用户名: 密码: 验证码:
胆碱能α7受体激动剂对烧冲复合伤休克期血管内皮细胞的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的烧冲复合伤引起的低血容量休克,是伤员发生早期死亡和后期并发症的主要原因之一,而血管内皮细胞损伤则是休克期血流动力学紊乱和脏器功能损害的病理生理基础。本文拟采用重度烧冲复合伤犬和犬脐静脉血管内皮细胞为模型,研究胆碱能N样α7受体激动剂对犬烧冲复合伤血管内皮细胞的保护作用及其机制,为临床烧冲复合伤早期抗休克治疗提供新的思路和实验依据。
     方法一:1.选取Beagle犬,采用黑索金爆炸致冲击伤,而后用凝固汽油燃烧造成35%TBSAⅢ°.烧伤,建立中度冲击伤+重度烧伤的犬重度烧冲复合伤模型。2.将实验动物随机化分为:假伤对照组;烧伤组;冲击伤组;烧冲复合伤组;烧冲复合伤不复苏组和烧冲复合伤PNU282987组。测定血流动力学指标、血气、血炎症介质和粘附因子的水平、肝肾功能以及24小时尿量;计算氧输量和氧耗量;测定血浆容量及血管通透性的变化。伤后24h采用放血法处死犬,测定脏器含水量,取肺组织行病理诊断和微血管内皮细胞连接蛋白免疫组化。
     方法二:1.取新生犬脐带,采用胶原酶分别消化不同时间,提取脐静脉血管内皮细胞。采用台盼蓝染色进行细胞计数。而后经细胞培养,取第3代细胞进行鉴定,建立犬脐静脉血管内皮细胞提取、培养方法。2.酶消化法提取的犬脐静脉血管内皮细胞,以第3代为实验细胞。给予烧冲复合伤血清刺激,分别给予烟碱和蛋白激酶C、Rho激酶的阻断剂和激动剂干预,测定其单层血管内皮细胞的通透性;分析各组血管内皮细胞连接蛋白以及上游调控因子的表达。
     结果一:1.5g黑索金爆炸,通过大体解剖及肺脏组织病理HE染色证实:距离爆炸源50cm的比格犬可被爆炸致中度冲击伤,结合凝固汽油燃烧致35%TBSA重度烧伤,结合上述两步致伤可建立犬重度烧冲复合伤模型。2.烧冲复合伤后血管内皮细胞严重受损,屏障功能失衡,血管通透性增高,组织水肿,血容量骤减,循环系统呈低排高阻,脏器缺血缺氧更为严重;胆碱能α7受体激动剂可以显著减低血管通透性和组织水肿,提高血容量,改善血流动力学和肺通气换气,纠正脏器的缺血缺氧状态。
     结果二:1.1%Ⅰ型胶原酶消化7min可从全脐静脉提取大量多角形细胞,免疫荧光染色和流式细胞仪均可以鉴定该细胞为血管内皮细胞。2.烧冲复合伤犬血清刺激血管内皮细胞后,细胞连接蛋白的表达显著下降,其上游的调节蛋白(蛋白激酶C和ROCK1)的表达则显著升高,单层细胞通透性显著提高;而加入烟碱或胆碱能受体激动剂均可以抑制其过高的通透性,降低蛋白激酶C和ROCK1,提高连接蛋白的表达;但给予受体阻断剂或提高蛋白激酶C和Rho激酶的活性后则可以抑制该的效果。
     结论烧冲复合伤能造成血管内皮细胞受损,其连接蛋白表达降低,屏障功能失衡,血管通透性增高,组织水肿,血容量骤减,导致休克;胆碱能α7受体激动剂可以通过抑制蛋白激酶C的活性,从而提高内皮细胞连接蛋白的表达,保护内皮屏障功能,显著减低血管通透性和组织水肿,提高血容量,改善血流动力学、肺通气换气功能以及脏器的缺血缺氧状态。
Objective The severe shock of burn-blast combined injury was a major cause of deathin the early stage and an important predisposing factor of complication in the later stage.Vascular endothelial cells (VECs) plays a critical role in the shock. In this study, the nicotinicalpha7acetylcholine receptors (α7NAchR) agonist was used in the resuscitation of shock.The therapeutic effects of resuscitation with the agonist was observed. Then in vitro, theeffects and mechanisms of α7NAchR regulating on the junction proteins of umbilical veinendothelial cells (UVECs) were investigated.
