用户名: 密码: 验证码:
FTY720抗癫癎发作及癫癎发生的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫癎是一种常见病多发病,具有反复发作性,每次发作的不可预知性以及药物治疗的长期性等临床特点。发病年龄涵盖从新生儿至老年人各个年龄段,全球约5千万患者,严重影响患者身心健康,给社会和家庭带来沉重负担。尽管不断有新的抗癫癎药物问世,癫癎的治愈率并没有明显提高,约30%的患者抗癫癎药物治疗无效,称为难治性癫癎。在难治性癫癎中,一大部分是各种脑损伤后引起的症状性癫癎。脑损伤后通常经过一段时间的潜伏期,脑组织发生结构及功能的改变使得神经网络兴奋性升高,然后出现自发的癫癎发作。这种由“正常脑”转变为“癫癎脑”的过程称为癫癎发生。近年来,多项研究发现炎症在癫癎发作及癫癎发生过程中扮演了重要的角色,某些抗炎治疗在癫癎动物模型上显示出一定的抗癫癎发作及癫癎发生的作用,结合部分难治性癫癎患者加用抗炎治疗也能取得满意疗效,说明抗炎治疗是一条可能治疗癫癎的新途径。
     芬戈莫德(FTY720)是一种已被临床批准使用的抗炎新药,在多发性硬化患者的治疗中取得良好的疗效。尽管目前机制尚不清,研究表明FTY720的作用主要是经过各种途径抑制病理状态下中枢神经系统炎症而实现的。因此在本研究中我们应用电生理技术、行为学及免疫组化等方法观察了FTY720抗癫癎发作及抗癫癎发生的作用,并探讨其潜在的机制,以期为临床治疗癫癎提供新的方法。
     首先我们在离体脑片上验证了一种诱发脑内炎症的药物细菌脂多糖(Lipopolysaccharide,LPS)对癫癎样放电的影响,一方面从离体证实炎症在癫癎中的作用,另一方面探索炎症影响癫癎的电生理机制。结果如下:1、急性LPS暴露易化了海马CA1锥体细胞的癫癎样放电;2、急性LPS暴露增加了海马CA1锥体细胞的兴奋性突触后电流的强度,但对抑制性突触后电流无影响;3、急性LPS暴露增加了海马CA1锥体细胞的兴奋性,但未改变基强度下第一个动作电位的幅值和半波宽。提示急性炎症易化癫癎样放电的可能机制是增强兴奋性突触传递及细胞兴奋性,这可能是炎症诱发癫癎的电生理基础,并为下一步研究抗炎药物FTY720对癫癎的影响奠定了离体实验基础。
     其次,我们观察了FTY720在MES、PTZ急性惊厥模型及匹罗卡品癫癎模型上抗癫癎发作的作用,并初步探讨了其潜在的机制。结果如下:1、FTY720在0.25mg/kg及1mg/kg剂量腹腔注射30min后对MES模型无效。2、FTY720在0.25mg/kg腹腔注射30min后对PTZ急性惊厥模型最小阵挛发作(Minimal clonic seizure,MCS)、全身强直阵挛性发作(Generalizedtonic-clonic seizure,GTCS)的潜伏期及动物死亡率均无影响,但可以减少GTCS的发作时间;1mg/kg腹腔注射能明显延长MCS和GTCS的潜伏期,减少GTCS的发作时间,提高动物存活率。3、FTY7201mg/kg腹腔注射30min后对匹罗卡品诱导大鼠癫癎持续状态的比例及死亡率无影响,但能延长SE潜伏期。4、离体脑片上,LPS增加了海马CA1区兴奋性突触后电位的幅值;0.1-10μM的FTY720-P对LPS导致的兴奋性突触后电位增加无影响而100μMFTY720-P明显降低了LPS诱导的兴奋性突触后电位;100μM FTY720-P对正常的兴奋性突触后电位无影响。以上结果说明FTY720有一定的抗癫癎发作的药理作用,这种作用有剂量依赖性。其潜在的机制可能是抑制了病理状态下兴奋性突触传递的增加。
     既然FTY720有抗癫癎发作、减少异常兴奋性突触传递以及文献报道的抗炎作用,那么能否对症状性癫癎形成过程即癫癎发生期异常兴奋的神经环路产生抑制从而起到减少后期癫癎的自发发作呢?为证实这一假设,在最后一部分实验中我们在大鼠癫癎持续状态(Status epilepticus,SE)后24小时予以1mg/kg FTY720腹腔注射,每天1次,连续注射14天,观察了癫癎发生期海马神经环路兴奋性及慢性期大鼠癫癎自发发作的变化;同时观察了脑内海马的炎症反应程度如小胶质细胞、星型胶质细胞的激活程度,细胞因子IL-1β和TNFα含量的变化;还观察了导致癫癎发生的常见病理改变如海马神经元的变性丢失及苔藓纤维芽生的变化情况。结果发现:1、在SE后21-34天的视频检测中,FTY720明显降低了出现癫癎自发发作大鼠的数量,减轻了癫癎发作的频率、持续时间和严重程度。2、SE后第4天,大鼠海马IL-1β和TNFα的含量明显升高,但FTY720治疗组明显低于生理盐水治疗组;FTY720治疗组海马CA1、CA3和门区的星型胶质细胞和小胶质细胞数目也明显低于生理盐水治疗组; FTY720的治疗还减轻了海马各区神经元的变性。3、SE后第7天,FTY720治疗组大鼠海马神经环路兴奋性较生理盐水治疗组明显下降。4、SE后第35天, FTY720治疗显著减轻Timm染色标记的苔藓纤维芽生程度。结果说明抗炎药物FTY720能够改善SE后癫癎发生期海马的炎症反应程度,减少神经元变性,降低异常兴奋的神经环路形成,最终缓解了慢性期癫癎的自发发作。
     综上所述,模拟急性炎症的LPS暴露可以通过增加兴奋性突触传递和神经元的兴奋性来易化离体诱导的癫癎样放电;FTY720抑制兴奋性突触的传递减轻了癫癎的发作;FTY720还有抗癫癎发生的作用,其机制与减轻癫癎发生期的炎症反应,降低异常神经环路形成有关。一系列实验揭示了炎症致癫癎的可能电生理基础,全面评价了抗炎药物FTY720抗癫癎发作及癫癎发生的特性及潜在的机制。
Epilepsy is a disorder of the brain clinically characterized by unexpectedrecurrent seizures and long-time treatment of antiepileptic drugs (AEDs). It is acommon human disease and affects the whole age range from neonates toelderly people. Approximately50million people around the world suffer fromepilepsy, which imposes a heavy burden on society and their families. Thoughthe new generation of AEDs is developed, there is no evidence that the efficacyof new AEDs is better than the old agents. About30%of epilepsy is intractableepilepsy which can not be cured by present AEDs. Majority of intractableepilepsy is the symptomatic epilepsy followed by brain injuries. An initial braininsult triggers a cascade of cellular events which, after a latent period,contributes “normal brain” to “epileptic brain” and leads to neural networkhyperexcitability and occurrence of spontaneous recurrent seizures. This processis termed epileptogenesis. Recently, emerging evidence has suggestedinflammatory processes play an important role in seizure and epileptogenesis.Several anti-neuroinflammatory agents have anticonvulsant and antiepileptogenic actions in animal models and some anti-inflammatory drugsare administered as adjunctive agents in patients with intractable epilepsy. All ofthese facts indicate that anti-inflammation is a new probable pathway fortreatment of epilepsy.
