用户名: 密码: 验证码:
儿童哮喘病情及预后评估的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:支气管哮喘作为一种常见疾病,在儿童期间发病率在世界范围内有逐渐上升的趋势。儿童哮喘与成人哮喘具有同样的病理生理基础,但由于儿童处于生长发育阶段,因此具有其自身的特点。小儿气道炎症也会随年龄增长而发生变化,最终约2/3患儿疾病自然缓解、症状消失,另外1/3左右患儿病情持续、发展为成人哮喘。儿童哮喘这种随年龄变化而呈现的不同自然病程及预后转归现象目前都还没有合理的解释,其自然病程演变规律及机制还不清楚,然而疾病的自限性和进展性的差异提示它们存在本质上的不同。目前,临床上通常以临床症状、肺功能及治疗效果来衡量哮喘轻重及控制情况,但绝大多数稳定期哮喘患儿肺功能正常。研究表明即使部分患儿肺功能正常,其仍持续存在小气道慢性炎症,而该种慢性炎症的持续存在是导致儿童哮喘反复发作和病情进展导致控制不良的基础。因而肺功能是评估儿童哮喘病情不够敏感的指标。早期明确哮喘患儿病情严重程度及其转归方向对指导儿童哮喘治疗和减轻家长及患儿心理负担有重要意义。但目前临床上缺乏能够准确评估哮喘病情及预后的客观指标,更缺少针对儿童哮喘病情及预后评估的前瞻性的研究。疾病相关的生物靶标(biomarker)可提示疾病相关信息,可用于疾病的辅助诊断、病情进展的监测和预后及疾病的预防。目前关于儿童哮喘的生物靶标研究还很局限,因此,急需新兴的生物靶标来辅助客观地评估儿童哮喘。蛋白质组学的出现,为哮喘生物靶标的筛选提供了新的希望。采用蛋白质组学方法筛选疾病相关的蛋白靶标,可发现疾病相关的系列蛋白靶标及潜在药物靶标,还可发现目前没有同疾病相关联的新蛋白。
     目的:筛选潜在用于评估儿童哮喘病情及预后的蛋白靶标。
     方法:通过使用二维差异凝胶电泳技术(two dimensional differential in-gelelectrophoresis,2D-DIGE),分离及筛选不同轻重程度稳定期哮喘儿童(根据GINA方案,间歇发作、轻度持续、中度持续、重度持续组)及健康儿童血浆蛋白,进一步经基质辅助激光解吸/电离-飞行时间质谱(matrix-assisted laser desorption/ionization-time offlight-mass spectrometry,MALDITOF/TOF MS)鉴定,然后经ELISA方法进行另一扩大人群临床验证试验,明确各蛋白靶标在病情轻重不同组别的分布规律,筛选评估儿童哮喘病情轻重的蛋白靶标(候选蛋白靶标多组间比较统计分析采用单因素方差分析);同时对哮喘儿童进行为期3年的队列研究,根据其转归情况(完全缓解、好转、持续、进展),再次行血ELISA靶标检测,分别分析入组初及3年随访后的个体候选靶标表达水平及其随访前后的蛋白靶标水平的差值,分别按照转归分组进行多组间比较的单因素方差分析,筛选评估儿童哮喘预后的蛋白靶标。
     结果:通过蛋白质组学分析,组间共筛选出36个差异蛋白(p<0.05),20个蛋白点经质谱鉴定,代表了8种蛋白(同种蛋白由于同型异构体的分子量或等电点的不同可出现在凝胶的不同位置),其中4个蛋白靶标经扩大人群ELISA试验验证,在组间差别有统计学意义,分别为抗凝血酶III (antithrombin-III, AT-III)、 α2巨球蛋白(alpha2-macroglobulin,A2M)、CD5L(CD5antigen-like, CD5L)、补体C3(Complement3,C3)。在稳定期儿童哮喘与对照组间比较,AT-III在哮喘组表达明显高于对照组(p<0.01);C3、A2M在对照组高于哮喘组(p<0.05);在稳定期哮喘组内比较差异有显著性,AT-III随病情加重表达有升高趋势(ANOVAp<0.05),CD5L、A2M随病情加重表达有逐渐下降的趋势(ANOVA,p<0.05, p<0.01),其中AT-III与A2M呈负相关(r=-0.259,p<0.05),与CD5L呈负相关(r=-0.276,p<0.05),与FEV1%/FVC%呈负相关(-0.362,p<0.05);CD5L与A2M之间呈正相关(r=0.303, p<0.01),与FEV1%/FVC%呈正相关(r=0.264,p<0.05)。队列研究中(3年随访前后)各转归组间比较,CD5L表达在入组时(CD5L前)各转归组间分布差别有显著性(p<0.05),随转归加重其表达下降。在随访结束时(CD5L后)其表达在各转归组间分布差别有显著性(p<0.01),随转归加重其表达下降。CD5L差值(CD5后-CD5前)在各转归组间分布差别有显著性(p<0.05),在加重及持续组其差值下降高于健康对照;AT-III前及AT-III后在各转归组间分布差别无显著性,但其表达随转归加重由升高趋势。AT-III差值在各转归组间分布差别有显著性(p<0.05),在好转组其差值降低高于持续、加重组及健康对照组;A2M前在各转归组间分布差别有显著性(p<0.05),健康对照组与完全缓解组及加重组间存在差异,A2M后在各转归组间分布差别无显著性,A2M前及A2M后其表达随转归变化无明显趋势。A2M差值在各转归组间分布差别无显著性;补体C3前、补体C3后及补体C3差值在各转归组间分布差别皆无显著性,其随转归变化无明显趋势。