     MethodsⅠ:1. A severe burn-blast combined injury animal canine model injuried byhexogen explosion and napalm burning, which was proved by gross anatomy andpathological examination of lung tissue.2. Thirty six canines were randomized to six groups:①Sham group.②Burn group.③Blast group.④Burn-blast combined injury group.⑤Burn-blast combined injury without resuscitation group.⑥Burn-blast combined injury withPNU282987treatment group. Hemodynamics parameters, vascular permeability and PVwere measured. The urine output of24hours was collected. The levels of inflammatorymediators in serum were detected. Canines were sacrificed by phlebotomy at24hours post-injury. Then the visceral water content was measured. Microvascular endothelial cellsconnexin in the lung was examined by pathology and immunohistology
     MethodsⅡ:1. The VECs were isolated from these umbilical cords digested bycollagenase A with different time. After cultured, the vascular endothelial cells wereidentified by morphology, immunofluorescence and flow cytometry.2. The UVECs werestimulated bythe serum of burn-blast combined injury canines, and intervened by nicotine,blockers and agonists of protein kinase C or Rho kinase. The permeability of the monolayerof UVECs was measured and the expression of connexin of UVECs and upstream regulatoryfactor were detected by western blotting and immunofluorescence.
     ResultⅠ:1. The canine with50cm away from the explosion of hexogen was diagnosedas moderated blast injury by gross anatomy and pathological examination of lung tissue. Asevere burn-blast combined injury animal model was established by the blast injury andsevere burn caused by napalm.2. After burn-blast combined injury, VECs were damaged,which induced the vascular permeability rising, tissue edema, blood volume lowering,circulatory system disequilibrium and organ ischemia and severe hypoxia. The α7NAchRagonist alleviated the vascular permeability and tissue edema, increased the blood volume,enhanced hemodynamics and pulmonary ventilation ventilation function, and improvedorgan ischemia and hypoxia.
     ResultⅡ:1. Maximal VECs can be achieved with7-minute digestion.2. After culturedby the serum of canines with burn-blast combined injury, the permeability of the monolayerof UVECs was increased and the expression of connexin was decreased significantly.However, the permeability was reduced and the expression of connexin was increased bynicotines or PNU282987or inhibitor of PKC or Rho kinase, which can be broken down byα-BGT or agonist of PKC or Rho kinase.
     Conclusion The VECs were damaged after burn-blast combined injury, and thenexpression of connexin was reduced, barrier functions of VECs were unbalanced, whichled to the increase of vascular permeability, tissue edema, blood volume plummeted, andanoxaemia. By inhibiting protein kinase C, the α7NAchR agonist can increase theexpressions of VECs’connexins, protect its barrier functions, reduce vascular permeabilityand tissue edema significantly, increase blood volume, repair hemodynamics andpulmonary ventilation ventilatory function, and improve the ischemia and hypoxia.
引文
1. Chai JK, Sheng ZY, Lu JY, et al. Characteristics of and strategies for patients with severeburn-blast combined injury. Chin Med J (Engl).2007,120(20):1783-1787.
    2. DePalma RG, Burris DG, Champion HR, et al. Blast injuries. N Engl J Med,2005,352(13):1335-1342.3Champion HR, Holcomb JB, Young LA. Injuries from explosions: physics, biophysics,pathology, and required research focus. J Trauma.2009,66(5):1468-1477.
    4. Arnold JL, Halpern P, Tsai MC, et al. Mass casualty terrorist bombings: a comparison ofoutcomes by bombing type.2004,43(2):263-273.
    5. Wightman JM, Gladish SL. Explosions and blast injuries. Ann Emerg Med.2001;37:664-678.
    6. Irwin RJ, Lerner MR, Bealer JF, et al. Shock after blast wave injury is caused by a vagallymediated reflex. J Trauma,1999;47:105-110.