     Fingolimod (FTY720) is a new anti-inflammatory drug approved for thetreatment of multiple sclerosis (MS) by the US Food and Drug Administration(FDA). Present data suggest that anti-neuroinflammatory effects of FTY720viavarious pathways are involved in its pharmacological properties. In our research,we studied FTY720′s anticonvulsant and antiepileptogenic actions in animalmodels and their underlying mechanisms through monitoring behavior,electrophysiological techniques and immunohistochemistry in vivo and vitro.We hope to provide a new pathway for treatment and prevention of epilepsy.
     Firstly, to demonstrate the effects of acute inflammation on epileptiformdischarges in vitro and reveal its underlying mechanisms, we observed changesof epileptiform activity, synaptic strength and neuronal excitability after addingLPS (an extensively used agent to induce brain inflammatory processes inexperiments in vivo and in vitro) to hippocampal slices. The results were asfollowings:1. Acute administration of LPS facilitated epileptiform activity inhippocampal CA1pyramidal neurons in vitro;2. Acute LPS exposure enhancedevoked excitatory postsynaptic currents (eEPSCs) but did not modify evokedinhibitory postsynaptic currents (eIPSCs);3. Exposure to LPS increased theexcitability of CA1pyramidal neurons but did not change the amplitude orhalf-width of the first action potential evoked by rheobase current. These resultssuggest strengthened excitatory synaptic transmission and neuronal excitabilityare most likely attributable to this facilitation of acute inflammation induced byLPS. It provides a model to study the effects of FTY720on abnormal excitatorysynaptic strength in the following experiment.
     Secondly, we evaluated anticonvulsant activity of FTY720in three animalmodels of epilepsy including MES model, s.c.PTZ model and pilocarpine model.In addition, we studied the underlying mechanisms in hippocampal slice in vitro.The results were as followings:1. At dosage of0.25mg/kg and1mg/kg,FTY720had not anticonvulsant activity in MES model.2. In s.c. PTZ model,0.25mg/kg FTY720had no effects on latency of minimal clonic seizure (MCS)or generalized tonic-clonic seizure (GTCS) or mortality of mice while reducedthe duration of GTCS.1mg/kg FTY720improved latency of MCS and GTCS,also decreased mortality and the duration of GTCS.3. In pilocarpine model,1mg/kg FTY720injection showed anticonvulsant activity demonstrated byreducing the latency to SE. However,1mg/kg FTY720did not decrease themortality and the number of rats developing SE.4. In vitro, LPS increasedamplitude of EPSP recorded in hippocampal CA1region. At100μM but not0.1-10μM concentration, FTY720-P suppressed increasing amplitude of EPSPinduced by LPS.100μM FTY720-P had no effect on normal EPSP in CA1region. These data indicate FTY720has anticonvulsant action and this action isdose-dependent. Ability of decreasing abnormal excitatory synaptic transmissionmay be one of underlying mechanisms.
     Due to FTY720′s anticonvulsion, decreasing abnormal EPSP andanti-inflammation reported by others, we hypothesized that FTY720maysuppress epileptogenesis and reduce spontaneous recurrent seizures (SRS) inchronic epilepsy. In the third experiment, to test this hypothesis,1mg/kgFTY720was administrated24h after onset of status epilepticus (SE) for14consecutive days. We examined whether FTY720might attenuatehyperexcitability of hippocampal neuronal circuits and SRS following SE, andwhether FTY720might decrease inflammatory responses, such as glialactivation, expression of IL-1β and TNFα. Furthermore, we evaluated whether neuronal degeneration and aberrant mossy fiber sprouting (MFS) inhippocampus could be reversed by administration of FTY720. The results wereas followings:1. During21-34days post SE, FTY720decreased incidence ofSRS. The frequency, duration of SRS and severity of seizures were also reducedin this period.2. At four days post SE, FTY720alleviated the concentration ofIL-1β and TNFα in hippocampus. The number of micriglia and astrocytes inCA1、CA3and hilus were decreased in FTY720treated SE rats compared tosaline treated SE rats. At this time point, FTY720had a neuroprotective effectaganist neurodegeneration in hippocampus.3. At seven days post SE, FTY720decreased hyperexcitability of hippocampal neuronal circuits.4.35days afterSE, there were less Timm score in SE+FTY720group than SE+saline group.These observations suggest that FTY720has antiepileptogenic action in ratsfollowing SE induced by Li-pilocarpine. Anti-inflammatory and neuroprotectiveeffects and suppression of MFS may all involve in the underlying mechanisms.
     In conclusion, mimic inflammatory environment by acute LPS exposurefacilitated epileptiform activity. Strengthened excitatory synaptic transmissionand neuronal excitability may contribute to this facilitation. FTY720exertsanticonvulsant action in animal epilepsy models and reducing abnormalexcitatory synaptic transmitter may be involved in its underlying mechanisms.In addition, FTY720plays an antiepileptic role in the Li-pilocarpine model inrats. This efficacy may result from anti-inflammation and suppression ofhyperexcitable circuit of FTY720. Our observations suggest inflammationaggravates epilepsy in electrophysiology and FTY720exerts anticonvulsant andantiepileptogenic actions in animal models of epilepsy.
引文
[1] Banerjee PN, Filippi D, Allen Hauser W. The descriptive epidemiology of epilepsy-areview. Epilepsy Res2009;85:31-45.
    [2] Schuele SU, Luders HO. Intractable epilepsy: management and therapeutic alternatives.Lancet Neurol2008;7:514-524.
    [3] International Bureau for Epilepsy, WHO. Epilepsy in the WHO European region:fostering epilepsy care in Europe. http://www.ibe-epilepsy.org/downloads/EUROReport160510.pdf (accessedNov19,2010).
    [4] Chawla S, Aneja S, Kashyap R, Mallika V. Etiology and clinical predictors ofintractable epilepsy. Pediatr Neurol2002;27:186-191.
    [5] Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet2006;367:1087-1100.
    [6] Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges,incentives, and recent advances. Lancet Neurol2007;6:793-804.
    [7] Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci2004;5:553-564.
    [8] Pitkanen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeuticapproaches in temporal-lobe epilepsy. Lancet Neurol2002;1:173-181.
    [9] Riikonen R. Infantile spasms: therapy and outcome. J Child Neurol2004;19:401-404.
    [10] Wheless JW, Clarke DF, Arzimanoglou A, Carpenter D. Treatment of pediatric epilepsy:European expert opinion,2007. Epileptic Disord2007;9:353-412.
    [11] Aronica E, Crino PB. Inflammation in epilepsy: clinical observations. Epilepsia2011;52Suppl3:26-32.
    [12] Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinicalevidence. Epilepsia2005;46:1724-1743.
    [13] Choi J, Nordli DR, Jr., Alden TD, DiPatri A, Jr., Laux L, Kelley K, Rosenow J, SchueleSU, Rajaram V, Koh S. Cellular injury and neuroinflammation in children with chronicintractable epilepsy. J Neuroinflammation2009;6:38.
    [14] Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. NatRev Neurol2011;7:31-40.
    [15] Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology.Curr Pharm Des2005;11:973-984.
