用户名: 密码: 验证码:
生物表面电信号建模、分析及其在人机交互中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物表面电信号是生物体自主意识的体现。目前,用于人机交互的生物表面电信号源主要有脑电和肌电两种。然而,研究人员对生物电信号的了解还不够充分。信号本身的特性和采集过程各类噪音的引入使得目前基于生物电信号的人机交互仍处于实验室研究阶段,离实际应用还有一段距离。本文主要研究肌电和脑电两种形式的生物表面电信号在人机交互中的应用。在脑机接口中则以想象运动以及稳态视觉诱发电位两种模式作为研究对象。本文主要的工作如下:
     在基于想象运动的脑机接口方面,本文首先针对共空域模式算法的泛化能力展开研究,通过线性混合模型仿真比较了各个因素对算法泛化能力的影响。其次,将共空域模式算法扩展到少通道情况下的应用,使其不仅能够在少通道的条件下运行并具备处理频域信息的能力。最后通过在线平台的搭建验证其有效性。
     在基于稳态视觉诱发电位的脑机接口方面,本文首先通过实验比较了不同频率下占空比对于稳态视觉诱发电位的影响。进而在一系列实验假设的基础上,通过耦合的神经集群模型对其进行建模。最后通过在线实验验证了实际算法的有效性。
     对于肌电信号,考虑到肌肉分布特点以及肌电信号传播时的相互干扰,本文将脑机接口中常用的空间滤波算法引入肌电信号的处理中,通过共空频域模式算法对通道间空间频域信息的联合处理来提高动作的分类识别率。此外,本文还通过肌电信号对日常生活中常用的手写动作进行识别。采用动态时间规整技术对肌电手写信号进行整体识别。
The surface bioelectrical signal is the refection of the self-consciousness of alife entity. Currently two kinds of the surface bioelectrical signals, named Elec-troencephalography (EEG) and Electromyography (EMG), are typically used forHuman-Computer Interaction (HCI). However, the understanding of the bioelec-trical signal is still not clear. Some characteristics of the signal itself and theintroduction of various types of noise in the acquisition process make the surfacebioelectrical signals based HCI is still in the laboratory research stage. Thereare still some problems for the practical application. The research in this thesisconsiders the application of HCI with two sources of the surface bioelectric sig-nals, which are EEG and EMG. Motor imagery and Steady State Visual EvokedPotential (SSVEP) are considered as the research objects in Brain ComputerInterface (BCI). The main works are as follows,
     In the issue of the motor imagery based BCI, we frstly study the general-ization ability of the Common Spatial Pattern (CSP) algorithm. By applyingthe linear mixture model, simulation data is used to compare the impact of var-ious factors on the generalization ability of the algorithm. Secondly, we extendCSP algorithm to less channel condition, and make the algorithm not only havethe ability to run in the less channel condition but also be able to deal withfrequency-domain information. Finally, the realization of the online platformvalidates the efectiveness.
     In the issue of the SSVEP based BCI, we frstly discuss the infuence of theduty cycle on SSVEP through experiments. Furthermore, based on a series ofexperiments and assumptions, we simulate the generation of SSVEP by coupledneural mass model. Finally, we also use the online platform to validate the efectiveness of the system.
     For EMG signal, considering the muscle distribution characteristics andcrosstalk problem of EMG signals in the progress of propagation, we introducethe commonly used spatial flter methods in BCI into EMG signal processing.Using Common Spatio-Spectral Pattern algorithm, the classifcation result is im-proved by the use of both spatial and spectral information. Finally, we also tryto identify the handwriting movements used in daily life by EMG. Dynamic timewarping algorithm are used for the overall recognition of handwritten signal ofthe EMG.
引文
[1]Hancock N, Shepstone L, Rowe P, et al. Clinical efcacy and prog-nostic indicators for lower limb pedalling exercise early after stroke: Studyprotocol for a pilot randomised controlled trial[J]. Trials,2011,12(1):68.
    [2]Itami K, Yasuda T, Toyoda K, et al. Evaluation of human physicaland mental burdens regarding standing transfer in individuals with reducedlower limb strength[J]. Journal of Human Nrsing Studies,2006(3):11–21.