    7. Zhu PF, Wang ZG. Burn-blast combined injury. Zhonghua shaoshang zhazhi.2008;24:384-386.
    8. Lioy PJ, Weisel CP, Millette JR, et al. Characterization of the dust/smoke aerosol thatsettled east of the World Trade Center (WTC) in lower Manhattan after the collapse of theWTC11September2001. Environ Health Perspect.2002;110(7):703-714.
    9. Lee WL, Liles WC. Endothelial activation, dysfunction and permeability during severeinfections. Curr Opin Hematol.2011;18:191-196.
    10.金榕兵,朱佩芳,王正国,等.烧冲复合伤早期肺血管内皮细胞与PMN粘附的变化。第三军医大学学报,2000,22(6):515-522
    11. Li DJ, Evans RG, Yang ZW, et al. Dysfunction of the cholinergic anti-inflammatorypathway mediates organ damage in hypertension. Hypertension.2011;57:298-307.
    12. Hu Q, Chai J, Hu S, et al. Oral Hypertonic Electrolyte-Glucose/Mosapride ComplexSolution for Resuscitation of Burn Shock in Dogs. Journal of Burn Care&Research. J BurnCare Res2012;33:e63-69
    13. Cai JH, Chai JK, Shen CA, et al. Early changes in serum neutrophil elastase in rats withburn, blast injury or combined burn-blast injury and its significance. Zhonghua Yi Xue ZaZhi2010;90:1707-1710.
    14. Hu Q, Hu S, Chai JK, et al. Influence of enteral administration of hypertonic electrolyteglucose solution on the intestinal barrier and organ functions in dogs with severe burn.Zhonghua Shao Shang Za Zhi2009;47:1581-1584.
    15. Bak Z, Sj berg F, Eriksson O, et al. Hemodynamic changes during resuscitation afterburns using the Parkland formula. J Trauma.2009;66:329-336.
    16. Litton E, Morgan M. The PiCCO monitor: a review. Anaesth Intensive Care2012;40:393-409.
    17. Küntscher MV, Blome-Eberwein S, Pelzer M, et al. Transcardio pulmonary vs pulmonaryarterial thermodilution methods for hemodynamic monitoring of burned patients. J BurnCare Rehabil2002;23:21-26.
    18. Hu Q, Chai JK, Hao Df, et al. The clinic application of hemodynamic monitoring byPiCCO in serious burned patients. Med J Chin PLA2009;34:1245-7.
    19.胡泉,胡森,柴家科,等.肠内输入与静脉输入高渗盐葡萄糖溶液复苏犬烧伤休克的疗效比较.解放军医学杂志,2008,33(5):531.
    20. Li R, Ren M, Chen N, Luo M, Zhang Z, Wu J. Vitronectin increases vascularpermeability by promoting VE-cadherin internalization at cell junctions.PLoS One.2012;7:e3719521Hu Q,Chai JK, Liu LY, et al. Isolation, Culture and Identification of the Canine UmbilicalVein Endothelial Cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2013;27:63-67.
    22. Protti A, Fortunato F, Monti M, et al. Metformin overdose, but not lactic acidosis per se,inhibits oxygen consumption in pigs. Crit Care.2012;16(3):R75.[Epub ahead of print]
    23. Liu B, Wang Z, Leng H, et al. Pathological study of thoracic impact injury involving arelatively impact implant pattern. J trauma1996;40:85-88.
    24. Yang ZH. Characteristics of category, injury in Local war under the condition of hightechnology. Med J Chin PLA1996;21:316-7
    25. Ritenour AE, Blackbourne LH, Kelly JF, et al. Incidence of primary blast injury in USmilitary overseas contingency operations: a retrospective study. Ann. Surg2010;251:1140–1144.
    26. Kauvar, D. S.Wolf, S. E.Wade, et al. Burns sustained in combat explosions in perationsIraqi and Enduring Freedom (OIF/OEF explosion burns). Burns.2006;2006,32(7):853-857.
    27. Busche MN, Gohritz A, Seifert S, et al.Trauma mechanisms, patterns of injury, andoutcomes in a retrospective study of71burns from civil gas explosions. J Trauma.2010;69(4):928-933.
    28.凌烽,李兵仓,李曙光.实验室爆炸伤致伤模型控制系统.爆炸与冲击,1999,19(3):286-288.