    [16] Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering themolecular mechanisms. Nat Rev Neurosci2007;8:57-69.
    [17] D'Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain inresponse to tumor necrosis factoralpha signaling during peripheral organ inflammation.J Neurosci2009;29:2089-2102.
    [18] Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S,Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E,Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC,Constantin G. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. NatMed2008;14:1377-1383.
    [19] Rossi B, Angiari S, Zenaro E, Budui SL, Constantin G. Vascular inflammation incentral nervous system diseases: adhesion receptors controlling leukocyte-endothelialinteractions. J Leukoc Biol2011;89:539-556.
    [20] Mihaly A, Bozoky B. Immunohistochemical localization of extravasated serum albuminin the hippocampus of human subjects with partial and generalized epilepsies andepileptiform convulsions. Acta Neuropathol1984;65:25-34.
    [21] Oztas B, Kaya M, Kucuk M, Tugran N. Influence of hypoosmolality on the blood-brainbarrier permeability during epileptic seizures. Prog Neuropsychopharmacol BiolPsychiatry2003;27:701-704.
    [22] Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I,Granata T, Janigro D. Antagonism of peripheral inflammation reduces the severity ofstatus epilepticus. Neurobiol Dis2009;33:171-181.
    [23] Uva L, Librizzi L, Marchi N, Noe F, Bongiovanni R, Vezzani A, Janigro D, de Curtis M.Acute induction of epileptiform discharges by pilocarpine in the in vitro isolatedguinea-pig brain requires enhancement of blood-brain barrier permeability.Neuroscience2008;151:303-312.
    [24] van Vliet EA, da Costa Araujo S, Redeker S, van Schaik R, Aronica E, Gorter JA.Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain2007;130:521-534.
    [25] Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E,Heinemann U, Friedman A. TGF-beta receptor-mediated albumin uptake into astrocytesis involved in neocortical epileptogenesis. Brain2007;130:535-547.
    [26] Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines: sources, receptors,effects, and inducers. Clin Microbiol Rev1997;10:742-780.
    [27] Dripps DJ, Brandhuber BJ, Thompson RC, Eisenberg SP. Interleukin-1(IL-1) receptorantagonist binds to the80-kDa IL-1receptor but does not initiate IL-1signaltransduction. J Biol Chem1991;266:10331-10336.
    [28] Lehtimaki KA, Peltola J, Koskikallio E, Keranen T, Honkaniemi J. Expression ofcytokines and cytokine receptors in the rat brain after kainic acid-induced seizures.Brain Res Mol Brain Res2003;110:253-260.
    [29] Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, DeSimoni MG. Functional role of inflammatory cytokines and antiinflammatorymolecules in seizures and epileptogenesis. Epilepsia2002;43Suppl5:30-35.
    [30] Eriksson C, Tehranian R, Iverfeldt K, Winblad B, Schultzberg M. Increased expressionof mRNA encoding interleukin-1beta and caspase-1, and the secreted isoform ofinterleukin-1receptor antagonist in the rat brain following systemic kainic acidadministration. J Neurosci Res2000;60:266-279.
    [31] Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptiveimmunity during epileptogenesis and spontaneous seizures: evidence fromexperimental models and human temporal lobe epilepsy. Neurobiol Dis2008;29:142-160.
    [32] Sayyah M, Beheshti S, Shokrgozar MA, Eslami-far A, Deljoo Z, Khabiri AR, HaeriRohani A. Antiepileptogenic and anticonvulsant activity of interleukin-1beta inamygdala-kindled rats. Exp Neurol2005;191:145-153.
    [33] Dube C, Vezzani A, Behrens M, Bartfai T, Baram TZ. Interleukin-1beta contributes tothe generation of experimental febrile seizures. Ann Neurol2005;57:152-155.
    [34] Heida JG, Pittman QJ. Causal links between brain cytokines and experimental febrileconvulsions in the rat. Epilepsia2005;46:1906-1913.
    [35] Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG.Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampusby focal kainate application: functional evidence for enhancement of electrographicseizures. J Neurosci1999;19:5054-5065.
    [36] Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG,Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T. Powerful anticonvulsantaction of IL-1receptor antagonist on intracerebral injection and astrocyticoverexpression in mice. Proc Natl Acad Sci U S A2000;97:11534-11539.
    [37] Ravizza T, Lucas SM, Balosso S, Bernardino L, Ku G, Noe F, Malva J, Randle JC,Allan S, Vezzani A. Inactivation of caspase-1in rodent brain: a novel anticonvulsivestrategy. Epilepsia2006;47:1160-1168.
    [38] Sanchez-Alavez M, Tabarean IV, Behrens MM, Bartfai T. Ceramide mediates the rapidphase of febrile response to IL-1beta. Proc Natl Acad Sci U S A2006;103:2904-2908.
    [39] Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M,Corsini E, Di Luca M, Galli CL, Marinovich M. Interleukin-1beta enhances NMDAreceptor-mediated intracellular calcium increase through activation of the Src family ofkinases. J Neurosci2003;23:8692-8700.
    [40] Vezzani A, Baram TZ. New roles for interleukin-1Beta in the mechanisms of epilepsy.Epilepsy Curr2007;7:45-50.
    [41] Srinivasan D, Yen JH, Joseph DJ, Friedman W. Cell type-specific interleukin-1betasignaling in the CNS. J Neurosci2004;24:6482-6488.
    [42] Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, BagettaG, Kollias G, Meldolesi J, Volterra A. CXCR4-activated astrocyte glutamate release viaTNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci2001;4:702-710.
    [43] Ye ZC, Sontheimer H. Cytokine modulation of glial glutamate uptake: a possibleinvolvement of nitric oxide. Neuroreport1996;7:2181-2185.
    [44] Wang S, Cheng Q, Malik S, Yang J. Interleukin-1beta inhibits gamma-aminobutyricacid type A (GABA(A)) receptor current in cultured hippocampal neurons. JPharmacol Exp Ther2000;292:497-504.
    [45] Hewett SJ, Csernansky CA, Choi DW. Selective potentiation of NMDA-inducedneuronal injury following induction of astrocytic iNOS. Neuron1994;13:487-494.
    [46] Zhuang L, Wang B, Shinder GA, Shivji GM, Mak TW, Sauder DN. TNF receptor p55plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet Birradiation. J Immunol1999;162:1440-1447.
    [47] Natoli G, Costanzo A, Moretti F, Fulco M, Balsano C, Levrero M. Tumor necrosisfactor (TNF) receptor1signaling downstream of TNF receptor-associated factor2.Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation ofactivating protein1and NFkappaB but not of c-Jun N-terminal kinase/stress-activatedprotein kinase. J Biol Chem1997;272:26079-26082.
    [48] Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG, Vezzani A.Tumor necrosis factor-alpha inhibits seizures in mice via p75receptors. Ann Neurol2005;57:804-812.
    [49] Shandra AA, Godlevsky LS, Vastyanov RS, Oleinik AA, Konovalenko VL, RapoportEN, Korobka NN. The role of TNF-alpha in amygdala kindled rats. Neurosci Res2002;42:147-153.
    [50] Yuhas Y, Weizman A, Ashkenazi S. Bidirectional concentration-dependent effects oftumor necrosis factor alpha in Shigella dysenteriae-related seizures. Infect Immun2003;71:2288-2291.