     结论:本研究通过蛋白质组学方法发现了儿童哮喘评估病情及预后的相关系列蛋白靶标。AT-III、A2M、补体C3可辅助诊断儿童哮喘;AT-III、A2M、CD5L与儿童哮喘疾病严重相关,AT-III、CD5L与儿童哮喘预后转归相关。血浆蛋白靶标AT-III、A2M、CD5L、补体C3有望作为辅助儿童哮喘诊断及评估疾病严重程度及预后的有力工具。
Background: Bronchial asthma is a common disease in children, due to multiplefactors, the incidence of the disease grow higher than ever. Childhood asthma has a naturalhistory different from that of adult asthma. Symptoms of2/3asthma children will disappearwhen they reach adult age, while another1/3will continue and finally develop adult asthma.This phenomenon implies that there must be some underlying mechanisms in it; Besidesthat, Clinically we evaluate asthma disease severity and control condition by clinicalmanifestations and lung function tests, but most of their lung function tests show normalwhile the bronchial inflammations are still there or progressing. Evaluating the severity andprognosis of childhood asthma is important to the clinical management of the disease andunderstanding the pathogenesis of it, also help to relieve the parents’ anxiety about thefuture of their children’s disease. Currently we lack reliable tests that are sensitive andobjective in evaluating childhood asthma, and prospective studies in this field are needed.Disease related biomarkers can help to diagnose and evaluate diseases objectively. Proteomicmethods can help to find series of disease related biomarkers, even to find novel biomarkerswhich never be connected with the disease.
     Objective: We want to use proteomic methods to find childhood asthma relatedbiomarkers.
     Methods: Two dimensional differential gel electrophoresis techniques (2D–DIGE)were used upon plasma samples of stable asthmatic children (intermittent, mild persist,moderate persist, severe persist, subgrouped according to GINA) and healthy controls toseparate and screen for differential expression of proteins. The candidate proteins wereidentified by Matrix-Assisted Laser Desorption/Ionization Time of Flight MassSpectrometry (MALDI TOF/TOF MS). Then were validated by ELISA in another largerpediatric population to evaluate candidate protein markers associated with disease severity; These candidate markers then have been further validated by ELISA in a large population. Inthis longitudinal cohort study we conducted a3years follow up trial with various groups inview of clarifying the disease association with childhood asthma prognosis.