    29. Cernak I, Merkle AC, Koliatsos VE, et al. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury inmice.Neurobiol Dis.2011;41(2):538-51.
    30. Satoh Y, Sato S, Saitoh D, et al. Pulmonary blast injury in mice: a novel model forstudying blast injury in the laboratory using laser-induced stress waves. Lasers Surg Med.2010;42(4):313-318.
    31. Garner J P, Wattss S, Parry C, et al. Development of a Large Animal Model forInvestigating Resuscitation After Blast and Hemorrhage. World J Surg,2009,33(8):2194-2202.
    32. Kirman E, Watts S, Cooper G.Blast injury research models.Philos Trans R Socland BBiol Sci.2011,366(1562):144-159.
    33. Chai JK, Cai JH, Deng HP, et al. Role of neutrophil elastase in lung injury induced byburn-blast combined injury in rats. Burns.2012;19.[Epub ahead of print]
    34. Wolf SJ, Bebarta VS, Bonnett CJ, et al. Blast injuries. Lancet,374:405–415.
    35.王德文反恐应急救援,人民军医出版社,2012,第2版:88
    36.罗成基复合伤军事医学科学出版社,2006,第1版:
    37. Robins EV. Burn shock.Crit Care Nurs Clin North Am.1990;2:299-307.
    38. Irwin RJ, Lerner MR, Bealer JF, et al. Shock after blast wave injury is caused by a vagallymediated reflex. J Trauma,1999;47:105-110.
    39郑怀思,程天民,林远,等.烧伤、冲击伤和烧冲复合伤大鼠肺微血管超微结构病变.中华整形外科杂志.1995;11:425-429.。
    40. Zhu PF. Early fluid therapy for dogs with severe burn-blast combined injury. ZhonghuaZheng Xing Shao Shang Wai Ke Za Zhi.1992;8:295-299.
    41.詹刚,赖西南.海水浸泡对烧冲复合伤犬血流动力学的影响.西南国防医药.2009;19:16-19.
    42. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates thesystemic inflammatory response to endotoxin. Nature.2000;405:458-462.
    43Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7subunit is anessential regulator of inflammation. Nature.2003;421:384-388.
    44. Pavlov VA, Wang H, Czura CJ, et al. The cholinergic anti-inflammatory pathway: amissing link in neuroimmunomodulation. Mol Med.2003;9:125-134.
    45The F, Cailotto C, van der Vliet J, et al. Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus.Br J Pharmacol.2011;163:1007-1016.
    46. Kox M, Pompe JC, Peters E, et al. α7nicotinic acetylcholine receptor agonist GTS-21attenuates ventilator-induced tumour necrosis factor-α production and lung injury. Br JAnaesth.2011;107:559-566.
    47. Pohanka M. Alpha7nicotinic acetylcholine receptor is a target in pharmacology andtoxicology. Int J Mol Sci.2012;13:2219-2238.
    48.Tyagi E, Agrawal R, Nath C, et al. Cholinergic protection via alpha7nicotinicacetylcholine receptors and PI3K-Akt pathway in LPS-induced neuroinflammation.Neurochem Int.2010;56:135-142.
    49Kox M, Pompe JC, Peters E, et al. α7nicotinic acetylcholine receptor agonist GTS-21attenuates ventilator-induced tumour necrosis factor-α production and lung injury. Br JAnaesth.2011;107(4):559-566.
    50Pohanka M. Alpha7nicotinic acetylcholine receptor is a target in pharmacology andtoxicology. Int J Mol Sci.2012;13(2):2219-2238.
    51Tyagi E, Agrawal R, Nath C, et al. Cholinergic protection via alpha7nicotinicacetylcholine receptors and PI3K-Akt pathway in LPS-induced neuroinflammation.Neurochem Int.2010;56(1):135-142.
    52. Pavlov VA, Parrish WR, Rosas-Ballina M, et al. Brain acetylcholinesterase activitycontrols systemic cytokine levels through the cholinergic anti-inflammatory pathway. BrainBehav Immun.2009;23(1):41-45.
    53. Minutoli L, Squadrito F, Nicotina PA, et al. Melanocortin4receptor stimulationdecreases pancreatitis severity in rats by activation of the cholinergic anti-inflammatorypathway. Crit Care Med.2011;39(5):1089-1096.