    [51] Grell M, Wajant H, Zimmermann G, Scheurich P. The type1receptor (CD120a) is thehigh-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A1998;95:570-575.
    [52] Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPAreceptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci2005;25:3219-3228.
    [53] Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6family of cytokines and gp130.Blood1995;86:1243-1254.
    [54] Saito M, Yoshida K, Hibi M, Taga T, Kishimoto T. Molecular cloning of a murine IL-6receptor-associated signal transducer, gp130, and its regulated expression in vivo. JImmunol1992;148:4066-4071.
    [55] Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning andexpression of an IL-6signal transducer, gp130. Cell1990;63:1149-1157.
    [56] Rosell DR, Nacher J, Akama KT, McEwen BS. Spatiotemporal distribution of gp130cytokines and their receptors after status epilepticus: comparison with neuronaldegeneration and microglial activation. Neuroscience2003;122:329-348.
    [57] Lehtimaki KA, Keranen T, Palmio J, Makinen R, Hurme M, Honkaniemi J, Peltola J.Increased plasma levels of cytokines after seizures in localization-related epilepsy. ActaNeurol Scand2007;116:226-230.
    [58] Virta M, Hurme M, Helminen M. Increased plasma levels of pro-andanti-inflammatory cytokines in patients with febrile seizures. Epilepsia2002;43:920-923.
    [59] Fukuda M, Morimoto T, Suzuki Y, Shinonaga C, Ishida Y. Interleukin-6attenuateshyperthermia-induced seizures in developing rats. Brain Dev2007;29:644-648.
    [60] Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J. Intranasaladministration of human IL-6increases the severity of chemically induced seizures inrats. Neurosci Lett2004;365:106-110.
    [61] Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6deficiency reduces thebrain inflammatory response and increases oxidative stress and neurodegeneration afterkainic acid-induced seizures. Neuroscience2001;102:805-818.
    [62] O'Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C. Strategies for use of IL-10or its antagonists in human disease. Immunol Rev2008;223:114-131.
    [63] Levin SG, Godukhin OV. Protective effects of interleukin-10on the development ofepileptiform activity evoked by transient episodes of hypoxia in rat hippocampal slices.Neurosci Behav Physiol2007;37:467-470.
    [64] Ishizaki Y, Kira R, Fukuda M, Torisu H, Sakai Y, Sanefuji M, Yukaya N, Hara T.Interleukin-10is associated with resistance to febrile seizures: genetic association andexperimental animal studies. Epilepsia2009;50:761-767.
    [65] Simonato M, Molteni R, Bregola G, Muzzolini A, Piffanelli M, Beani L, Racagni G,Riva M. Different patterns of induction of FGF-2, FGF-1and BDNF mRNAs duringkindling epileptogenesis in the rat. Eur J Neurosci1998;10:955-963.
    [66] Gwinn RP, Kondratyev A, Gale K. Time-dependent increase in basic fibroblast growthfactor protein in limbic regions following electroshock seizures. Neuroscience2002;114:403-409.
    [67] Rao MS, Hattiangady B, Shetty AK. Fetal hippocampal CA3cell grafts enriched withFGF-2and BDNF exhibit robust long-term survival and integration and suppressaberrant mossy fiber sprouting in the injured middle-aged hippocampus. Neurobiol Dis2006;21:276-290.
    [68] Paradiso B, Marconi P, Zucchini S, Berto E, Binaschi A, Bozac A, Buzzi A, MazzuferiM, Magri E, Navarro Mora G, Rodi D, Su T, Volpi I, Zanetti L, Marzola A, ManservigiR, Fabene PF, Simonato M. Localized delivery of fibroblast growth factor-2andbrain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model.Proc Natl Acad Sci U S A2009;106:7191-7196.
    [69] Zucchini S, Buzzi A, Barbieri M, Rodi D, Paradiso B, Binaschi A, Coffin JD, MarzolaA, Cifelli P, Belluzzi O, Simonato M. Fgf-2overexpression increases excitability andseizure susceptibility but decreases seizure-induced cell loss. J Neurosci2008;28:13112-13124.
    [70] Matsumura K, Cao C, Ozaki M, Morii H, Nakadate K, Watanabe Y. Brain endothelialcells express cyclooxygenase-2during lipopolysaccharide-induced fever: light andelectron microscopic immunocytochemical studies. J Neurosci1998;18:6279-6289.
    [71] Tu B, Bazan NG. Hippocampal kindling epileptogenesis upregulates neuronalcyclooxygenase-2expression in neocortex. Exp Neurol2003;179:167-175.
    [72] Marcheselli VL, Bazan NG. Sustained induction of prostaglandin endoperoxidesynthase-2by seizures in hippocampus. Inhibition by a platelet-activating factorantagonist. J Biol Chem1996;271:24794-24799.
    [73] Desjardins P, Sauvageau A, Bouthillier A, Navarro D, Hazell AS, Rose C, ButterworthRF. Induction of astrocytic cyclooxygenase-2in epileptic patients with hippocampalsclerosis. Neurochem Int2003;42:299-303.
    [74] Takemiya T, Suzuki K, Sugiura H, Yasuda S, Yamagata K, Kawakami Y, Maru E.Inducible brain COX-2facilitates the recurrence of hippocampal seizures in mouserapid kindling. Prostaglandins Other Lipid Mediat2003;71:205-216.
    [75] Takemiya T, Maehara M, Matsumura K, Yasuda S, Sugiura H, Yamagata K.Prostaglandin E2produced by late induced COX-2stimulates hippocampal neuron lossafter seizure in the CA3region. Neurosci Res2006;56:103-110.
    [76] Paoletti AM, Piccirilli S, Costa N, Rotiroti D, Bagetta G, Nistico G. Systemicadministration of N omega-nitro-L-arginine methyl ester and indomethacin reduces theelevation of brain PGE2content and prevents seizures and hippocampal damageevoked by LiCl and tacrine in rat. Exp Neurol1998;149:349-355.
    [77] Sayyah M, Javad-Pour M, Ghazi-Khansari M. The bacterial endotoxinlipopolysaccharide enhances seizure susceptibility in mice: involvement ofproinflammatory factors: nitric oxide and prostaglandins. Neuroscience2003;122:1073-1080.
    [78] Slanina KA, Schweitzer P. Inhibition of cyclooxygenase-2elicits a CB1-mediateddecrease of excitatory transmission in rat CA1hippocampus. Neuropharmacology2005;49:653-659.
    [79] Chen C, Bazan NG. Lipid signaling: sleep, synaptic plasticity, and neuroprotection.Prostaglandins Other Lipid Mediat2005;77:65-76.
    [80] Jung KH, Chu K, Lee ST, Kim J, Sinn DI, Kim JM, Park DK, Lee JJ, Kim SU, Kim M,Lee SK, Roh JK. Cyclooxygenase-2inhibitor, celecoxib, inhibits the alteredhippocampal neurogenesis with attenuation of spontaneous recurrent seizures followingpilocarpine-induced status epilepticus. Neurobiol Dis2006;23:237-246.
    [81] Holtman L, van Vliet EA, van Schaik R, Queiroz CM, Aronica E, Gorter JA. Effects ofSC58236, a selective COX-2inhibitor, on epileptogenesis and spontaneous seizures ina rat model for temporal lobe epilepsy. Epilepsy Res2009;84:56-66.