    [3]Liu Y, Chen H, Chen C. Multi-transducer data logger for worksitemeasurement of physical workload[J]. Journal of Medical and BiologicalEngineering,2006,26(1):21.
    [4]Hintermeister R, Lange G, Schultheis J, et al. Electromyograph-ic activity and applied load during shoulder rehabilitation exercises us-ing elastic resistance[J]. The American Journal of Sports Medicine,1998,26(2):210.
    [5]Bu N, Okamoto M, Tsuji T. A hybrid motion classifcation approachfor EMG-based human–robot interfaces using bayesian and neural network-s[J]. IEEE Transactions on Robotics,2009,25(3):502–511.
    [6]Crawford A, Molitor J, P′erez Gracia A, et al. Design of a robotichand and simple EMG input controller with a biologically-inspired parallelactuation system for prosthetic applications[J].2011.
    [7]Vallabhaneni A, Wang T, He B. Brain―Computer Interface[J]. Neu-ral Engineering,2005:85–121.
    [8]韩韩济生.神经科学[M]:北京大学医学出版社,2009.
    [9]Cheng M, Gao X, Gao S, et al. Design and implementation of abrain-computer interface with high transfer rates[J]. IEEE Transactionson Biomedical Engineering,2002,49(10):1181–1186.
    [10]Cajavilca C, Varon J, Sternbach G. Luigi Galvani and the founda-tions of electrophysiology[J]. Resuscitation,2009,80(2):159–162.
    [11]赵仑. ERP实验教程[M]:天津:天津社会科学院出版社,2004.
    [12]Hargrove L, Englehart K, Hudgins B. A comparison of surfaceand intramuscular myoelectric signal classifcation[J]. IEEE Transactionson Biomedical Engineering,2007,54(5):847–853.
    [13]Thomas C. Firefox[M]: HarperCollins Publishers,1990. http://books.google.com.hk/books?id=hIOGPwAACAAJ.
    [14]Denning T, Matsuoka Y, Kohno T. Neurosecurity: security andprivacy for neural devices[J]. Neurosurgical Focus,2009,27(1):7.
    [15]Nicolelis M. A. Positions and Honors.[J]. Nature,2000,408:361–365.
    [16]Carmena J, Lebedev M, Crist R, et al. Learning to control a brain–machine interface for reaching and grasping by primates[J]. PLoS biology,2003,1(2):e42.
    [17]Lebedev M, Carmena J, O’Doherty J, et al. Cortical ensemble adap-tation to represent velocity of an artifcial actuator controlled by a brain-machine interface[J]. The Journal of Neuroscience,2005,25(19):4681.
    [18]Serruya M, Hatsopoulos N, Paninski L, et al. Brain-machine in-terface: Instant neural control of a movement signal[J]. Nature,2002,416(6877):141–142.
    [19]Taylor D, Tillery S, Schwartz A. Direct cortical control of3Dneuroprosthetic devices[J]. Science,2002,296(5574):1829.
    [20]Velliste M, Perel S, Spalding M, et al. Cortical control of a pros-thetic arm for self-feeding[J]. Nature,2008,453(7198):1098–1101.
    [21]Hochberg L, Serruya M, Friehs G, et al. Neuronal ensemble con-trol of prosthetic devices by a human with tetraplegia[J]. Nature,2006,442(7099):164–171.
    [22]Pfurtscheller G, Aranibar A. Event-related cortical desynchroniza-tion detected by power measurements of scalp EEG[J]. Electroencephalog-raphy and Clinical Neurophysiology,1977,42(6):817–826.
    [23]Pfurtscheller G. Graphical display and statistical evaluation of event-related desynchronization (ERD)[J]. Electroencephalography and ClinicalNeurophysiology,1977,43(5):757–760.
    [24]Pfurtscheller G. Event-related synchronization (ERS): an electrophys-iological correlate of cortical areas at rest[J]. Electroencephalography andClinical Neurophysiology,1992,83(1):62–69.
    [25]Lemm S, Blankertz B, Curio G, et al. Spatio-spectral flters for im-proving the classifcation of single trial EEG[J]. IEEE Transactions onBiomedical Engineering,2005,52(9):1541.