     Results: By comparing protein levels in the plasma samples of asthmatic and healthycontrols using proteomic techniques,36protein markers were found differentially expressed(p<0.05) between4asthmatic and healthy control groups,20proteins were identified byMass Spectrometry which represent set of8proteins. Further validation of these proteins in aseparate large clinical group was preformed. We found that a panel of four biomarkers(antithrombin–III (AT–III), alpha2-macroglobulin(A2M), CD5antigen-like(CD5L), Com-plement3(C3)) consistently showed significantly differential expressions between differentasthmatic groups and healthy control group. AT-III, C3, A2M were differentially expressedbetween asthmatic and healthy control group (p<0.05); among the different asthmaticgroups, A-TIII expressions showed a trend of gradually raising up with asthmatic diseaseseverity (ANOVA p<0.05), A2M and CD5L expressions showed reversed trends with thedisease severity (ANOVA,p<0.05, p<0.01). it was demonstrated that AT-III had a negativecorrelations with A2M (r=-0.259, p<0.05), CD5L(r=-0.276,p<0.05), and FEV1%/FVC%(r=-0.362, p<0.05), respectively; similarly, CD5L had a positive correlations with A2M(r=0.303, p<0.01) and FEV1%/FVC%(r=0.264,p<0.05), respectively. Among differentprognostic groups, A-TIII expressions showed a trend of raising up with asthmaticprognostic severity, CD5L showed reversed trend with asthmatic prognostic severity. A2Mand C3showed no obvious trend with asthmatic prognostic severity.
     Conclusions: Our study demonstrated that proteomics is a useful method in identifyasthma related novel biomarkers. The result showed that a panel of four biomarkers (CD5L,AT-III, A2M, and C3) seems to relate closely with childhood asthma disease severity andprognosis. The combination of the biomarkers can be a powerful tool in evaluating andmonitoring childhood asthma progress. The biomarkers may also underpin the diseasemechanism which warrant further exploration in understanding asthma pathogenesis.Now we lack specific indexes to evaluate childhood asthma, plasma biomarkers are a goodchoice to reflect the disease condition of childhood asthma, especially for the childhood population who are difficult to go through invasive examinations.
引文
[1] Anderson HR. Prevalence of asthma[J]. BMJ,2005,330(7499):1037-1038.
    [2]全国儿科哮喘协作组.中国城市儿童哮喘患病率调查[J].中华儿科杂志,2003,41:123-127.
    [3] Liu CH, Shao MJ, Chen YZ,et al. Epidemiological survey ofchildren asthma prevalenceinBeijing urban area[J].Zhonghua Yi Xue Za Zhi,2013,93(8):574-578.
    [4]Asher MI, Montefort S, Bj rkstén B, et al.Worldwide time trends in the prevalence ofsymptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAACPhases One and Three repeat multicountry cross-sectional surveys[J].Lancet,2006,368(9537):733-743.
    [5]Zobeiri M. Prevalence, risk factors and severity of asthma symptoms in children ofKermanshah[J].Acta Med Iran,2011,49(3):184-188.
    [6]Valet RS, Gebretsadik T, Carroll KN,et al. High asthma prevalence and increasedmorbidity among rural children in a Medicaid cohort[J].Ann Allergy AsthmaImmunol,2011,106(6):467-473.
    [7] Wang HY, Pizzichini MM, Becker AB, et al. Disparate geographic prevalences of asthma,allergic rhinoconjunctivitis and atopic eczema among adolescents in five Canadiancities[J]. Pediatr Allergy Immunol,2010,21(5):867-877.
    [8]陈育智.儿童哮喘防治近况[J].华中医学杂志,2006,30(4):269-270.
    [9] Fletcher JM, Green JC, Neidell MJ. Long term effects of childhood asthma on adulthealth[J]. J Health Econ,2010,29(3):377-387.
    [10]Gomu ka K, Szczepaniak W. Problem of depression in patients withbronchial asthma[J].Pneumonol Alergol Pol,2012,80(4):317-322.
    [11]Murdock KK, Greene C, Adams SK, et al.The puzzle of problem-solving efficacy:understanding anxiety among urban children coping with asthma-related and lifestress[J].Anxiety Stress Coping,2010,23(4):383-398.