    54Liu ZH, Ma YF, Wu JS, et al. Effect of cholinesterase inhibitor galanthamine oncirculating tumor necrosis factor alpha in rats with lipopolysaccharide-induced peritonitis.Chin Med J (Engl).2010;123(13):1727-1730.
    55. Su X, Lee JW, Matthay ZA. et al. Activation of the alpha7nAChR reduces acid-inducedacute lung injury in mice and rats. Am J Respir Cell Mol Biol,2007;37(2):186-192
    56. Hiramoto T, Chida Y, Sonoda J. et al. The hepatic vagus nerve attenuates Fas-inducedapoptosis in the mouse liver via alpha7nicotinic acetylcholine receptor.. Gastroenterology,2008;134(7):2122-31.
    57. Duris K, Manaenko A, Suzuki H. et al. α7nicotinic acetylcholine receptor agonist PNU-282987attenuates early brain injury in a perforation model of subarachnoid hemorrhage inrats. Stroke,2011;42(12):3530-3536.
    58Pacini A, Di Cesare Mannelli L, Bonaccini L, et al. Protective effect of alpha7nAChR:behavioural and morphological features on neuropathy. Pain.2010;150(3):542-549.
    59. Li DJ, Evans RG, Yang ZW et al. Dysfunction of the cholinergic anti-inflammatorypathway mediates organ damage in hypertension. Hypertension.2011;57(2):298-307.
    60. Redrobe JP, Nielsen EO, Christensen JK. et al. Alpha7nicotinic acetylcholine receptoractivation ameliorates scopolamine-induced behavioural changes in a modified continuousY-maze task in mice. Eur J Pharmacol,2009;602(1):58-65.
    61. Paloma Vicens, Diana Ribes, Margarita Torrente. et al. Behavioral effects of PNU-282987, an alpha7nicotinic receptor agonist, in mice. Behavioural Brain Research.2011;216:341–348.
    62Saeed RW, Varma S, Peng-Nemeroff T, et al. Cholinergic stimulation blocks endothelialcell activation and leukocyte recruitment during inflammation. J Exp Med.2005;201:1113-1123.
    63. Huang H, Lavoie-Lamoureux A, Lavoie JP. Cholinergic stimulation attenuates the IL-4induced expression of E-selectin and vascular endothelial growth factor by equinepulmonary artery endothelial cells. Vet Immunol Immunopathol.2009;132(2-4):116-121..
    64. Vane JR, Angg rd EE, Botting RM. Regulatory functions of the vascular endothelium.N Engl J Med.1990;323(1):27-36.65Kumar P, Shen Q, Pivetti CD, et al. Molecular mechanisms of endothelialhyperpermeability: implications in inflammation. Expert Rev Mol Med.2009;11:e19.
    66. Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascularendothelial barrier function. Microvasc Res.2008;76(3):202-207.
    67. Siow RC. Culture of human endothel ial cells from umbilical veins. Methods Mol Biol,2012;806:265-274.
    68. Marin V, Kaplanski G, Grès S, et al. Endothelial cell culture: protocol to obtain andcultivate human umbilical endothelial cells. J Immunol Methods,2001;254(1-2):183-190.69Nachman RL, Jaffe EA. Endothelial cell culture: beginnings of modernvascular biology.J Clin Invest.2004;114(8):1037-1040.
    70. Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derivedfrom umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest.1973;52(11):2745-2756.
    71. Geerts WJ, Vocking K, Schoonen N, et al. Cobblestone HUVECs: ahuman model systemfor studying primary cil iogenesis. J Struct Biol,2011,176(3):350-359.
    72黄起壬,戴育成,李剑,等.三种人脐静脉内皮细胞分离方法的比较.江西医学院学报,2005,45(5):8-14.
    73Fehrenbach ML, Cao G, Williams JT, et al. Isolation of murine lungendothelial cells. AmJ Physiol Lung Cell Mol Physiol.2009;296(6):L1096-1103.
    74Jin Y, Liu Y, Antonyak M, et al. Isolation and characterization of vascularendothelial cellsfrom murine heart and lung. Methods Mol Biol,2012,843:147-154.