    [26]Dornhege G, Blankertz B, Krauledat M, et al. Combined op-timization of spatial and temporal flters for improving brain-computerinterfacing[J]. IEEE Transactions on Biomedical Engineering,2006,53(11):2274–2281.
    [27]Tomioka R, Dornhege G, Nolte G, et al. Optimizing spectral fltersfor single trial EEG classifcation[J]. Lecture Notes in Computer Science,2006,4174:414.
    [28]Blankertz B, Kawanabe M, Tomioka R, et al. Invariant commonspatial patterns: Alleviating nonstationarities in brain-computer interfac-ing[J]. Advances in Neural Information Processing Systems,2008,20:113–120.
    [29]Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial fltersfor robust EEG single-trial analysis[J]. Signal Processing Magazine, IEEE,2008,25(1):41–56.
    [30]Guger C, Edlinger G, Harkam W, et al. How many people are able tooperate an EEG-based brain-computer interface (BCI)?[J]. IEEE Transac-tions on Neural Systems and Rehabilitation Engineering,2003,11(2):145–147.
    [31]Blankertz B, Vidaurre C. Towards a cure for BCI illiteracy: machinelearning based co-adaptive learning[J]. BMC Neuroscience,2009,10(Suppl1):85.
    [32]Dickhaus T, Sannelli C, Mu¨ller K, et al. Predicting BCI perfor-mance to study BCI illiteracy[J]. BMC Neuroscience,2009,10(Suppl1):84.
    [33]Farwell L, Donchin E. Talking of the top of your head: toward a men-tal prosthesis utilizing event-related brain potentials[J]. Electroencephalog-raphy and Clinical Neurophysiology,1988,70(6):510–523.
    [34]Donchin E, Spencer K, Wijesinghe R. The mental prosthesis: assess-ing the speed of a P300-based brain-computer interface[J]. IEEE Transac-tions on Rehabilitation Engineering,2000,8(2):174–179.
    [35]Sellers E, Krusienski D, McFarland D, et al. A P300event-relatedpotential brain-computer interface (BCI): the efects of matrix size andinter stimulus interval on performance[J]. Biological Psychology,2006,73(3):242–252.
    [36]Lalor E, Kelly S, Finucane C, et al. Steady-state VEP-based brain-computer interface control in an immersive3D gaming environment[J].EURASIP Journal on Applied Signal Processing,2005,2005:3156–3164.
    [37]Hudgins B, Parker P, Scott R. A new strategy for multifunction my-oelectric control[J]. IEEE Transactions on Biomedical Engineering,1993,40(1):82–94.
    [38]Englehart K, Hudgins B, Parker P, et al. Classifcation of the myo-electric signal using time-frequency based representations[J]. Medical En-gineering&Physics,1999,21(6-7):431–438.
    [39]Graupe D, Magnussen J, Beex A. A microprocessor system for multi-functional control of upper-limb prostheses via myoelectric signal identif-cation[J]. IEEE Transactions on Automatic Control,1978,23(4):538–544.
    [40]Doerschuk P, Gustafon D, Willsky A. Upper extremity limb func-tion discrimination using EMG signal analysis[J]. IEEE Transactions onBiomedical Engineering,1983(1):18–29.
    [41]McFarland D, Lefkowicz A, Wolpaw J. Design and operation of anEEG-based brain-computer interface with digital signal processing technol-ogy[J]. Behavior Research Methods,1997,29(3):337–345.
    [42]McFarland D, McCane L, David S, et al. Spatial flter selectionfor EEG-based communication[J]. Electroencephalography and ClinicalNeurophysiology,1997,103(3):386–394.
    [43]McFarland D, Miner L, Vaughan T, et al. Mu and beta rhythmtopographies during motor imagery and actual movements[J]. Brain To-pography,2000,12(3):177–186.
    [44]Schlo¨gl A, Flotzinger D, Pfurtscheller G. Adaptive autore-gressive modeling used for single-trial EEG classifcation-verwendung einesadaptiven autoregressiven modells fu¨r die klassifkation von einzeltrial-EEG-daten[J]. Biomedizinische Technik/Biomedical Engineering,1997,42(6):162–167.
