435-438.
    [53]Lemieux S, Despres J. Metabolic complications of visceral obesity: contribution to the aetiology of type 2 diabetes and implications for prevention and treatment[J]. Diabete et metabolisme.1994,20(4):375-393.
    [54]Dobbelsteyn C, Joffres M, MacLean D et al. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys[J]. International journal of obesity and related metabolic disorders:journal of the International Association for the Study of Obesity.2001,25(5):652.
    [55]Despres JP, Allard C, Tremblay A et al. Evidence for a regional component of body fatness in the association with serum lipids in men and women* 1[J]. Metabolism.1985,34(10):967-973.
    [56]Bergstrom R, Newell-Morris L, Leonetti D et al. Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men[J]. Diabetes.1990, 39(1):104.
    [57]Rocchini AP. Obesity hypertension* 1[J]. American journal of hypertension. 2002,15(2):S50-S52.
    [58]Sharma AM, Engeli S, Pischon T. New developments in mechanisms of obesity-induced hypertension:role of adipose tissue[J]. Current Hypertension Reports.2001,3(2):152-156.
    [59]McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular disease[J]. Journal of Clinical Endocrinology & Metabolism.2001,86(2): 713.
    [60]Despres JP. The athero-thrombotic and inflammatory profile of visceral obesity. In; 2003:Elsevier; 2003. p.27-34.
    [61]Tanko LB, Bagger YZ, Qin G et al. Enlarged waist combined with elevated triglycerides is a strong predictor of accelerated atherogenesis and related cardiovascular mortality in postmenopausal women[J]. Circulation.2005, 111(15):1883.
    [62]Lemieux I, Pascot A, Couillard C et al. Hypertriglyceridemic waist:A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men?[J]. Circulation.2000,102(2):179.
    [63]Harris MM, Stevens J, Thomas N et al. Associations of fat distribution and obesity with hypertension in a bi-ethnic population:the ARIC Study [J]. Obesity.2000,8(7):516-524.
    [64]Planas A, Clara A, Pou JM et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men[J]. International journal of obesity.2001,25(7):1068-1070.
    [65]Mulyadi L, Stevens C, Munro S et al. Body fat distribution and total body fat as risk factors for microalbuminuria in the obese [J]. Annals of nutrition and metabolism.2000,45(2):67-71.
    [66]Fontbonne A, Charles M, Thibult N et al. Hyperinsulinaemia as a predictor of coronary heart disease mortality in a healthy population:the Paris Prospective Study,15-year follow-up [J]. Diabetologia.1991,34(5):356-361.
    [67]Lemieux S, Despres J, Moorjani S et al. Are gender differences in cardiovascular disease risk factors explained by the level of visceral adipose tissue?[J]. Diabetologia.1994,37(8):757-764.
    [68]Tanko LB, Bagger YZ, Alexandersen P et al. Central and peripheral fat mass have contrasting effect on the progression of aortic calcification in postmenopausal women[J]. European heart journal.2003,24(16):1531.
    [69]Tanko LB, Bagger YZ, Alexandersen P et al. Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women[J]. Circulation.2003,107(12):1626.
    [70]Lissner L, Bjorkelund C, Heitmann BL et al. Larger hip circumference independently predicts health and longevity in a Swedish female cohort[J]. Obesity.2001,9(10):644-646.
    [71]Dagenais GR, Yi Q, Mann JFE et al. Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease[J]. American heart journal.2005,149(1):54-60.
    [72]Allison DB, Fontaine KR, Manson JAE et al. Annual deaths attributable to obesity in the United States[J]. JAMA:the journal of the American Medical Association.1999,282(16):1530.
    [73]Lee I. Epidemiologic data on the relationships of caloric intake, energy balance, and weight gain over the life span with longevity and morbidity [J]. The Journals of Gerontology Series A:Biological Sciences and Medical Sciences.2001,56(suppl 1):7.
    [74]Zhang X, Shu XO, Yang G et al. Abdominal adiposity and mortality in Chinese women[J]. Archives of Internal Medicine.2007,167(9):886.
    [75]Kuk JL, Katzmarzyk PT, Nichaman MZ et al. Visceral Fat Is an Independent Predictor of All-cause Mortality in Men&ast[J]. Obesity.2006,14(2): 336-341.
    [76]Bjorntorp P. Regional obesity and NIDDM[J]. Advances in experimental medicine and biology.1993,334:279.
    [77]Armellini F, Zamboni M, Rigo L et al. Sonography detection of small intra-abdominal fat variations[J]. International journal of obesity.1991, 15(12):847.
    [78]Hall K, Hallgreen C. Increasing weight loss attenuates the preferential loss of visceral compared with subcutaneous fat:a predicted result of an allometric model[J]. International journal of obesity.2008,32(4):722-722.
    [79]Selvin E, Paynter NP, Erlinger TP. The effect of weight loss on C-reactive protein:a systematic review[J]. Archives of Internal Medicine.2007,167(1): 31.
    [80]Corpeleijn E, Feskens EJM, Jansen EHJM et al. Lifestyle Intervention and Adipokine Levels in Subjects at High Risk for Type 2 Diabetes [J]. Diabetes Care.2007,30(12):3125.
    [81]Joyner J, Hutley L, Cameron D. Glucocorticoid receptors in human preadipocytes:regional and gender differences [J]. Journal of endocrinology. 2000,166(1):145.
    [82]Rebuffe-Scrive M, Lundholm K, Bjorntorp P. Glucocorticoid hormone binding to human adipose tissue [J]. European journal of clinical investigation.1985,15(5):267.
    [83]Bjorntorp P. Endocrine abnormalities of obesity[J]. Metabolism.1995,44: 21-23.
    [84]Mizutani T, Nishikawa Y, Adachi H et al. Identification of estrogen receptor in human adipose tissue and adipocytes[J]. Journal of Clinical Endocrinology & Metabolism.1994,78(4):950.
    [85]Pedersen S, Hansen P, Lund S et al. Identification of oestrogen receptors and oestrogen receptor mRNA in human adipose tissue[J]. European journal of clinical investigation.1996,26(4):262-269.