    [82] Polascheck N, Bankstahl M, Loscher W. The COX-2inhibitor parecoxib isneuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobeepilepsy. Exp Neurol2010;224:219-233.
    [83] Holtman L, van Vliet EA, Edelbroek PM, Aronica E, Gorter JA. Cox-2inhibition canlead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res2010;91:49-56.
    [84] Jamali S, Bartolomei F, Robaglia-Schlupp A, Massacrier A, Peragut JC, Regis J,Dufour H, Ravid R, Roll P, Pereira S, Royer B, Roeckel-Trevisiol N, Fontaine M, GuyeM, Boucraut J, Chauvel P, Cau P, Szepetowski P. Large-scale expression study ofhuman mesial temporal lobe epilepsy: evidence for dysregulation of theneurotransmission and complement systems in the entorhinal cortex. Brain2006;129:625-641.
    [85] Whitney KD, McNamara JO. GluR3autoantibodies destroy neural cells in acomplement-dependent manner modulated by complement regulatory proteins. JNeurosci2000;20:7307-7316.
    [86] Xiong ZQ, Qian W, Suzuki K, McNamara JO. Formation of complement membraneattack complex in mammalian cerebral cortex evokes seizures and neurodegeneration. JNeurosci2003;23:955-960.
    [87] Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, Prince DA. Enhanced synapticconnectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci U S A2010;107:7975-7980.
    [88] Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, ZhengYW, Huang Y, Cyster JG, Coughlin SR. Promotion of lymphocyte egress into blood andlymph by distinct sources of sphingosine-1-phosphate. Science2007;316:295-298.
    [89] Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS,Habrukowich C, Hla T. Vascular endothelium as a contributor of plasma sphingosine1-phosphate. Circ Res2008;102:669-676.
    [90] Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S. Role of ABCC1in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci U S A2006;103:16394-16399.
    [91] Sato K, Malchinkhuu E, Horiuchi Y, Mogi C, Tomura H, Tosaka M, Yoshimoto Y,Kuwabara A, Okajima F. Critical role of ABCA1transporter in sphingosine1-phosphate release from astrocytes. J Neurochem2007;103:2610-2619.
    [92] Kihara A, Igarashi Y. Production and release of sphingosine1-phosphate and thephosphorylated form of the immunomodulator FTY720. Biochim Biophys Acta2008;1781:496-502.
    [93] Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, Ui M, Okajima F.Interaction of sphingosine1-phosphate with plasma components, including lipoproteins,regulates the lipid receptor-mediated actions. Biochem J2000;352Pt3:809-815.
    [94] Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C,Marmorstein R, Kordula T, Milstien S, Spiegel S. Regulation of histone acetylation inthe nucleus by sphingosine-1-phosphate. Science2009;325:1254-1257.
    [95] Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M,Jiang H, Luo C, Kordula T, Milstien S, Spiegel S. Sphingosine-1-phosphate is a missingcofactor for the E3ubiquitin ligase TRAF2. Nature2010;465:1084-1088.
    [96] Hla T. Physiological and pathological actions of sphingosine1-phosphate. Semin CellDev Biol2004;15:513-520.
    [97] Brinkmann V. Sphingosine1-phosphate receptors in health and disease: mechanisticinsights from gene deletion studies and reverse pharmacology. Pharmacol Ther2007;115:84-105.
    [98] Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, Wu M, Morales-RuizM, Sessa WC, Alessi DR, Hla T. Akt-mediated phosphorylation of the Gprotein-coupled receptor EDG-1is required for endothelial cell chemotaxis. Mol Cell2001;8:693-704.
    [99] Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y.Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negativelyregulates cellular Rac activity and cell migration in vascular smooth muscle cells. CircRes2002;90:325-332.
    [100] Honig SM, Fu S, Mao X, Yopp A, Gunn MD, Randolph GJ, Bromberg JS. FTY720stimulates multidrug transporter-and cysteinyl leukotriene-dependent T cell chemotaxisto lymph nodes. J Clin Invest2003;111:627-637.
    [101] Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E,Baumruker T, Hiestand P, Foster CA, Zollinger M, Lynch KR. The immune modulatorFTY720targets sphingosine1-phosphate receptors. J Biol Chem2002;277:21453-21457.
    [102] Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML,Proia RL, Cyster JG. Lymphocyte egress from thymus and peripheral lymphoid organsis dependent on S1P receptor1. Nature2004;427:355-360.
    [103] Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T.Immunosuppressive and anti-angiogenic sphingosine1-phosphate receptor-1agonistsinduce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem2007;282:9082-9089.
    [104] Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine1-phosphate receptor-1in thecontrol of lymphocyte egress and endothelial barrier function. Am J Transplant2004;4:1019-1025.
    [105] Miron VE, Ludwin SK, Darlington PJ, Jarjour AA, Soliven B, Kennedy TE, Antel JP.Fingolimod (FTY720) enhances remyelination following demyelination of organotypiccerebellar slices. Am J Pathol2010;176:2682-2694.
    [106] Pebay A, Toutant M, Premont J, Calvo CF, Venance L, Cordier J, Glowinski J, Tence M.Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellularsignalling cascades. Eur J Neurosci2001;13:2067-2076.
    [107] Miron VE, Schubart A, Antel JP. Central nervous system-directed effects of FTY720(fingolimod). J Neurol Sci2008;274:13-17.
    [108] Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST.Sphingosine kinase1regulates the expression of proinflammatory cytokines and nitricoxide in activated microglia. Neuroscience2010;166:132-144.
    [109] Durafourt BA, Lambert C, Johnson TA, Blain M, Bar-Or A, Antel JP. Differentialresponses of human microglia and blood-derived myeloid cells to FTY720. JNeuroimmunol2011;230:10-16.
    [110] Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation toaugment markers of remyelination. J Neuroinflammation2011;8:76.
    [111] Osinde M, Mullershausen F, Dev KK. Phosphorylated FTY720stimulates ERKphosphorylation in astrocytes via S1P receptors. Neuropharmacology2007;52:1210-1218.
    [112] Rao TS, Lariosa-Willingham KD, Lin FF, Palfreyman EL, Yu N, Chun J, Webb M.Pharmacological characterization of lysophospholipid receptor signal transductionpathways in rat cerebrocortical astrocytes. Brain Res2003;990:182-194.
    [113] Mullershausen F, Craveiro LM, Shin Y, Cortes-Cros M, Bassilana F, Osinde M, WishartWL, Guerini D, Thallmair M, Schwab ME, Sivasankaran R, Seuwen K, Dev KK.Phosphorylated FTY720promotes astrocyte migration throughsphingosine-1-phosphate receptors. J Neurochem2007;102:1151-1161.
    [114] Jang S, Suh SH, Yoo HS, Lee YM, Oh S. Changes in iNOS, GFAP and NR1expressionin various brain regions and elevation of sphingosine-1-phosphate in serum afterimmobilized stress. Neurochem Res2008;33:842-851.
    [115] Sorensen SD, Nicole O, Peavy RD, Montoya LM, Lee CJ, Murphy TJ, Traynelis SF,Hepler JR. Common signaling pathways link activation of murine PAR-1, LPA, andS1P receptors to proliferation of astrocytes. Mol Pharmacol2003;64:1199-1209.