    [45]Kalcher J, Flotzinger D, Neuper C, et al. Graz brain-computerinterface II: towards communication between humans and computers basedon online classifcation of three diferent EEG patterns[J]. Medical andBiological Engineering and Computing,1996,34(5):382–388.
    [46]Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based dis-crimination between imagination of right and left hand movement[J]. Elec-troencephalography and Clinical Neurophysiology,1997,103(6):642–651.
    [47]Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computerInterface–a new communication device for handicapped persons[J]. Journalof Microcomputer Applications,1993,16(3):293–299.
    [48]Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication[J]. Proceedings of the IEEE,2001,89(7):1123–1134.
    [49]Pfurtscheller G, Brunner C, Schlogl A, et al. Mu rhythm (de)synchronization and EEG single-trial classifcation of diferent motor im-agery tasks[J]. NeuroImage,2006,31(1):153–159.
    [50]Qin L, Ding L, He B. Motor imagery classifcation by means of sourceanalysis for brain–computer interface applications[J]. Journal of NeuralEngineering,2004,1:135.
    [51]Cincotti F, Mattia D, Babiloni C, et al. The use of EEG modifca-tions due to motor imagery for brain-computer interfaces[J]. IEEE Transac-tions on Neural Systems and Rehabilitation Engineering,2003,11(2):131–133.
    [52]Kamousi B, Liu Z, He B. Classifcation of motor imagery tasks forbrain-computer interface applications by means of two equivalent dipolesanalysis[J]. IEEE Transactions on Neural Systems and Rehabilitation En-gineering,2005,13(2):166–171.
    [53]F rat Ince N, Arica S, Tewfik A. Classifcation of single trial motorimagery EEG recordings with subject adapted non-dyadic arbitrary time–frequency tilings[J]. Journal of Neural Engineering,2006,3:235.
    [54]Vallabhaneni A, He B. Motor imagery task classifcation for braincomputer interface applications using spatiotemporal principle componentanalysis[J]. Neurological Research,2004,26(3):282–287.
    [55]Naeem M, Brunner C, Leeb R, et al. Seperability of four-class motorimagery data using independent components analysis[J]. Journal of NeuralEngineering,2006,3:208.
    [56]Guger C, Ramoser H, Pfurtscheller G. Real-time EEG analysiswith subject-specifc spatial patterns for a brain-computer interface (B-CI)[J]. IEEE Transactions on Rehabilitation Engineering,2000,8(4):447–456.
    [57]Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatialfltering of single trial EEG during imagined hand movement[J]. IEEETransactions on Rehabilitation Engineering,2000,8(4):441–446.
    [58]Qin L, He B. A wavelet-based time–frequency analysis approach forclassifcation of motor imagery for brain–computer interface applications[J].Journal of Neural Engineering,2005,2:65.
    [59]Fukunaga K. Introduction to statistical pattern recognition[M]: Aca-demic Press,1990.
    [60]Koles Z. The quantitative extraction and topographic mapping of theabnormal components in the clinical EEG[J]. Electroencephalography andClinical Neurophysiology,1991,79(6):440–447.
    [61]Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatialfltering of single trial EEG during imagined hand movement[J]. IEEETransactions on Rehabilitation Engineering,2000,8(4):441–446.
    [62]Dornhege G, Blankertz B, Krauledat M, et al. Combined op-timization of spatial and temporal flters for improving brain-computerinterfacing[J]. IEEE Transactions on Biomedical Engineering,2006,53(11):2274.
    [63]Tomioka R, Dornhege G, Nolte G, et al. Spectrally weighted com-mon spatial pattern algorithm for single trial eeg classifcation[J]. Dept.Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep,2006,40.
    [64]Wu W, Gao X, Hong B, et al. Classifying single-trial EEG during motorimagery by Iterative Spatio-Spectral Patterns Learning (ISSPL)[J]. IEEETransactions on Biomedical Engineering,2008,55(6):1733–1743.
    [65]Reuderink B, Poel M. Robustness of the common spatial patternsalgorithm in the BCI-pipeline[J].2008.