    [86]Hellmer J, Marcus C, Sonnenfeld T et al. Mechanisms for differences in lipolysis between human subcutaneous and omental fat cells [J]. Journal of Clinical Endocrinology & Metabolism.1992,75(1):15.
    [87]Arner P, Hellstrom L, Wahrenberg H et al. Beta-adrenoceptor expression in human fat cells from different regions[J]. Journal of Clinical Investigation. 1990,86(5):1595.
    [88]Imbeault P, Couillard C, Tremblay A et al. Reduced a2-adrenergic sensitivity of subcutaneous abdominal adipocytes as a modulator of fasting and postprandial triglyceride levels in men[J]. Journal of lipid research.2000, 41(9):1367.
    [89]Krief S, Lonnqvist F, Raimbault S et al. Tissue distribution of beta 3-adrenergic receptor mRNA in man[J]. Journal of Clinical Investigation. 1993,91(1):344.
    [90]Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell. 2009,136(2):215-233.
    [91]Yekta S, Shih I, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science.2004,304(5670):594.
    [92]Lim LP, Lau NC, Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature. 2005,433(7027):769-773.
    [93]Selbach M, Schwanhausser B, Thierfelder N et al. Widespread changes in protein synthesis induced by microRNAs[J]. Nature.2008,455(7209):58-63.
    [94]Baek D, VillA J. The impact of microRNAs on protein output[J]. Nature. 2008,455(7209):64-71.
    [95]Friedman RC, Farh KKH, Burge CB et al. Most mammalian mRNAs are conserved targets of microRNAs [J]. Genome research.2009,19(1):92-105.
    [96]Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals[J]. Nature Reviews Molecular Cell Biology.2009,10(2):126-139.
    [97]Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nature Reviews Genetics.2010,11(9): 597-610.
    [98]Bartel DP. MicroRNAs:Genomics, Biogenesis, Mechanism, and Function[J]. Cell.2004,116(2):281-297.
    [99]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing[J]. Nature Reviews Molecular Cell Biology.2005,6(5):376-385.
    [100]Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs[J]. Cell.2009,136(4):642-655.
    [101]Winter J, Jung S, Keller S et al. Many roads to maturity:microRNA biogenesis pathways and their regulation[J]. Nature cell biology.2009,11(3): 228-234.
    [102]Chan SP, Slack FJ. And now introducing mammalian mirtrons[J]. Developmental cell.2007,13(5):605-607.
    [103]Han SH, Quon MJ, Kim JA et al. Adiponectin and cardiovascular disease: response to therapeutic interventions [J]. J Am Coll Cardiol.2007,49(5): 531-538.
    [104]Raiche J, Rodriguez-Juarez R, Pogribny I et al. Sex-and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice[J]. Biochem Biophys Res Commun.2004,325(1): 39-47.
    [105]Rodriguez A, Griffiths-Jones S, Ashurst JL et al. Identification of mammalian microRNA host genes and transcription units[J]. Genome research.2004, 14(10a):1902-1910.
    [106]Lee Y, Ahn C, Han J et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature.2003,425(6956):415-419.
    [107]Lund E, Giittinger S, Calado A et al. Nuclear export of microRNA precursors[J]. Science.2004,303(5654):95.
    [108]Hutvagner G, McLachlan J, Pasquinelli AE et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J]. Science.2001,293(5531):834.
    [109]Okamura K, Chung WJ, Ruby JG et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs[J]. Nature.2008, 453(7196):803-806.
    [110]Okamura K, Ishizuka A, Siomi H et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways [J]. Genes & development. 2004,18(14):1655.
    [111]Teleman AA, Cohen SM. Drosophila lacking microRNA miR-278 are defective in energy homeostasis[J]. Genes & development.2006,20(4):417.
    [112]Xu P, Vernooy SY, Guo M et al. The< i> Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism[J]. Current Biology.2003,13(9):790-795.
    [113]Esau C, Davis S, Murray SF et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metabolism.2006,3(2): 87-98.
    [114]Esau C, Kang X, Peralta E et al. MicroRNA-143 regulates adipocyte differentiation[J]. Journal of Biological Chemistry.2004,279(50):52361.
    [115]Takanabe R, Ono K, Abe Y et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochemical and biophysical research communications.2008,376(4): 728-732.
    [116]Kloting N, Berthold S, Kovacs P et al. MicroRNA expression in human omental and subcutaneous adipose tissue[J]. PLoS One.2009,4(3):e4699.
    [117]Wang Q, Li YC, Wang J et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/pl30[J]. Proceedings of the National Academy of Sciences.2008,105(8):2889.
    [118]Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity [J]. Diabetes. 2009,58(5):1050.
    [119]Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research:a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways [J]. Molecular genetics and metabolism. 2007,91(3):209-217.
    [120]Schaffler A, Muller-Ladner U, Scholmerich J et al. Role of adipose tissue as an inflammatory organ in human diseases[J]. Endocrine reviews.2006,27(5): 449-467.
    [121]Lean M, Han T, Seidell J. Impairment of health and quality of life in people with large waist circumference [J]. The Lancet.1998,351(9106):853-856.
    [122]Cummings DE, Schwartz MW. Genetics and pathophysiology of human obesity[J]. Annual review of medicine.2003,54(1):453-471.
    [123]Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out[J]. Nature Reviews Molecular Cell Biology.2006,7(12):885-896.
    [124]Guilherme A, Virbasius JV, Puri V et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes[J]. Nature Reviews Molecular Cell Biology.2008,9(5):367-377.
    [125]Spalding KL, Arner E, Westermark PO et al. Dynamics of fat cell turnover in humans[J]. Nature.2008,453(7196):783-787.
    [126]Gustafson B, Gogg S, Hedjazifar S et al. Inflammation and impaired adipogenesis in hypertrophic obesity in man[J]. American Journal of Physiology-Endocrinology And Metabolism.2009,297(5):E999-E1003.
    [127]Permana PA, Nair S, Lee YH et al. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity[J]. American Journal of Physiology-Endocrinology And Metabolism.2004,286(6): E958-E962.
    [128]Isakson P, Hammarstedt A, Gustafson B et al. Impaired preadipocyte differentiation in human abdominal obesity[J]. Diabetes.2009,58(7):1550.