    75Baudin B, Bruneel A, Bosselut N, et al. A protocol for isolation andculture of humanumbilical vein endothelial cells. Nat Protoc.2007;2(3):481-485.
    76张臣,李彤,侯跃龙,等.人脐静脉血管内皮细胞的高效分离与培养.天津医药.2010;38(7):605-607.
    77Winiarski BK, Acheson N, Gutowski NJ. An improved and reliable method for isolationof microvascular endothel ial cells from human omentum. Microcirculation.2011;18(8):635-645.
    78刘长乐,郑心田,李广平,等.体外人脐静脉内皮细胞的培养鉴定及抗原表达分析.山东医药.2011;51(36):25-26.
    79Lip GY, Blann A. von Willebrand factor: a marker of endothelial dysfunction in vasculardisorders? Cardiovasc Res.1997;34(2):255-265.
    80Horvath B, Hegedus D, Szapary L, et al. Measurement of von Willebrand factor as themarker of endothel ial dysfunction in vascular diseases. Exp Clin Cardiol.2004;9(1):31-34.
    81Janeczek Portalska K, Leferink A, Groen N, et al. Endothelial differentiation ofmesenchymal stromal cells. PLoS One.2012;7(10): e46842.
    82Sobczak M, Dargatz J, Chrzanowska-Wodnicka M. Isolation and culture of pulmonaryendothelial cells from neonatal mice. J Vis Exp.2010;(46): doi: pii:2316.
    83. Shupp JW, Nasabzadeh TJ, Rosenthal DS, et al. A review of the local pathophysiologicbases of burn wound progression. J Burn Care Res.2010;31(6):849-873.
    84. Pries AR, Kuebler WM. Normal endothelium. Handb Exp Pharmacol.2006;(176Pt1):1-40.
    85胡静,仲照东,邹萍.血管内皮细胞的生物学特性.国际输血及血液学杂志.2010;33(1):76-79.
    86Aird WC. Endothel ium in health and disease. Pharmacol Rep.2008;60(1):139-143.
    87. Stagg HW, Bowen KA, Sawant DA, et al. Tumor necrosis factor-related apoptosis-inducing ligand promotes microvascular endothelial cell hyperpermeability throughphosphatidylinositol3-kinase pathway. Am J Surg.2013;30.[Epub ahead of print]
    88. Kumar P, Shen Q, Pivetti CD, et al. Molecular mechanisms of endothelialhyperpermeability: implications in inflammation. Expert Rev Mol Med.2009;11:e19
    89. Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascularendothelial barrier function. Microvasc Res.2008;76(3):202-207.
    90. Chatterjee PK, Al-Abed Y, Sherry B, et al. Cholinergic agonists regulate JAK2/STAT3signaling to suppress endothelial cell activation. Am J Physiol Cell Physiol.2009;297:C1294-306.
    91. Li YZ, Liu XH, Rong F, et al. Carbachol inhibits TNF-α-induced endothelial barrierdysfunction through alpha7nicotinic receptors. Acta Pharmacol Sin.2010;31:1389-1394.
    92. Hsu SH, Tsou TC, Chiu SJ, et al. Inhibition of alpha7-nicotinic acetylcholine receptorexpression by arsenite in the vascular endothelial cells. Toxicol Lett.2005;159:47-59..
    [1] DePalma RG, Burris DG, Champion HR, et al. Blast injuries[J]. N Engl J Med,2005,352(13):1335-1342.
    [2] Champion HR, Holcomb JB, Young LA. Injuries from explosions: physics, biophysics,pathology, and required research focus[J]. J Trauma.2009,66(5):1468-1477.
    [3] CHAI Jia-ke, SHENG Zhi-yong, LU Jiang-yang, et al. Characteristics of and strategiesfor patients with severeburn-blast combined injury[J] Chin Med J (Engl).2007,120(20):1783-1787.
    [4] Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview ofpathobiology withemphasis on military populations[J]. J Cereb Blood Flow Metab.2010,30(2):255–266.
    [5] Arnold JL, Halpern P, Tsai MC, et al. Mass casualty terrorist bombings: a comparisonof outcomes by bombing type[J].2004,43(2):263-273.