    [66]Grosse-Wentrup M, Liefhold C, Gramann K, et al. Beamform-ing in noninvasive brain–computer interfaces[J]. IEEE Transactions onBiomedical Engineering,2009,56(4):1209–1219.
    [67]Lu H, Plataniotis K, Venetsanopoulos A. Regularized com-mon spatial patterns with generic learning for EEG signal classifca-tion[C]//Engineering in Medicine and Biology Society,2009. EMBC2009.Annual International Conference of the IEEE.2009:6599–6602.
    [68]Lotte F, C. G. Regularizing common spatial ptterns to improve B-CI designs: unifed theory and new algorithms[J]. IEEE Transactions onBiomedical Engineering,2011,58(2):355–362.
    [69]Hill N, Lal T, Schroder M, et al. Classifying event-related desynchro-nization in EEG, ECoG and MEG signals[J]. Lecture Notes in ComputerScience,2006,4174:404.
    [70]Guger C, Edlinger G, Harkam W, et al. How many people are able tooperate an EEG-based brain-computer interface (BCI)?[J]. IEEE Transac-tions on Neural Systems and Rehabilitation Engineering,2003,11(2):145–147.
    [71]Parra L, Spence C, Gerson A, et al. Recipes for the linear analysisof EEG[J]. Neuroimage,2005,28(2):326–341.
    [72]Lv J, Liu M. Common spatial pattern and particle swarm optimizationfor channel selection in BCI[C]//Innovative Computing Information andControl,2008. ICICIC’08.3rd International Conference on.2008:457–457.
    [73] http://ida.frst.fraunhofer.de/projects/bci/competitions.
    [74]Leeb R, Lee F, Keinrath C, et al. Brain–computer communication:motivation, aim, and impact of exploring a virtual apartment[J]. IEEETransactions on Neural Systems and Rehabilitation Engineering,2007,15(4):473–482.
    [75]Wang Y, Wang R, Gao X, et al. A practical VEP-based brain-computerinterface[J]. IEEE Transactions on Neural Systems and Rehabilitation En-gineering,2006,14(2):234–240.
    [76]Silberstein R, Pipingas A, et al. Steady-state visually evoked po-tential topography during the Wisconsin card sorting test[J]. Electroen-cephalography and Clinical Neurophysiology/Evoked Potentials Section,1995,96(1):24–35.
    [77]Strasburger H, Scheidler W, Rentschler I. Amplitude and phasecharacteristics of the steady-state visual evoked potential[J]. Applied op-tics,1988,27(6):1069–1088.
    [78]Regan D. Human brain electrophysiology: Evoked potentials and evokedmagnetic felds in science and medicine[J].1989.
    [79]Herrmann C. Human EEG responses to1–100Hz ficker: resonancephenomena in visual cortex and their potential correlation to cognitivephenomena[J]. Experimental Brain Research,2001,137(3):346–353.
    [80]Wu Z, Lai Y, Xia Y, et al. Stimulator selection in SSVEP-based BCI[J].Medical Engineering&Physics,2008,30(8):1079–1088.
    [81]Regan D. An efect of stimulus colour on average steady-state potentialsevoked in man[J].1966.
    [82]吴正华,尧德中.不同颜色单色光产生的稳态视觉诱发电位的比较[J].生物医学工程学杂志,2008,25(005):1021–1024.
    [83]Zhu D, Bieger J, Molina G, et al. A survey of stimulation methods usedin SSVEP-based BCIs[J]. Computational Intelligence and Neuroscience,2010,2010:1.
    [84]Muller-Putz G R, Pfurtscheller G. Control of an electrical pros-thesis with an SSVEP-based BCI[J]. IEEE Transactions on BiomedicalEngineering,2008,55(1):361–364.
    [85]Cecotti H. Classifcation of steady-state visual evoked potentials basedon the visual stimuli duty cycle[C]//Applied Sciences in Biomedical andCommunication Technologies (ISABEL),20103rd International Sympo-sium on.2010:1–5.
    [86]Jia C, Gao X, Hong B, et al. Frequency and phase mixed coding inSSVEP-based brain–computer interface[J]. IEEE Transactions on Biomed-ical Engineering,2011,58(1):200–206.