    [129]Kopelman PG. Obesity as a medical problem[J]. NATURE-LONDON-.2000: 635-643.
    [130]Lin Q, Gao Z, Alarcon RM et al. A role of miR-27 in the regulation of adipogenesis[J]. Febs Journal.2009,276(8):2348-2358.
    [131]Gerin I, Bommer GT, McCoin CS et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis[J]. American Journal of Physiology-Endocrinology And Metabolism.2010,299(2):E198-E206.
    [132]Sun T, Fu M, Bookout AL et al. MicroRNA let-7 regulates 3T3-L1 adipogenesis[J]. Molecular Endocrinology.2009,23(6):925-931.
    [133]Qin L, Chen Y, Niu Y et al. A deep investigation into the adipogenesis mechanism:Profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/β-catenin signaling pathway[J]. BMC Genomics.2010, 11(1):320.
    [134]Oskowitz AZ, Lu J, Penfornis P et al. Human multipotent stromal cells from bone marrow and microRNA:regulation of differentiation and leukemia inhibitory factor expression[J]. Proceedings of the National Academy of Sciences.2008,105(47):18372.
    [135]Martinelli R, Nardelli C, Pilone V et al. miR-519d overexpression is associated with human obesity [J]. Obesity.2010,18(11):2170-2176.
    [136]Ortega FJ, Moreno-Navarrete JM, Pardo G et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation[J]. PLoS One.2010,5(2):e9022.
    [137]Andersen DC, Jensen CH, Schneider M et al. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes[J]. Experimental cell research.2010,316(10):1681-1691.
    [138]Kim YJ, Hwang SJ, Bae YC et al. MiR-21 Regulates Adipogenic Differentiation through the Modulation of TGF-β Signaling in Mesenchymal Stem Cells Derived from Human Adipose Tissue[J]. Stem Cells.2009,27(12):3093-3102.
    [139]Sun F, Wang J, Pan Q et al. Characterization of function and regulation of miR-24-1 and miR-31[J]. Biochemical and biophysical research communications.2009,380(3):660-665.
    [140]Karbiener M, Fischer C, Nowitsch S et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPAR [gamma][J]. Biochemical and biophysical research communications.2009,390(2):247-251.
    [141]Kim SY, Kim AY, Lee HW et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPAR [gamma] expression[J]. Biochemical and biophysical research communications.2010,392(3):323-328.
    [142]Tang YF, Zhang Y, Li XY et al. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells[J]. OMICS A Journal of Integrative Biology.2009,13(4):331-336.
    [143]Yang Z, Bian C, Zhou H et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1[J]. Stem cells and development.2010,20(2): 259-267.
    [144]Takanabe R, Ono K, Abe Y et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochem Biophys Res Commun.2008,376(4):728-732.
    [145]Kennell JA, Gerin I, MacDougald OA et al. The microRNA miR-8 is a conserved negative regulator of Wnt signaling[J]. Proceedings of the National Academy of Sciences.2008,105(40):15417.
    [146]Nakanishi N, Nakagawa Y, Tokushige N et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice[J]. Biochemical and biophysical research communications.2009,385(4):492-496.
    [147]Kinoshita M, Ono K, Horie T et al. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5[J]. Molecular Endocrinology.2010,24(10):1978-1987.
    [148]Lee EK, Lee MJ, Abdelmohsen K et al. miR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor{gamma} Expression[J]. Molecular and Cellular Biology.2011,31(4):626.
    [149]Huang J, Zhao L, Xing L et al. MicroRNA-204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation[J]. Stem Cells. 2010,28(2):357-364.
    [150]Lin EA, Kong L, Bai XH et al. miR-199a*, a Bone Morphogenic Protein 2-responsive MicroRNA, Regulates Chondrogenesis via Direct Targeting to Smad1[J]. Journal of Biological Chemistry.2009,284(17):11326.
    [151]He A, Zhu L, Gupta N et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes[J]. Molecular Endocrinology.2007,21(11):2785-2794.
    [152]Wang H, Gauthier BR, Hagenfeldt-Johansson KA et al. Foxa2 (HNF3β) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release[J]. Journal of Biological Chemistry.2002, 277(20):17564.
    [153]Lugli G, Larson J, Martone ME et al. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner[J]. Journal of neurochemistry.2005, 94(4):896-905.
    [154]Girard M, Jacquemin E, Munnich A et al. miR-122, a paradigm for the role of microRNAs in the liver [J]. Journal of hepatology.2008,48(4):648-656.
    [155]Gauthier BR, Wollheim CB. MicroRNAs:'ribo-regulators'of glucose homeostasis[J]. Nature Medicine.2006,12(1):36.
    [156]Poy M, Spranger M, Stoffel M. microRNAs and the regulation of glucose and lipid metabolism[J]. Diabetes, Obesity and Metabolism.2007,9:67-73.
    [157]Krek A, Griin D, Poy MN et al. Combinatorial microRNA target predictions [J]. Nature genetics.2005,37(5):495-500.
    [158]Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms.2008,1779(11): 697-701.
    [159]Plaisance V, Abderrahmani A, Perret-Menoud V et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells[J]. Journal of Biological Chemistry.2006,281(37): 26932.
    [160]Schwartz MW, Porte D. Diabetes, obesity, and the brain[J]. Science.2005, 307(5708):375.
    [161]Pardini AW, Nguyen HT, Figlewicz DP et al. Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis[J]. Brain research. 2006,1112(1):169-178.
    [162]Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB[J]. Nature Reviews Molecular Cell Biology.2001,2(8):599-609.
    [163]Baroukh N, Ravier MA, Loder MK et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines[J]. Journal of Biological Chemistry.2007,282(27):19575.
    [164]Krichevsky AM, Sonntag KC, Isacson O et al. Specific MicroRNAs modulate embryonic stem cell-derived neurogenesis[J]. Stem Cells.2006, 24(4):857-864.
    [165]Cao L, Lin EJD, Cahill MC et al. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach[J]. Nature Medicine.2009,15(4): 447-454.
    [166]Han JC, Liu QR, Jones MP et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome[J]. New England Journal of Medicine.2008, 359(9):918-927.