    [116] Wu YP, Mizugishi K, Bektas M, Sandhoff R, Proia RL. Sphingosine kinase1/S1Preceptor signaling axis controls glial proliferation in mice with Sandhoff disease. HumMol Genet2008;17:2257-2264.
    [117] Yamagata K, Tagami M, Torii Y, Takenaga F, Tsumagari S, Itoh S, Yamori Y, Nara Y.Sphingosine1-phosphate induces the production of glial cell line-derived neurotrophicfactor and cellular proliferation in astrocytes. Glia2003;41:199-206.
    [118] Rouach N, Pebay A, Meme W, Cordier J, Ezan P, Etienne E, Giaume C, Tence M. S1Pinhibits gap junctions in astrocytes: involvement of G and Rho GTPase/ROCK. Eur JNeurosci2006;23:1453-1464.
    [119] Foster CA, Mechtcheriakova D, Storch MK, Balatoni B, Howard LM, Bornancin F,Wlachos A, Sobanov J, Kinnunen A, Baumruker T. FTY720rescue therapy in the darkagouti rat model of experimental autoimmune encephalomyelitis: expression of centralnervous system genes and reversal of blood-brain-barrier damage. Brain Pathol2009;19:254-266.
    [120] Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B, LakemanK, Dijkstra CD, Van Der Valk P, Reijerkerk A, Alewijnse AE, Peters SL, De Vries HE.Sphingosine1-phosphate receptor1and3are upregulated in multiple sclerosis lesions.Glia2010;58:1465-1476.
    [121] Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC, LuM, Kennedy G, Chun J. FTY720(fingolimod) efficacy in an animal model of multiplesclerosis requires astrocyte sphingosine1-phosphate receptor1(S1P1) modulation.Proc Natl Acad Sci U S A2011;108:751-756.
    [122] Herr DR, Chun J. Effects of LPA and S1P on the nervous system and implications fortheir involvement in disease. Curr Drug Targets2007;8:155-167.
    [123] Toman RE, Payne SG, Watterson KR, Maceyka M, Lee NH, Milstien S, Bigbee JW,Spiegel S. Differential transactivation of sphingosine-1-phosphate receptors modulatesNGF-induced neurite extension. J Cell Biol2004;166:381-392.
    [124] Norman E, Cutler RG, Flannery R, Wang Y, Mattson MP. Plasma membranesphingomyelin hydrolysis increases hippocampal neuron excitability bysphingosine-1-phosphate mediated mechanisms. J Neurochem2010;114:430-439.
    [125] Kanno T, Nishizaki T. Endogenous sphingosine1-phosphate regulates spontaneousglutamate release from mossy fiber terminals via S1P(3) receptors. Life Sci2011;89:137-140.
    [126] Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura S. Involvement ofsphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol2007;27:3429-3440.
    [127] Kanno T, Nishizaki T, Proia RL, Kajimoto T, Jahangeer S, Okada T, Nakamura S.Regulation of synaptic strength by sphingosine1-phosphate in the hippocampus.Neuroscience2010;171:973-980.
    [128] Rossi S, Lo Giudice T, De Chiara V, Musella A, Studer V, Motta C, Bernardi G, MartinoG, Furlan R, Martorana A, Centonze D. Oral fingolimod rescues the functional deficitsof synapses in experimental autoimmune encephalomyelitis. Br J Pharmacol2012;165:861-869.
    [129] Novgorodov AS, El-Alwani M, Bielawski J, Obeid LM, Gudz TI. Activation ofsphingosine-1-phosphate receptor S1P5inhibits oligodendrocyte progenitor migration.FASEB J2007;21:1503-1514.
    [130] Miron VE, Hall JA, Kennedy TE, Soliven B, Antel JP. Cyclical and dose-dependentresponses of adult human mature oligodendrocytes to fingolimod. Am J Pathol2008;173:1143-1152.
    [131] Marsolais D, Rosen H. Chemical modulators of sphingosine-1-phosphate receptors asbarrier-oriented therapeutic molecules. Nat Rev Drug Discov2009;8:297-307.
    [132] Jung CG, Kim HJ, Miron VE, Cook S, Kennedy TE, Foster CA, Antel JP, Soliven B.Functional consequences of S1P receptor modulation in rat oligodendroglial lineagecells. Glia2007;55:1656-1667.
    [133] Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G, Walsh FS,Pangalos MN, Arimura N, Kaibuchi K, Zalc B, Lubetzki C. Edg8/S1P5: anoligodendroglial receptor with dual function on process retraction and cell survival. JNeurosci2005;25:1459-1469.
    [134] Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP. FTY720modulateshuman oligodendrocyte progenitor process extension and survival. Ann Neurol2008;63:61-71.
    [135] Singleton PA, Dudek SM, Ma SF, Garcia JG. Transactivation of sphingosine1-phosphate receptors is essential for vascular barrier regulation. Novel role forhyaluronan and CD44receptor family. J Biol Chem2006;281:34381-34393.
    [136] Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K. Persistent signalinginduced by FTY720-phosphate is mediated by internalized S1P1receptors. Nat ChemBiol2009;5:428-434.
    [137] Payne SG, Oskeritzian CA, Griffiths R, Subramanian P, Barbour SE, Chalfant CE,Milstien S, Spiegel S. The immunosuppressant drug FTY720inhibits cytosolicphospholipase A2independently of sphingosine-1-phosphate receptors. Blood2007;109:1077-1085.
    [138] Webb M, Tham CS, Lin FF, Lariosa-Willingham K, Yu N, Hale J, Mandala S, Chun J,Rao TS. Sphingosine1-phosphate receptor agonists attenuate relapsing-remittingexperimental autoimmune encephalitis in SJL mice. J Neuroimmunol2004;153:108-121.
    [139] Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiplesclerosis. Ann Neurol2011;69:759-777.
    [140] Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism ofaction of oral FTY720(fingolimod) in multiple sclerosis. Arch Pharm Res2010;33:1567-1574.
    [141] Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T,Neumann-Haefelin T, Rami A, Huwiler A, Pfeilschifter J. The immunomodulatorysphingosine1-phosphate analog FTY720reduces lesion size and improves neurologicaloutcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun2009;389:251-256.
    [142] Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T, Alsharif N,Brinkmann V, Liao JK, Lo EH, Waeber C. Fingolimod provides long-term protection inrodent models of cerebral ischemia. Ann Neurol2011;69:119-129.
    [143] Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine1-phosphate receptor-1by FTY720is neuroprotective after ischemic stroke in rats.Stroke2010;41:368-374.
    [144] Liesz A, Sun L, Zhou W, Schwarting S, Mracsko E, Zorn M, Bauer H, Sommer C,Veltkamp R. FTY720reduces post-ischemic brain lymphocyte influx but does notimprove outcome in permanent murine cerebral ischemia. PLoS One2011;6: e21312.
    [145] Zhang Z, Fauser U, Artelt M, Burnet M, Schluesener HJ. FTY720attenuatesaccumulation of EMAP-II+and MHC-II+monocytes in early lesions of rat traumaticbrain injury. J Cell Mol Med2007;11:307-314.
    [146] Zhang Z, Fauser U, Schluesener HJ. Early attenuation of lesional interleukin-16up-regulation by dexamethasone and FTY720in experimental traumatic brain injury.Neuropathol Appl Neurobiol2008;34:330-339.