    [12]Le o LL, Zhang L, Sousa PL, Mendoza-Sassi R, et al. High prevalence of depressionamongst mothers of children with asthma[J]. J Asthma,2009,46(4):388-391.
    [13] Kraft M, Djukanovic R, Wilson S, et al. Alveolar tissue inflammation in asthma[J]. Am JRespir Crit Care Med,1996,154:1505-1510.
    [14] Sutherland ER, Martin RJ, Bowler RP, et al. Physiologic correlates of distal lunginflammation in asthma[J]. J Allergy Clin Immunol,2004,113:1046-1050.
    [15] Kraft M, Martin RJ, Wilson S, et al. Lymphocyte and eosinophil influx into alveolartissue in nocturnal asthma[J]. Am J Respir Crit Care Med,1999,159:228–234.
    [16] Russell G. Asthma in the transition from childhood to adulthood[J]. Thorax,2002,57(2):96-97.
    [17] Mandhane PJ, Greene JM, Cowan JO, et al. Sex differences in factors associated withchildhood and adolescent-onset wheeze[J]. Am J Respir Crit CareMed,2005,172(1):45-54.
    [18] Sears MR. Evolution of asthma through childhood[J]. Clin Exp Allergy,1998,28Suppl5:82-9.
    [19]Bisgaard H, B nnelykke K. Long-term studies of the natural historyof asthma in childhood[J]. J Allergy Clin Immunol,2010,126(2):187-197.
    [20] Gerritsen J. Follow up studies of asthma from childhood to adulthood[J]. Peadiatr RespirRev,2002,3:184-192.
    [21] Jenkins HA, Cherniack R, Szefler SJ, et al. A comparison of the clinical characteristics ofchildren and adults with severe asthma[J]. Chest,2003,124:1318-1324.
    [22]王好典,陈慧中,张霆,等.356例儿童支气管哮喘5年随访观察[J].临床儿科杂志,2009,27(3):271-273.
    [23]Vonk JM,Boezen HM. Predicting adult asthma in childhood[J].Curr Opin PulmMed,2006,12(1):42-47.
    [24] Valerio MA, Andreski PM, Schoeni RF, et al. Examining the association betweenchildhood asthma and parent and grandparent asthma status:Implications for Practice[J].Clin Pediatr,2010,49(6):535-541.
    [25] Hancox RJ, Subbarao P, Sears MR. Relevance of birth cohorts to assessment of asthmapersistence[J]. Curr Allergy Asthma Rep,2012,12(3):175-184.
    [26]Bisgaard H, B nnelykke K. Long-term studies of the natural historyof asthma in childhood[J]. J Allergy Clin Immunol,2010,126(2):187-197.
    [27] Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints:preferred definitions and conceptual framework[J]. Clin Pharmacol Ther,2001,69:89-95.
    [28]Glen L. Hortin,Steven A. Carr, N. Leigh Anderson. Introduction: Advances in ProteinAnalysis for the Clinical Laboratory[J]. Clin Chem,2010,56(2):149-151.
    [29]N. Leigh Anderson. The Clinical Plasma Proteome: A Survey of Clinical Assays forProteins in Plasma and Serum[J]. Clinical Chemistry,2010,56(2):177-185.
    [30]Kasimir-Bauer S. Circulating tumor cells as markers for cancer risk assessment andtreatment monitoring[J]. Mol Diagn Ther,2009,13:209-215.
    [31]Tang H, Wu Z, Zhang J, Su B. Salivary lncRNA as a potential marker for oral squamouscell carcinomadiagnosis[J]. Mol Med Rep,2013,7(3):761-766.
    [32]Duman BB, Sahin B, Acikalin A, et al. PTEN, Akt, MAPK, p53and p95expression topredict trastuzumab resistance in HER2positive breast cancer[J]. JBUON,2013,18(1):44-50.
    [33]Omran OM. The prognostic value of breast cancer resistance protein (BCRB/ABCG2)expression in breast carcinomas[J]. J Environ Pathol Toxicol Oncol,2012,31(4):367-376.
    [34]Stanley J. Szefler, Sally Wenzel, et al. Asthma outcomes: Biomarkers[J]. J Allergy ClinImmunol,2012,129:S9-23.