    [167]Stanek K, Gunstad J, Leahey T et al. Serum brain-derived neurotrophic factor is associated with reduced appetite in healthy older adults[J]. The journal of nutrition, health & aging.2008,12(3):183-185.
    [168]Mellios N, Huang HS, Grigorenko A et al. A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex[J]. Human molecular genetics.2008,17(19): 3030.
    [169]Tang X, Muniappan L, Tang G et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription[J]. RNA.2009,15(2):287-293.
    [170]Kato M, Zhang J, Wang M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors[J]. Proceedings of the National Academy of Sciences.2007, 104(9):3432.
    [171]Poy MN, Eliasson L, Krutzfeldt J et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature.2004,432(7014):226-230.
    [172]El Ouaamari A, Baroukh N, Martens GA et al. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic P-cells[J]. Diabetes.2008, 57(10):2708.
    [173]Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with'antagomirs'[J]. Nature.2005,438(7068):685-689.
    [174]Elmen J, Lindow M, Schutz S et al. LNA-mediated microRNA silencing in non-human primates[J]. Nature.2008,452(7189):896-899.
    [175]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell.2005,120(1):15-20.
    [176]Tchoukalova YD, Votruba SB, Tchkonia T et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding [J]. Proceedings of the National Academy of Sciences.2010,107(42):18226-18231.
    [177]Lefterova MI, Lazar MA. New developments in adipogenesis[J]. Trends in Endocrinology & Metabolism.2009,20(3):107-114.
    [178]Qian SW, Li X, Zhang YY et al. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow[J]. BMC Developmental Biology.2010,10(1):47.
    [179]Xie H, Sun L, Lodish HF. Targeting microRNAs in obesity[J].2009.
    [180]Heneghan H, Miller N, Kerin M. Role of microRNAs in obesity and the metabolic syndrome[J]. Obesity Reviews.2010,11(5):354-361.
    [181]Anand A, Chada K. In vivo modulation of Hmgic reduces obesity [J]. Nature genetics.2000,24(4):377-380.
    [182]Friedman JM. Halaas JL. Leptin and the regulation of body weight in mammals[J]. Nature.1998,395(6704):763-770.
    [183]Bray GA, Tartaglia LA. Medicinal strategies in the treatment of obesity[J]. NATURE-LONDON-.2000:672-677.
    [184]Ambros V. The functions of animal microRNAs[J]. Nature.2004,431(7006): 350-355.
    [185]Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development[J]. Annu Rev Nutr.1994,14:99-129.
    [186]Patel YM, Lane MD. Mitotic clonal expansion during preadipocyte differentiation:calpain-mediated turnover of p27[J]. J Biol Chem.2000, 275(23):17653-17660.
    [187]Richon VM, Lyle RE, McGehee RE, Jr. Regulation and expression of retinoblastoma proteins p107 and p130 during 3T3-L1 adipocyte differentiation[J]. J Biol Chem.1997,272(15):10117-10124.
    [188]Trimarchi JM, Lees JA. Sibling rivalry in the E2F family [J]. Nat Rev Mol Cell Biol.2002,3(1):11-20.
    [189]Cobrinik D, Whyte P, Peeper DS et al. Cell cycle-specific association of E2F with the p130 E1A-binding protein[J]. Genes Dev.1993,7(12A):2392-2404.
    [190]Dyson N. The regulation of E2F by pRB-family proteins[J]. Genes Dev. 1998,12(15):2245-2262.
    [191]Kato Y, Tapping RI, Huang S et al. Bmkl/Erk5 is required for cell proliferation induced by epidermal growth factor[J]. Nature.1998, 395(6703):713-716.
    [192]Scheideler M, Elabd C, Zaragosi LE et al. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis[J]. BMC Genomics.2008,9:340.
    [193]Lodish HF, Zhou B, Liu G et al. Micromanagement of the immune system by microRNAs[J]. Nature Reviews Immunology.2008,8(2):120-130.
    [194]Herrera B, Lockstone H, Taylor J et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes [J]. Diabetologia.2010,53(6):1099-1109.
    [195]Ling HY, Ou HS, Feng SD et al. CHANGES IN microRNA (miR) PROFILE AND EFFECTS OF miR-320 IN INSULIN-RESISTANT 3T3-L1 ADIPOCYTES[J]. Clinical and Experimental Pharmacology and Physiology. 2009,36(9):e32-e39.
    [196]Lee EJ, Baek M, Gusev Y et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors[J]. RNA.2008,14(1): 35-42.
    [197]Heneghan H, Miller N, Lowery A et al. MicroRNAs as novel biomarkers for breast cancer[J]. J Oncol.2009,2009:950201.
    [198]Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell research.2008,18(10):997-1006.
    [199]Wang K, Zhang S, Marzolf B et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury[J]. Proceedings of the National Academy of Sciences.2009,106(11):4402.
    [200]Chin LJ, Slack FJ. A truth serum for cancer-microRNAs have major potential as cancer biomarkers [J]. Cell research.2008,18(10):983-984.
    [201]Lee YS, Dutta A. MicroRNAs in cancer[J]. Annual review of pathology. 2009,4:199.
    [202]D'Alessandra Y, Devanna P, Limana F et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction[J]. European heart journal. 2010,31(22):2765.
    [203]Xu P, Vernooy SY, Guo M et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism[J]. Curr Biol. 2003,13(9):790-795.
    [204]Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research:a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways[J]. Mol Genet Metab.2007,91(3): 209-217.
    [205]Poy MN, Eliasson L, Krutzfeldt J et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature.2004,432(7014):226-230.
    [206]Poy MN, Spranger M, Stoffel M. microRNAs and the regulation of glucose and lipid metabolism [J]. Diabetes Obes Metab.2007,9 Suppl 2:67-73.
    [207]Spurlock ME, Gabler NK. The development of porcine models of obesity and the metabolic syndrome[J]. J Nutr.2008,138(2):397-402.
    [208]Ellegren H, Chowdhary BP, Johansson M et al. A primary linkage map of the porcine genome reveals a low rate of genetic recombination[J]. Genetics. 1994,137(4):1089.
    [209]Rettenberger G, Klett C, Zechner U et al. Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting[J]. Genomics.1995,26(2):372-378.