    [147] Lee KD, Chow WN, Sato-Bigbee C, Graf MR, Graham RS, Colello RJ, Young HF,Mathern BE. FTY720reduces inflammation and promotes functional recovery afterspinal cord injury. J Neurotrauma2009;26:2335-2344.
    [148] Kimura A, Ohmori T, Ohkawa R, Madoiwa S, Mimuro J, Murakami T, Kobayashi E,Hoshino Y, Yatomi Y, Sakata Y. Essential roles of sphingosine1-phosphate/S1P1receptor axis in the migration of neural stem cells toward a site of spinal cord injury.Stem Cells2007;25:115-124.
    [149] Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD. Sphingosine-1-phosphate viaactivation of a G-protein-coupled receptor(s) enhances the excitability of rat sensoryneurons. J Neurophysiol2006;96:1042-1052.
    [150] MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, Anderson KJ,Roper SN, Lee N. An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine1-phosphate receptor in neuronal excitability. Eur J Neurosci2001;14:203-209.
    [151] Lee DH, Jeon BT, Jeong EA, Kim JS, Cho YW, Kim HJ, Kang SS, Cho GJ, Choi WS,Roh GS. Altered expression of sphingosine kinase1and sphingosine-1-phosphatereceptor1in mouse hippocampus after kainic acid treatment. Biochem Biophys ResCommun2010;393:476-480.
    [152] Rolland WB,2nd, Manaenko A, Lekic T, Hasegawa Y, Ostrowski R, Tang J, Zhang JH.FTY720is Neuroprotective and Improves Functional Outcomes After IntracerebralHemorrhage in Mice. Acta Neurochir Suppl2011;111:213-217.
    [153] Finney CA, Hawkes CA, Kain DC, Dhabangi A, Musoke C, Cserti-Gazdewich C,Oravecz T, Liles WC, Kain KC. S1P is associated with protection in human andexperimental cerebral malaria. Mol Med2011;17:717-725.
    [154] Bartfai T, Sanchez-Alavez M, Andell-Jonsson S, Schultzberg M, Vezzani A, DanielssonE, Conti B. Interleukin-1system in CNS stress: seizures, fever, and neurotrauma. Ann NY Acad Sci2007;1113:173-177.
    [155] Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ,Vartanian T. Activation of innate immunity in the CNS triggers neurodegenerationthrough a Toll-like receptor4-dependent pathway. Proc Natl Acad Sci U S A2003;100:8514-8519.
    [156] Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. FrontNeuroendocrinol2012;33:116-125.
    [157] Nasif FJ, Hu XT, Ramirez OA, Perez MF. Inhibition of neuronal nitric oxide synthaseprevents alterations in medial prefrontal cortex excitability induced by repeated cocaineadministration. Psychopharmacology (Berl)2011;218:323-330.
    [158] Li Z, Ji G, Neugebauer V. Mitochondrial reactive oxygen species are activated bymGluR5through IP3and activate ERK and PKA to increase excitability of amygdalaneurons and pain behavior. J Neurosci2011;31:1114-1127.
    [159] Wang YS, White TD. The bacterial endotoxin lipopolysaccharide causes rapidinappropriate excitation in rat cortex. J Neurochem1999;72:652-660.
    [160] Magni DV, Souza MA, Oliveira AP, Furian AF, Oliveira MS, Ferreira J, Santos AR,Mello CF, Royes LF, Fighera MR. Lipopolysaccharide enhances glutaric acid-inducedseizure susceptibility in rat pups: behavioral and electroencephalographic approach.Epilepsy Res2011;93:138-148.
    [161] Auvin S, Shin D, Mazarati A, Sankar R. Inflammation induced by LPS enhancesepileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia2010;51Suppl3:34-38.
    [162] Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep2007;7:348-354.
    [163] Jefferys JG. Advances in understanding basic mechanisms of epilepsy and seizures.Seizure2010;19:638-646.
    [164] Fueta Y, Avoli M. Effects of antiepileptic drugs on4-aminopyridine-inducedepileptiform activity in young and adult rat hippocampus. Epilepsy Res1992;12:207-215.
    [165] Fernandez M, Lao-Peregrin C, Martin ED. Flufenamic acid suppresses epileptiformactivity in hippocampus by reducing excitatory synaptic transmission and neuronalexcitability. Epilepsia2010;51:384-390.
    [166] Jo JH, Park EJ, Lee JK, Jung MW, Lee CJ. Lipopolysaccharide inhibits induction oflong-term potentiation and depression in the rat hippocampal CA1area. Eur JPharmacol2001;422:69-76.
    [167] Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. Thecortical innate immune response increases local neuronal excitability leading toseizures. Brain2009;132:2478-2486.
    [168] Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, Kalynchuk LE,Teskey GC, Pittman QJ. Postnatal inflammation increases seizure susceptibility in adultrats. J Neurosci2008;28:6904-6913.
    [169] Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, BeattieMS, Malenka RC. Control of synaptic strength by glial TNFalpha. Science2002;295:2282-2285.
    [170] Zhang H, Nei H, Dougherty PM. A p38mitogen-activated protein kinase-dependentmechanism of disinhibition in spinal synaptic transmission induced by tumor necrosisfactor-alpha. J Neurosci2010;30:12844-12855.
    [171] Jakubs K, Bonde S, Iosif RE, Ekdahl CT, Kokaia Z, Kokaia M, Lindvall O.Inflammation regulates functional integration of neurons born in adult brain. J Neurosci2008;28:12477-12488.
    [172] Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization:distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosisfactor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. JNeurosci2008;28:5189-5194.
    [173] Hellstrom IC, Danik M, Luheshi GN, Williams S. Chronic LPS exposure produceschanges in intrinsic membrane properties and a sustained IL-beta-dependent increase inGABAergic inhibition in hippocampal CA1pyramidal neurons. Hippocampus2005;15:656-664.
    [174] Zhang R, Yamada J, Hayashi Y, Wu Z, Koyama S, Nakanishi H. Inhibition ofNMDA-induced outward currents by interleukin-1beta in hippocampal neurons.Biochem Biophys Res Commun2008;372:816-820.
    [175] Zhou C, Qi C, Zhao J, Wang F, Zhang W, Li C, Jing J, Kang X, Chai Z.Interleukin-1beta inhibits voltage-gated sodium currents in a time-and dose-dependentmanner in cortical neurons. Neurochem Res2011;36:1116-1123.
    [176] Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology ofepilepsy. Brain Behav Immun2008;22:797-803.
    [177] Marcon J, Gagliardi B, Balosso S, Maroso M, Noe F, Morin M, Lerner-Natoli M,Vezzani A, Ravizza T. Age-dependent vascular changes induced by status epilepticus inrat forebrain: implications for epileptogenesis. Neurobiol Dis2009;34:121-132.
    [178] Liao WP, Chen L, Yi YH, Sun WW, Gao MM, Su T, Yang SQ. Study of antiepilepticeffect of extracts from Acorus tatarinowii Schott. Epilepsia2005;46Suppl1:21-24.
    [179] Albert R, Hinterding K, Brinkmann V, Guerini D, Muller-Hartwieg C, Knecht H,Simeon C, Streiff M, Wagner T, Welzenbach K, Zecri F, Zollinger M, Cooke N,Francotte E. Novel immunomodulator FTY720is phosphorylated in rats and humans toform a single stereoisomer. Identification, chemical proof, and biologicalcharacterization of the biologically active species and its enantiomer. J Med Chem2005;48:5373-5377.