    [87]Lee P, Yeh C, Cheng Y, et al. An SSVEP-based BCI using highduty-cycle visual ficker[J]. IEEE Transactions on Biomedical Engineer-ing,2011(99):1–1.
    [88]Wu Z. The diference of SSVEP resulted by diferent pulse duty-cycle[C]//Communications, Circuits and Systems,2009. ICCCAS2009.International Conference on.2009:605–607.
    [89]Hotelling H. Relations between two sets of variates[J]. Biometrika,1936,28(3/4):321–377.
    [90]Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canon-ical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions onBiomedical Engineering,2006,53(12):2610–2614.
    [91]Bin G, Gao X, Yan Z, et al. An online multi-channel SSVEP-basedbrain–computer interface using a canonical correlation analysis method[J].Journal of Neural Engineering,2009,6:046002.
    [92]Lins O, Picton T. Auditory steady-state responses to multiple simulta-neous stimuli[J]. Electroencephalography and Clinical Neurophysiology/E-voked Potentials Section,1995,96(5):420–432.
    [93]Silberstein R, Nunez P, Pipingas A, et al. Steady state visuallyevoked potential (SSVEP) topography in a graded working memory task[J].International Journal of Psychophysiology,2001,42(2):219–232.
    [94]Lopes da Silva F, Hoeks A, Smits H, et al. Model of brain rhythmicactivity[J]. Biological Cybernetics,1974,15(1):27–37.
    [95]Lopes S, Van Rotterdam A, Barts P, et al. Models of neuronalpopulations: the basic mechanisms of rhythmicity.[J]. Progress in BrainResearch,1976,45:281.
    [96]Freeman W. Models of the dynamics of neural populations.[J]. Electroen-cephalography and Clinical Neurophysiology. Supplement,1978(34):9.
    [97]Jansen B, Rit V. Electroencephalogram and visual evoked potential gen-eration in a mathematical model of coupled cortical columns[J]. BiologicalCybernetics,1995,73(4):357–366.
    [98]Grimbert F, Faugeras O. Bifurcation analysis of Jansen’s neural massmodel[J]. Neural Computation,2006,18(12):3052–3068.
    [99]Eckmann J, Ruelle D. Ergodic theory of chaos and strange attrac-tors[J]. Reviews of Modern Physics,1985,57(3):617–656.
    [100]Ott E. Chaos in dynamical systems[M]: Cambridge Univ Pr,2002.
    [101]Wiggins S. Introduction to applied nonlinear dynamical systems andchaos[M]: Springer Verlag,2003.
    [102]Fei T, Yixin C, Aik Min C, et al. Square or sine: fnding a waveformwith high success rate of eliciting SSVEP[J]. Computational Intelligenceand Neuroscience,2011,2011.
    [103]Hopfinger J, Maxwell J. Appearing and disappearing stimuli trigger arefexive modulation of visual cortical activity[J]. Cognitive Brain Research,2005,25(1):48–56.
    [104]Moratti S, Clementz B, Gao Y, et al. Neural mechanisms of e-voked oscillations: Stability and interaction with transient events[J]. Hu-man Brain Mapping,2007,28(12):1318–1333.
    [105]杨福生,高上凯.生物医学信号处理[M]:高等教育出版社,1989.
    [106]Sherif M, Gregor R. Modelling myoelectric interference patterns dur-ing movement[J]. Medical and Biological Engineering and Computing,1986,24(1):2–9.
    [107]De Luca C. Surface electromyography: Detection and recording[J]. Del-Sys Incorporated,2002:1–10.
    [108]Bhullar H, Loudon G, Fothergill J, et al. Selective noninvasiveelectrode to study myoelectric signals[J]. Medical and Biological Engineer-ing and Computing,1990,28(6):581–586.
    [109]Farina D, Cescon C. Concentric-ring electrode systems for noninvasivedetection of single motor unit activity[J]. IEEE Transactions on BiomedicalEngineering,2001,48(11):1326–1334.
    [110]Farina D, Schulte E, Merletti R, et al. Single motor unit analy-sis from spatially fltered surface electromyogram signals. Part I: spatialselectivity[J]. Medical and Biological Engineering and Computing,2003,41(3):330–337.