    [210]Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Res.2011,39(Database issue): D152-157.
    [211]Huang TH, Zhu MJ, Li XY et al. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development[J]. PLoS One. 2008,3(9):e3225.
    [212]Nielsen M, Hansen JH, Hedegaard J et al. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing [J]. Anim Genet. 2010,41(2):159-168.
    [213]Li M, Xia Y, Gu Y et al. MicroRNAome of porcine pre-and postnatal development[J]. PLoS One.2010,5(7):e11541.
    [214]Xie SS, Huang TH, Shen Y et al. Identification and characterization of microRNAs from porcine skeletal muscle [J]. Anim Genet.2010,41(2): 179-190.
    [215]Li G, Li Y, Li X et al. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing[J]. J Cell Biochem.2011, 112(5):1318-1328.
    [216]Xie SS, Li XY, Liu T et al. Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach[J]. PLoS One.2011,6(1): e16235.
    [217]Nielsen M, Hansen J, Hedegaard J et al. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing [J]. Animal genetics.2010,41(2):159-168.
    [218]Mullan B, Williams I. The chemical composition of sows during their first lactation[J]. Animal Production.1990,51(02):375-387.
    [219]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta] [Delta] CT method[J]. Methods. 2001,25(4):402-408.
    [220]Sebert S, Lecannu G, Kozlowski F et al. Childhood obesity and insulin resistance in a Yucatan mini-piglet model:putative roles of IGF-1 and muscle PPARs in adipose tissue activity and development[J]. International journal of obesity.2005,29(3):324-333.
    [221]Booth FW, Laughlin MH, Arce-Esquivel AA et al. Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis:relationship to visceral and subcutaneous fat[J]. Journal of Applied Physiology.2010,109(6):1904.
    [222]Ledoux S, Queguiner I, Msika S et al. Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity[J]. Diabetes.2008, 57(12):3247.
    [223]Tran TT, Yamamoto Y, Gesta S et al. Beneficial effects of subcutaneous fat transplantation on metabolism[J]. Cell Metabolism.2008,7(5):410-420.
    [224]Cancello R, Clement K. Review article:Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue[J]. BJOG:An International Journal of Obstetrics & Gynaecology.2006,113(10):1141-1147.
    [225]Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity [J]. Annual review of immunology.2011,29:415-445.
    [226]Kelley DE, Thaete FL, Troost F et al. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance[J]. American Journal of Physiology-Endocrinology And Metabolism.2000,278(5):E941-E948.
    [227]Smith SR, Lovejoy JC, Greenway F et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity[J]. Metabolism.2001,50(4): 425-435.
    [228]Alvehus M, Buren J, Sjostrom M et al. The human visceral fat depot has a unique inflammatory profile[J]. Obesity.2010,18(5):879-883.
    [229]罗宗刚.猪不同发育阶段microRNA转录组的鉴定:四川农业大学;2011.
    [230]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences.1977, 74(12):5463.
    [231]Shendure J, Porreca GJ, Reppas NB et al. Accurate multiplex polony sequencing of an evolved bacterial genome[J]. Science.2005,309(5741): 1728.
    [232]Sempere LF, Dubrovsky EB, Dubrovskaya VA et al. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster[J]. Developmental biology.2002,244(1): 170-179.
    [233]KRICHEVSKY AM, KING KS, DONAHUE CP et al. A microRNA array reveals extensive regulation of microRNAs during brain development[J]. RNA.2003,9(10):1274-1281.
    [234]Nelson PT, Baldwin DA, Scearce LM et al. Microarray-based, high-throughput gene expression profiling of microRNAs [J]. Nature methods.2004,1(2):155-161.
    [235]Cissell KA, Rahimi Y, Shrestha S et al. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells[J]. Analytical chemistry.2008, 80(7):2319-2325.
    [236]Liang RQ, Li W, Li Y et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe[J]. Nucleic acids research.2005,33(2):e17-e17.
    [237]Fan Y, Chen X, Trigg AD et al. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps[J]. Journal of the American Chemical Society.2007,129(17):5437-5443.
    [238]Wienholds E, Kloosterman WP, Miska E et al. MicroRNA expression in zebrafish embryonic development[J]. Science.2005,309(5732):310.
    [239]Kloosterman WP, Wienholds E, De Bruijn E et al. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes[J]. Nature methods.2005,3(1):27-29.
    [240]Obernosterer G, Leuschner PJF, Alenius M et al. Post-transcriptional regulation of microRNA expression [J]. RNA.2006,12(7):1161-1167.
    [241]Obernosterer G, Martinez J, Alenius M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections[J]. Nature Protocols.2007, 2(6):1508-1514.
    [242]Chen C, Ridzon DA, Broomer AJ et al. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic acids research.2005,33(20): e179-e179.
    [243]Jonstrup SP, Koch J, Kjems J. A microRNA detection system based on padlock probes and rolling circle amplification[J]. RNA.2006,12(9): 1747-1752.
    [244]Cheng Y, Zhang X, Li Z et al. Highly Sensitive Determination of microRNA Using Target-Primed and Branched Rolling-Circle Amplification[J]. Angewandte Chemie.2009,121(18):3318-3322.
    [245]Zhang Y, Li Z, Cheng Y. Amplified fluorescence determination of microRNAs in homogeneous solution with cationic conjugated polymers[J]. Chem. Commun.2008, (48):6579-6581.
    [246]Ho HA, Boissinot M, Bergeron MG et al. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives[J]. Angewandte Chemie.2002,114(9):1618-1621.
    [247]Li M, Xia Y, Gu Y et al. MicroRNAome of Porcine Pre-and Postnatal Development[J]. PLoS One.2010,5(7).
    [248]Barad O, Meiri E, Avniel A et al. MicroRNA expression detected by oligonucleotide microarrays:system establishment and expression profiling in human tissues [J]. Genome research.2004,14(12):2486-2494.
    [249]Li M, Xia Y, Gu Y et al. MicroRNAome of porcine pre-and postnatal development[J]. PLoS One.2010,5(7):e11541.
    [250]Wienholds E, Plasterk RH. MicroRNA function in animal development [J]. FEBS Lett.2005,579(26):5911-5922.