    [180] Loscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver:ways out of the current dilemma. Epilepsia2011;52:657-678.
    [181] Loscher W. Critical review of current animal models of seizures and epilepsy used inthe discovery and development of new antiepileptic drugs. Seizure2011;20:359-368.
    [182] Bialer M, White HS. Key factors in the discovery and development of new antiepilepticdrugs. Nat Rev Drug Discov2010;9:68-82.
    [183] Loscher W, Schmidt D. Which animal models should be used in the search for newantiepileptic drugs? A proposal based on experimental and clinical considerations.Epilepsy Res1988;2:145-181.
    [184] Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA. Antiepileptic drugdevelopment: II. Anticonvulsant drug screening. Epilepsia1978;19:409-428.
    [185] Smolders I, Khan GM, Manil J, Ebinger G, Michotte Y. NMDA receptor-mediatedpilocarpine-induced seizures: characterization in freely moving rats by microdialysis.Br J Pharmacol1997;121:1171-1179.
    [186] Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, Idzerda RL,Nathanson NM. Disruption of the m1receptor gene ablates muscarinicreceptor-dependent M current regulation and seizure activity in mice. Proc Natl AcadSci U S A1997;94:13311-13316.
    [187] Priel MR, Albuquerque EX. Short-term effects of pilocarpine on rat hippocampalneurons in culture. Epilepsia2002;43Suppl5:40-46.
    [188] Clifford DB, Olney JW, Maniotis A, Collins RC, Zorumski CF. The functional anatomyand pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience1987;23:953-968.
    [189] Ravizza T, Balosso S, Vezzani A. Inflammation and prevention of epileptogenesis.Neurosci Lett2011;497:223-230.
    [190] Somera-Molina KC, Robin B, Somera CA, Anderson C, Stine C, Koh S, Behanna HA,Van Eldik LJ, Watterson DM, Wainwright MS. Glial activation links early-life seizuresand long-term neurologic dysfunction: evidence using a small molecule inhibitor ofproinflammatory cytokine upregulation. Epilepsia2007;48:1785-1800.
    [191] Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A.Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistantchronic epileptic activity in mice. Neurotherapeutics2011;8:304-315.
    [192] Murashima YL, Suzuki J, Yoshii M. Role of cytokines during epileptogenesis and in thetransition from the interictal to the ictal state in the epileptic mutant EL mouse. GeneRegul Syst Bio2008;2:267-274.
    [193] Rao RS, Medhi B, Saikia UN, Arora SK, Toor JS, Khanduja KL, Pandhi P.Experimentally induced various inflammatory models and seizure: understanding therole of cytokine in rat. Eur Neuropsychopharmacol2008;18:760-767.
    [194] Hong S, Xin Y, Haiqin W, Guilian Z, Ru Z, Shuqin Z, Huqing W, Li Y, Yun D. ThePPARgamma agonist rosiglitazone prevents cognitive impairment by inhibitingastrocyte activation and oxidative stress following pilocarpine-induced statusepilepticus. Neurol Sci2011Sep14.DOI10.1007/s10072-011-0774-2.
    [195] Liu Z, Yang Y, Silveira DC, Sarkisian MR, Tandon P, Huang LT, Stafstrom CE, HolmesGL. Consequences of recurrent seizures during early brain development. Neuroscience1999;92:1443-1454.
    [196] Schmued LC, Hopkins KJ. Fluoro-Jade: novel fluorochromes for detectingtoxicant-induced neuronal degeneration. Toxicol Pathol2000;28:91-99.
    [197] Chu K, Jung KH, Lee ST, Kim JH, Kang KM, Kim HK, Lim JS, Park HK, Kim M, LeeSK, Roh JK. Erythropoietin reduces epileptogenic processes following statusepilepticus. Epilepsia2008;49:1723-1732.
    [198] Paxinos G, Watson, C. The Rat Brain in Stereotaxic Coordinates. San Diego.: AcademicPress, Inc.;1997.
    [199] Aktas O, Kury P, Kieseier B, Hartung HP. Fingolimod is a potential novel therapy formultiple sclerosis. Nat Rev Neurol2010;6:373-382.
    [200] Voutsinos-Porche B, Koning E, Kaplan H, Ferrandon A, Guenounou M, Nehlig A,Motte J. Temporal patterns of the cerebral inflammatory response in the ratlithium-pilocarpine model of temporal lobe epilepsy. Neurobiol Dis2004;17:385-402.
    [201] Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, ReuschelR, Beerli C, Schwartz M, Billich A. Brain penetration of the oral immunomodulatorydrug FTY720and its phosphorylation in the central nervous system duringexperimental autoimmune encephalomyelitis: consequences for mode of action inmultiple sclerosis. J Pharmacol Exp Ther2007;323:469-475.
    [202] Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy JM.Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobeepilepsy. J Neurosci2011;31:4037-4050.
    [203] Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol2010;119:7-35.
    [204] Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation followingpilocarpine-induced seizures in rats. Epilepsia2008;49Suppl2:33-41.
    [205] Tomkins O, Friedman O, Ivens S, Reiffurth C, Major S, Dreier JP, Heinemann U,Friedman A. Blood-brain barrier disruption results in delayed functional and structuralalterations in the rat neocortex. Neurobiol Dis2007;25:367-377.
    [206] Seifert G, Carmignoto G, Steinhauser C. Astrocyte dysfunction in epilepsy. Brain ResRev2010;63:212-221.
    [207] Bovolenta R, Zucchini S, Paradiso B, Rodi D, Merigo F, Navarro Mora G, Osculati F,Berto E, Marconi P, Marzola A, Fabene PF, Simonato M. Hippocampal FGF-2andBDNF overexpression attenuates epileptogenesis-associated neuroinflammation andreduces spontaneous recurrent seizures. J Neuroinflammation2010;7:81.
    [208] Foresti ML, Arisi GM, Shapiro LA. Role of glia in epilepsy-associated neuropathology,neuroinflammation and neurogenesis. Brain Res Rev2011;66:115-122.
    [209] Cavazos JE, Zhang P, Qazi R, Sutula TP. Ultrastructural features of sprouted mossyfiber synapses in kindled and kainic acid-treated rats. J Comp Neurol2003;458:272-292.
    [210] Scharfman HE, Sollas AL, Berger RE, Goodman JH. Electrophysiological evidence ofmonosynaptic excitatory transmission between granule cells after seizure-inducedmossy fiber sprouting. J Neurophysiol2003;90:2536-2547.
    [211] Sloviter RS. Status epilepticus-induced neuronal injury and network reorganization.Epilepsia1999;40Suppl1: S34-39; discussion S40-31.
    [212] Shetty AK, Zaman V, Hattiangady B. Repair of the injured adult hippocampus throughgraft-mediated modulation of the plasticity of the dentate gyrus in a rat model oftemporal lobe epilepsy. J Neurosci2005;25:8391-8401.
    [213] Nissinen J, Lukasiuk K, Pitkanen A. Is mossy fiber sprouting present at the time of thefirst spontaneous seizures in rat experimental temporal lobe epilepsy? Hippocampus2001;11:299-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700