    [6] Almogy G, Rivkind AI. Terror in the21st century: milestones and prospects—part I[J].Curr Probl Surg2007,44(9):496-554
    [7] Wolf SJ, Bebarta VS, Bonnett CJ, et al. Blast injuries[J]. Lancet.2009;374(9687):405-415.
    [8] Almogy G, Mintz Y, Zamir G, et al. Suicide bombing attacks: can external signs predictinternal injuries[J] Ann Surg2006;243(4):541-546.
    [9] Irwin RJ, Lerner MR, Bealer JF, et al. Shock after blast wave injury is caused by a vagallymediated reflex[J]. J Trauma,1999,47(1):105-110.
    [10] Ramasamy A, Harrisson S E, Clasper J C, et al. Injuries from roadside improvisedexplosive devices[J]. J. Trauma.2008,65(4):910-914.
    [11] Cooper, G J. Protection of the lung from blast overpressure by thoracic stress wavedecouplers[J]. J. Trauma,1996,40(Suppl.3):S105-S110.
    [12]凌烽,李兵仓,李曙光.实验室爆炸伤致伤模型控制系统[J].爆炸与冲击,1999,19(3):286-288.
    [13] Garner J P, Wattss S, Parry C, et al. Development of a Large Animal Model forInvestigating Resuscitation After Blast and Hemorrhage[J]. World J Surg,2009,33(8):2194-2202.
    [14] Kirman E, Watts S, Cooper G.Blast injury research models[J]. Philos Trans R SoclandB Biol Sci.2011,366(1562):144-159.
    [15]胡泉,胡森,柴家科,等,肠内输入高渗电解质葡萄糖液对35%TBSA烧伤犬小肠屏障及脏器功能的影响[.中华烧伤杂志2010,26(1):41-44.
    [16]朱佩芳,王正国.烧冲复合伤[J].中华烧伤杂志,2008,24(5):384-386.
    [19]赖西南,王正国,詹刚,等.犬冲烧复合伤合并海水浸泡的血流动力学研究[J].解放军医学杂志,2004,29(12):1028-1030.
    [20]郑怀思,程天民,林远,等.烧伤、冲击伤和烧冲复合伤大鼠肺微血管超微结构病变[J].中华整形外科杂志.1995.11(5):425-429.
    [21] Amber E, Ritenour, Toney W, et al. Primary blast injury: Update on diagnosis andtreatment[J]. Crit Care Med,2008,36(7Suppl):S311-S317
    [22] Enkhbaatar P, Wang J, Saunders F, et al. Mechanistic aspects of inducible nitric oxidesynthase-induced lung injury in burn trauma[J].Burns.2011,37(4):638-645.
    [23] Garner J, Brett SJ. Mechanisms of injury by explosive devices[J]. Anesthesiol Clin.2007,25(1):147-160.
    [24] Avidan V, Hersch M, Armon Y, et al. Blast lung injury: Clinical manifestations,treatment and outcome[J]. Am J Surg,2005,190(6):927-931
    [25] Leibovici D, Gofrit ON, Shapira SC. Eardrum perforation in explosion survivors: is ita marker of pulmonary blast injury[J]? Ann Emerg Med,1999,34(2):168-172.
    [26] Wightman JM, Gladish SL. Explosions and blast injuries[J]. Ann Emerg Med,2001,37(6):664-678.
    [27]王正国.原发肺冲击伤[J].中华肺部疾病杂志(电子版),2010,3(4):1-3.
    [28] Lavery GG, Lowry KG. Management of blast injuries and shock lung[J]. Curr OpinAnaesthesiol,2004,17(2):151-157.
    [29] Elsayed NM, Gorbunov NV. Pulmonary biochemical and histological alterations afterrepeated low-level blast overpressure exposures[J]. Toxicol Sci.2007,95(1):289-296.
    [30] Almogy G, Luria T, Richter E, et al. Can external signs of trauma guide management[J]?Arch Surg2005;140(4):390–393.
    [31] Avidan V, Hersch M, Armon Y, et al. Blast lung injury: clinical manifestations,treatment, and outcome[J]. Am J Surg,2005,190(6):927-31
    [32] Argyros GJ. Management of primary blast injury[J]. Toxicology,1997;12(1):105-15.