    [251]Aboobaker AA, Tomancak P, Patel N et al. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development [J]. Proc Natl Acad Sci U S A.2005,102(50):18017-18022.
    [252]Coutinho LL, Matukumalli LK, Sonstegard TS et al. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues [J]. Physiological genomics.2007,29(1):35.
    [253]Ruparel H, Bi L, Li Z et al. Design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis [J]. Proceedings of the National Academy of Sciences of the United States of America.2005,102(17):5932.
    [254]Seo TS, Bai X, Kim DH et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides[J]. Proceedings of the National Academy of Sciences of the United States of America.2005, 102(17):5926.
    [255]Ju J, Kim DH, Bi L et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators [J]. Proceedings of the National Academy of Sciences.2006,103(52):19635.
    [256]Fedurco M, Romieu A, Williams S et al. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies[J]. Nucleic acids research.2006,34(3):e22.
    [257]Birzele F, Schaub J, Rust W et al. Into the unknown:expression profiling without genome sequence information in CHO by next generation sequencing[J]. Nucleic acids research.2010,38(12):3999-4010.
    [258]Lau NC, Lim LP, Weinstein EG et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J]. Science.2001, 294(5543):858.
    [259]Song JJ, Smith SK, Hannon GJ et al. Crystal structure of Argonaute and its implications for RISC slicer activity [J]. Science.2004,305(5689):1434.
    [260]Gregory RI, Chendrimada TP, Cooch N et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing[J]. Cell.2005, 123(4):631-640.
    [261]Kawahara Y, Zinshteyn B, Sethupathy P et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs[J]. Science.2007,315(5815): 1137-1140.
    [262]Landgraf P, Rusu M, Sheridan R et al. A mammalian microRNA expression atlas based on small RNA library sequencing [J]. Cell.2007,129(7): 1401-1414.
    [263]Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis[J]. Science.2008,321(5895):1490-1492.
    [264]Chatterjee S, Gro hans H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans[J]. Nature.2009,461(7263):546-549.
    [265]Suter L, Babiss LE, Wheeldon EB. Toxicogenomics in predictive toxicology in drug development[J]. Chemistry & biology.2004,11(2):161-171.
    [266]Magic Z, Radulovic S, Brankovic-Magic M. cDNA microarrays: identification of gene signatures and their application in clinical practice[J]. Journal of BU ON.:official journal of the Balkan Union of Oncology.2007, 12:S39.
    [267]Cheung ANY. Molecular targets in gynaecological cancers[J]. Pathology. 2007,39(1):26-45.
    [268]Podolska A, Kaczkowski B, Busk PK et al. MicroRNA expression profiling of the porcine developing brain[J]. PLoS One.2011,6(1):e14494.
    [269]Lian C, Sun B, Niu S et al. A Comparative Profile of the MicroRNA Transcriptome in Immature and Mature Porcine Testes using Solexa Deep Sequencing [J]. Febs Journal.2012.
    [270]Li M, Liu Y, Wang T et al. Repertoire of Porcine MicroRNAs in Adult Ovary and Testis by Deep Sequencing [J]. International Journal of Biological Sciences.2011,7(7):1045.
    [271]Xie S, Huang T, Shen Y et al. Identification and characterization of microRNAs from porcine skeletal muscle[J]. Animal genetics.2010,41(2): 179-190.
    [272]Zhou B, Liu H, Shi F et al. MicroRNA expression profiles of porcine skeletal muscle[J]. Animal genetics.2010,41(5):499-508.
    [273]Kuchenbauer F, Morin RD, Argiropoulos B et al. In-depth characterization of the microRNA transcriptome in a leukemia progression model [J]. Genome Res.2008,18(11):1787-1797.
    [274]Morin RD, O'Connor MD, Griffith M et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells[J]. Genome Res.2008,18(4):610-621.
    [275]Berezikov E, Thuemmler F, van Laake LW et al. Diversity of microRNAs in human and chimpanzee brain[J]. Nat Genet.2006,38(12):1375-1377.
    [276]Kloosterman WP, Steiner FA, Berezikov E et al. Cloning and expression of new microRNAs from zebrafish[J]. Nucleic Acids Research.2006,34(9): 2558.
    [277]Glazov EA, Cottee PA, Barris WC et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach [J]. Genome Res.2008,18(6):957-964.
    [278]Hicks J, Tembhurne P, Liu HC. MicroRNA expression in chicken embryos[J]. Poultry science.2008,87(11):2335.
    [279]Burnside J, Ouyang M, Anderson A et al. Deep sequencing of chicken microRNAs[J]. Bmc Genomics.2008,9(1):185.
    [280]Rathjen T, Pais H, Sweetman D et al. High throughput sequencing of microRNAs in chicken somites[J]. FEBS letters.2009,583(9):1422-1426.
    [281]Hicks JA, Tembhurne PA, Liu HC. Identification of microRNA in the developing chick immune organs[J]. Immunogenetics.2009,61(3):231-240.
    [282]Sunkar R, Zhou X, Zheng Y et al. Identification of novel and candidate miRNAs in rice by high throughput sequencing [J]. BMC Plant Biology. 2008,8(1):25.
    [283]Fahlgren N, Howell MD, Kasschau KD et al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes[J]. PloS one.2007,2(2):219.
    [284]Ansorge WJ. Next-generation DNA sequencing techniques[J]. N Biotechnol. 2009,25(4):195-203.
    [285]Shendure J, Ji H. Next-generation DNA sequencing [J]. Nat Biotechnol.2008, 26(10):1135-1145.
    [286]Yang R, Dai Z, Chen S et al. MicroRNA-mediated gene regulation plays a minor role in the transcriptomic plasticity of cold-acclimated Zebrafish brain tissue[J]. BMC Genomics.2011,12:605.
    [287]Mineno J, Okamoto S, Ando T et al. The expression profile of microRNAs in mouse embryos[J]. Nucleic acids research.2006,34(6):1765.
    [288]Friedlander MR, Chen W, Adamidi C et al. Discovering microRNAs from deep sequencing data using miRDeep[J]. Nature biotechnology.2008,26(4): 407-415.