    [111]Reucher H, Rau G, Silny J. Spatial fltering of noninvasive multielec-trode EMG: Part I-Introduction to measuring technique and application-s[J]. IEEE Transactions on Biomedical Engineering,1987(2):98–105.
    [112]Reucher H, Silny J, Rau G. Spatial fltering of noninvasive multielec-trode EMG: Part II-Filter performance in theory and modeling[J]. IEEETransactions on Biomedical Engineering,1987(2):106–113.
    [113]Disselhorst-Klug C, Silny J, Rau G. Improvement of spatial resolu-tion in surface-EMG: a theoretical and experimental comparison of difer-ent spatial flters[J]. IEEE Transactions on Biomedical Engineering,1997,44(7):567–574.
    [114]Huang H, Zhou P, Li G, et al. Spatial fltering improves EMG clas-sifcation accuracy following targeted muscle reinnervation[J]. Annals ofBiomedical Engineering,2009,37(9):1849–1857.
    [115]Hahne J, Graimann B, Muller K. Spatial Filtering for Robust Myo-electric Control.[J]. IEEE Transactions on Biomedical Engineering,2012.
    [116]Basmajian J, De Luca C. Muscles alive: Their functions revealed byelectromyography[J]: Williams&Wilkins (Baltimore).
    [117]Englehart K, Hudgins B. A robust, real-time control scheme for mul-tifunction myoelectric control[J]. IEEE Transactions on Biomedical Engi-neering,2003,50(7):848–854.
    [118]Dornhege G, Blankertz B, Curio G, et al. Boosting bit rates in non-invasive EEG single-trial classifcations by feature combination and multi-class paradigms[J]. IEEE Transactions on Biomedical Engineering,2004,51(6):993–1002.
    [119]Nikhil S, Narender R, Durga K. Neural network committees forfnger joint angle estimation from surface EMG signals[J]. BioMedical En-gineering OnLine,8.
    [120]Artemiadis P, Kyriakopoulos K. A switching regime model for theEMG-based control of a robot arm[J]. IEEE Transactions on Systems,Man, and Cybernetics, Part B: Cybernetics,2011,41(1):53–63.
    [121]Artemiadis P, Kyriakopoulos K. An EMG-based robot controlscheme robust to time-varying EMG signal features[J]. IEEE Transactionson Information Technology in Biomedicine,2010,14(3):582–588.
    [122]Vogel J, Castellini C, van der Smagt P. EMG-based teleoperationand manipulation with the DLR LWR-III[C]//Intelligent Robots and Sys-tems (IROS),2011IEEE/RSJ International Conference on.2011:672–678.
    [123]Kruskal J, Liberman M. The symmetric time warping problem: Fromcontinuous to discrete[J]. Time Warps, String Edits and Macromolecules:The Theory and Practice of Sequence Comparison,1983:125–161.
    [124]Gavrila D, Davis L. Towards3-d model-based tracking and recognitionof human movement: a multi-view approach[C]//International workshopon automatic face-and gesture-recognition.1995:272–277.
    [125]Schmill M, Oates T, Cohen P. Learned models for continuous plan-ning[C]//In Proceedings of Uncertainty99: The Seventh InternationalWorkshop on Artifcial Intelligence and Statistics.1999.
    [126]Rabiner L, Juang B. Fundamentals of speech recognition[M]: Prenticehall,1993.
    [127]Gollmer K, Posten C. Detection of distorted pattern using dynamictime warping algorithm and application for supervision of bioprocesses[J].On-line fault detection and supervision in chemical process industries,1995.
    [128]Caiani E, Porta A, Baselli G, et al. Warped-average template tech-nique to track on a cycle-by-cyclebasis the cardiac flling phases on leftventricular volume[J]. Computers in Cardiology1998,1998:73–76.
    [129]Hansen J, Proakis J, Deller Jr J. Discrete-time processing of speechsignals[M]: Prentice-Hall,1987.
    [130]Linderman M, Lebedev M, Erlichman J. Recognition of handwritingfrom electromyography[J].2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700