    [33]柴家科,盛志勇,陆江阳,等.成批烧冲复合伤患者的临床救治[J].中华创伤杂志,2007,23(1):57-61.
    [34]屈纪富,郑怀恩,林远,等.内皮素和一氧化氮在烧冲复合伤肺损伤中的作用[J].第三军医大学学报,2003.25(115):1361-1364.
    [35]蔡建华,柴家科,申传安,等.烧伤、冲击伤及烧冲复合伤后大鼠早期血清中性粒细胞弹性蛋白酶的变化及意义[J].中华医学杂志,2010,90(24):1707-1710.
    [36] Tsokos M, Paulsen F, Petri S. Histologic, immunohistochemical, and ultrastructuralfindings in human blast lung injury[J]. Am J Respir Crit Care Med.2003,168(5):549-555.
    [37] Chavko M, Prusaczyk WK, McCarron RM. Lung injury and recovery after exposure toblast overpressure[J]. J Trauma.2006,61(4):933-942.
    [38] Zeerleder S, Hack CE, Wuillemin WA. Disseminated Intravascular Coagulation inSepsis[J]. Chest,2005,128(4):2864-2875.
    [39]金榕兵,朱佩芳.,王正国,等.烧冲复合伤早期细胞间粘附分子-1的表达变化及意义[J].中华创伤杂志,1997, l3(5):281-283.
    [40] Elsayed NM, Gorbunov NV, Kagan VE. A proposed biochemical mechanism for blastoverpressure induced hemorrhagic injury[J]. Toxicology.1997,121(1):81–90.
    [41] Lang JD, McArdle PJ, O'Reilly PJ, et al. Oxidant-antioxidant balance in acute lunginjury[J]. Chest.2002,122(6Suppl):314S–320S.
    [42]周继红,朱佩芳,刘怀林,等.大鼠烧冲复合伤后PAM和PMN呼吸爆发功能及循环内皮细胞变化[J].第三军医大学学报,1994.16(1):61-62.
    [43] Clerch LB, Massaro D. Tolerance of rats to hyperoxia. Lung antioxidant enzyme geneexpression[J]. J Clin Invest,1993,91(2):499-508.
    [44] Kahn SA, Beers RJ, Lentz CW. Resuscitation After Severe Burn Injury Using High-Dose Ascorbic Acid: A Retrospective Review[J]. J Burn Care Res.2011,32(1):110-117
    [45] Chavko M, Prusaczyk WK, McCarron RM. Protection against blast-induced mortalityin rats by hemin[J]. J Trauma.2008,;65(5):1140-1145;.
    [46] Liener UC, Knoferl MW, Strater J, et al. Induction of apoptpsis following blunt chesttrauma[J]. Shock,2003,20(6):511-516.
    [47] Seitz DH, Perl M, Mangold S, et al.Pulmonary contusion induces alveolar type2epithelial cell apoptosis: role of alveolar macrophages and neutrophils[J].Shock.,2008,30(5):537-544.
    [48] Avidan V, Hersch M, Armon Y, et al: Blast lung injury: Clinical manifestations,treatment and outcome[J]. Am J Surg,2005,190(6):927–931
    [49] Sasser SM, Sattin RW, Hunt RC, et al. Blast lung injury[J]. Prehosp Emerg Care.2006,10(2):165-172.
    [51] Sorkine P, Szold O, Kluger Y, et al.Permissive hypercapnea ventilation in patients withsevere pulmonary blast injur[J]y. J Trauma,1998,45(1):35-38.
    [52] Stein M, Hirshberg A. Medical consequences of terrorism: the conventional weaponthreat[J]. Surg Clin North Am,1999,79(6):1537-1552.
    [53] Halpern P, Tsai MC, Arnold JL, et al. Mass-casualty, terrorist bombings: implicationsfor emergency department and hospital emergency response[J]. Prehospital Disaster Med,2003,18(3):235-241.
    [54] Ho AM, Ling E. Systemic air embolism after lung trauma[J]. Anesthesiology,1999,90(2):564-575.
    [55]孙曙光,王良喜,孙建忠,等.烧冲复合伤临床特征和救治[J].天津医学,2009,37(4):323-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700