    [289]Guenther MG, Frampton GM, Soldner F et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells[J]. Cell Stem Cell.2010,7(2):249-257.
    [290]Chen X, Gao C, Li H et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products[J]. Cell research.2010,20(10):1128-1137.
    [291]Romualdi C, Bortoluzzi S, d'Alessi F et al. IDEG6:a web tool for detection of differentially expressed genes in multiple tag sampling experiments [J]. Physiological genomics.2003,12(2):159-162.
    [292]Saeed A, Sharov V, White J et al. TM4:a free, open-source system for microarray data management and analysis[J]. Biotechniques.2003,34(2): 374.
    [293]Zhang B, Kirov S, Snoddy J. WebGestalt:an integrated system for exploring gene sets in various biological contexts [J]. Nucleic acids research.2005, 33(suppl2):W741-W748.
    [294]Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data:A survey [J]. Knowledge and Data Engineering, IEEE Transactions on.2004, 16(11):1370-1386.
    [295]Eisen MB, Spellman PT, Brown PO et al. Cluster analysis and display of genome-wide expression patterns [J]. Proceedings of the National Academy of Sciences.1998,95(25):14863.
    [296]Jin W, Dodson MV, Moore SS et al. Characterization of microRNA expression in bovine adipose tissues:a potential regulatory mechanism of subcutaneous adipose tissue development J]. BMC Molecular Biology.2010, 11(1):29.
    [297]Hu E, Kim JB, Sarraf P et al. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ[J]. Science.1996,274(5295): 2100.
    [298]Adams M, Montague CT, Prins JB et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation[J]. Journal of Clinical Investigation.1997, 100(12):3149.
    [299]Ma L, Reinhardt F, Pan E et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model [J]. Nature biotechnology. 2010,28(4):341-347.
    [300]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer [J]. Nature.2007,449(7163): 682-688.
    [301]Gee HE, Camps C, Buffa FM et al. MicroRNA-10b and breast cancer metastasis[J]. Nature.2008,455(7216):E8-E9.
    [302]Yin KJ, Deng Z, Huang H et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia[J]. Neurobiology of disease. 2010,38(1):17-26.
    [303]Frost RJA, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs[J]. Proceedings of the National Academy of Sciences.2011,108(52):21075-21080.
    [304]Griffiths-Jones S, Saini HK, Van Dongen S et al. miRBase:tools for microRNA genomics[J]. Nucleic acids research.2008,36(suppl 1): D154-D158.
    [305]Dweep H, Sticht C, Pandey P et al. miRWalk-database:prediction of possible miRNA binding sites by[J]. Journal of biomedical informatics.2011.
    [306]Xiao F, Zuo Z, Cai G et al. miRecords:an integrated resource for microRNA-target interactions [J]. Nucleic acids research.2009,37(suppl 1): D105-D110.
    [307]Wang X. miRDB:a microRNA target prediction and functional annotation database with a wiki interface[J]. RNA.2008,14(6):1012-1017.
    [308]Lai EC. Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation[J]. Nature genetics.2002, 30(4):363-364.
    [309]Garcia DM, Baek D, Shin C et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs[J]. Nature structural & molecular biology.2011,18(10): 1139-1146.
    [310]Mendes N, Freitas A, Sagot MF. Current tools for the identification of miRNA genes and their targets[J]. Nucleic acids research.2009,37(8):2419.
    [311]Ashburner M, Ball CA, Blake JA et al. Gene Ontology:tool for the unification of biology [J]. Nature genetics.2000,25(1):25.
    [312]Ogata H, Goto S, Sato K et al. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic acids research.1999,27(1):29.
    [313]Da Wei Huang BTS, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protocols. 2008,4(1):44-57.
    [314]Sherman BT, Lempicki RA. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic acids research.2009,37(1):1-13.
    [315]Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry: WH Freeman & Co; 2005.
    [316]HASLER P, ZOUALI M. B cell receptor signaling and autoimmunity [J]. The FASEB Journal.2001,15(12):2085-2098.
    [317]Franchi L, Warner N, Viani K et al. Function of Nod-like receptors in microbial recognition and host defense[J]. Immunological reviews.2009, 227(1):106-128.
    [318]Kawai T, Akira S. TLR signaling. In; 2007:Elsevier; 2007. p.24-32.
    [319]Karbiener M, Fischer C, Nowitsch S et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ[J]. Biochemical and biophysical research communications.2009,390(2):247-251.
    [320]Li S, Chen X, Zhang H et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status [J]. Journal of lipid research. 2009,50(9):1756-1765.
    [321]Alisi A, Da Sacco L, Bruscalupi G et al. Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease[J]. Laboratory Investigation.2010,91(2):283-293.
    [322]Fernandez-Hernando C, Suarez Y, Rayner KJ et al. MicroRNAs in lipid metabolism[J]. Current opinion in lipidology.2011,22(2):86.
    [323]Kunej T, Skok DJ, Zorc M et al. Obesity Gene Atlas in Mammals[J]. Journal of Genomics.2012,1:45-55.
    [324]Marti A, Ordovas J. Epigenetics lights up the obesity field[J]. Obesity Facts. 2011,4(3):187-190.
    [325]Herrera B, Lockstone H, Taylor J et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes[J]. BMC Medical Genomics.2009,2(1):54.
    [326]Schroen B, Heymans S. Small but smart-microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing[J]. Cardiovascular Research.2012,93(4):605-613.
    [327]Chen T, Huang Z, Wang L et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages[J]. Cardiovascular research.2009, 83(1):131-139.
    [328]Pratt SL, Burns TA, Curry E et al. Expression of microRNA during bovine adipogenesis[J]. Journal of Nucleic Acids Investigation.2010,1(1):e12.
    [329]Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells:role in metabolism and disease [J]. Nature Reviews Endocrinology.2010,6(4): 195-213.
    [330]Ono K. MicroRNA links obesity and impaired glucose metabolism[J]. Cell Research.2011,21(6):864-866.
    [331]Chen C, Deng B, Qiao M et al. Solexa Sequencing Identification of Conserved and Novel microRNAs in Backfat of Large White and Chinese Meishan Pigs[J]. PLoS One.2012,7(2):e31426.
    [332]Zaragosi LE, Wdziekonski B, Brigand KL et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis[J]. Genome biology.2011,12(7): R64.
    [333]Sun L, Xie H, Mori MA et al. Mir193b-365 is essential for brown fat differentiation[J]. Nature cell biology.2011,13(8):958-965.
    [334]Zhang Z, Zhang H, Kang Y et al. miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells [J]. Journal of cellular biochemistry.2012,113(3):888-898.
    [335]Li G, Li Y, Li X et al. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing[J]. Journal of cellular biochemistry.2011,112(5):1318-1328.
    [336]Gu Z, Eleswarapu S, Jiang H. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland[J]. FEBS letters.2007,581(5):981-988.
    [337]Zhou Q, Gallagher R, Ufret-Vincenty R et al. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23-27-24 clusters[J]. Proceedings of the National Academy of Sciences.2011,108(20): 8287.
    [338]Li H, Yang R, Fan X et al. MicroRNA array analysis of microRNAs related to systemic scleroderma[J]. Rheumatology international.2012:1-7.
    [339]Nylander E, Ebrahimi M, Wahlin YB et al. Changes in miRNA expression in sera and correlation to duration of disease in patients with multifocal mucosal lichen planus[J]. Journal of Oral Pathology & Medicine.2012.
    [340]Liang P, Lv C, Jiang B et al. MicroRNA profiling in denatured dermis of deep burn patients[J]. Burns.2012.
    [341]Ezzie ME, Crawford M, Cho JH et al. Gene Expression Networks in COPD[J].
    [342]Hulsmans M, De Keyzer D, Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis [J]. FASEB J.2011,25(8):2515-2527.
    [343]Kumar M, Ahmad T, Sharma A et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation[J]. Journal of Allergy and Clinical Immunology.2011:No pp. given.
    [344]Schulte LN, Eulalio A, Mollenkopf HJ et al. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family [J]. The EMBO journal.2011,30(10):1977-1989.
    [345]Tan KS, Armugam A, Sepramaniam S et al. Expression profile of MicroRNAs in young stroke patients[J]. PloS one.2009,4(11):e7689.
    [346]Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system[J]. Immunology.2009,127(3):291-298.
    [347]Yu D, Tan AH, Hu X et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA[J]. Nature.2007,450(7167): 299-303.
    [348]Megiorni F, Cialfi S, Dominici C et al. Synergistic Post-Transcriptional Regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 Specific Binding[J]. PloS one.2011, 6(10):e26601.
    [349]Friedland DR, Eernisse R, Erbe C et al. Cholesteatoma Growth and Proliferation:Post-Transcriptional Regulation by microRNA-21[J]. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.2009,30(7):998.
    [350]Raitoharju E, Lyytikainen LP, Levula M et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study [J]. Atherosclerosis.2011.
    [351]Tetzlaff MT, Liu A, Xu X et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues[J]. Endocrine pathology.2007,18(3): 163-173.
    [352]Cervigne NK, Reis PP, Machado J et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma[J]. Human molecular genetics.2009,18(24):4818-4829.
    [353]Zarjou A, Yang S, Abraham E et al. Identification of a microRNA signature in renal fibrosis:role of miR-21 [J]. American Journal of Physiology-Renal Physiology.2011,301(4):F793-F801.
    [354]Godwin JG, Ge X, Stephan K et al. Identification of a microRNA signature of renal ischemia reperfusion injury [J]. Proceedings of the National Academy of Sciences.2010,107(32):14339-14344.
    [355]Marques FZ, Campain AE, Tomaszewski M et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs[J]. Hypertension.2011,58(6):1093-1098.
    [356]Elia L, Quintavalle M, Zhang J et al. The knockout of miR-143 and-145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease[J]. Cell Death & Differentiation.2009,16(12): 1590-1598.
    [357]Weber C, Schober A, Zernecke A. MicroRNAs in arterial remodelling, inflammation and atherosclerosis [J]. Current drug targets.2010,11(8): 950-956.
    [358]Bonauer A, A Boon R, Dimmeler S. Vascular micrornas[J]. Current drug targets.2010,11(8):943-949.
    [359]Zhang C. MicroRNAs in vascular biology and vascular disease[J]. Journal of cardiovascular translational research.2010,3(3):235-240.
    [360]Li T, Cao H, Zhuang J et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans[J]. Clinica Chimica Acta.2011,412(1):66-70.
    [361]Fish JE, Santoro MM, Morton SU et al. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell.2008,15(2):272-284.
    [362]Song Z, Li G. Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury [J]. Journal of cardiovascular translational research.2010,3(3):246-250.
    [363]Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis[J]. Cardiovascular research.2008, 79(4):581.
    [364]Williams AE, Larner-Svensson H, Perry MM et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy[J]. PLoS One.2009,4(6):e5889.
    [365]Gu J, Chen Y, Li S et al. Identification of responsive gene modules by network-based gene clustering and extending:application to inflammation and angiogenesis[J]. BMC systems biology.2010,4(1):47.
    [366]Tili E, Michaille JJ, Cimino A et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-a stimulation and their possible roles in regulating the response to endotoxin shock[J]. The journal of immunology.2007,179(8):5082-5089.
    [367]Vasilescu C, Rossi S, Shimizu M et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis[J]. PLoS One. 2009,4(10):e7405.
    [368]Xiao J, Liang D, Zhang Y et al. MicroRNA expression signature in atrial fibrillation with mitral stenosis[J]. Physiological genomics.2011,43(11): 655-664.
    [369]Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling[J]. Thromb Haemost.2012:107.
    [370]Spin JM, Maegdefessel L, Tsao PS. Vascular smooth muscle cell phenotypic plasticity:focus on chromatin remodelling [J]. Cardiovascular research.2012.
    [371]Skurk T, Alberti-Huber C, Herder C et al. Relationship between adipocyte size and adipokine expression and secretion[J]. Journal of Clinical Endocrinology & Metabolism.2007,92(3):1023-1033.
    [372]Fontana L, Eagon JC, Trujillo ME et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans[J]. Diabetes.2007, 56(4):1010-1013.
    [373]Kurokawa J, Arai S, Nakashima K et al. Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity [J]. Cell Metabolism.2010,11(6):479-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700