    [35]Kulkarni N, Ragazzo V, Costella S, et al. Eosinophilic airway inflammation is increasedin children with asthma and food allergies[J].Pediatr Allergy Immunol,2012,23(1):28-33.
    [36]Razi E, Moosavi GA. Serum total IgE levels and total eosinophil counts: relationship withtreatment response in patients with acute asthma[J]. J Bras Pneumol,2010,36(1):23-28.
    [37]Lee YJ, Kim KW, Choi BS, et al. Clinical characteristics of eosinophilic andnoneosinophilic asthma in children[J]. Acta Paediatr,2013,102(1):53-57.
    [38]Volbeda F, Broekema M, Lodewijk ME,et al.Clinical control of asthma associates withmeasures of airway inflammation[J]. Thorax,2013,68(1):19-24.
    [39]Louis R, Lau L, Bron A, et al. The relationship between airways inflammation and asthmaseverity[J]. Am J Respir Crit Care Med,2000,161(1):9-16.
    [40]Martin N, Brightling CE, Pavord ID,et al. Eosinophils best marker of steroid response[J].Thorax,2011,66(8):730.
    [41]Mu oz X, Sanchez-Vidaurre S, Roca O, et al. Bronchial inflammation and hyperre-sponsiveness in well controlled asthma[J]. Clin Exp Allergy,2012,42(9):1321-1328.
    [42]Bakakos P, Schleich F, Alchanatis M, et al. Induced sputum in asthma: from bench tobedside[J]. Curr Med Chem,2011,18(10):1415-1422.
    [43]Stewart L, Katial RK. Exhaled nitric oxide[J]. Immunol Allergy Clin NorthAm,2012,32(3):347-362.
    [44]American Thoracic Society; European Respiratory Society. ATS/ERS recommendationsfor standardized procedures for the online and offline measurement of ex-haled lowerrespiratory nitric oxide and nasal nitric oxide[J]. Am J Respir Crit Care Med,2005,171(8):912-930.
    [45]Dweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline:interpretation of exhaled nitric oxidelevels (FENO) for clinical applications[J]. Am JRespir Crit Care Med,2011,184(5):602-615.
    [46]Anderson WJ, Short PM, Williamson PA, et al. Inhaled corticosteroid dose response usingdomiciliary exhaled nitric oxide in persistent asthma: the FENO type trial[J]. Chest,2012,142(6):1553-1561.
    [47]Gratziou C, Lignos M, Dassiou M, et al. Influence of atopy on exhaled nitric oxide inpatients with stable asthma and rhinitis[J]. Eur Respir J,1999,14(4):897-901.
    [48]Ho LP, Wood FT, Robson A, et al. Atopy influences exhaled nitric oxide levels in adultasthmatics[J]. Chest,2000,118(5):1327-1331.
    [49]Rabinovitch N. Urinary leukotriene E4as a biomarker of exposure, susceptibility and riskin asthma[J]. Immunol Allergy Clin North Am,2012,32(3):433-445.
    [50]He MJ, Chen Q, Liu JM. Urinary leukotrience E(4) level in children with asthma[J].Zhongguo Dang Dai Er Ke Za Zhi,2009,11(11):909-912.
    [51] Micheletto C, Visconti M, Tognella S, et al. Aspirin induced asthma (AIA) with nasalpolyps has the highest basal LTE4excretion: a study vs AIA without polyps, mild topicasthma, and normal controls[J]. Eur Ann Allergy Clin Immunol,2006,38(1):20-23.
    [52] Strunk RC, Szefler SJ, Phillips BR, et al. Relationship of exhaled nitric oxide to clinicaland inflammatory markers of persistent asthma in children[J]. J Allergy Clin Immunol,2003,112(5):883-892.
    [53]Lee CG, Dela Cruz CS, Herzog E,et al, YKL-40, a chitinase-like protein at theintersection of inflammation and remodeling[J]. Am J Respir Crit CareMed,2012,185(7):692-694.
    [54]Bara I, Ozier A, Girodet PO,et al, Role of YKL-40in bronchial smooth muscleremodeling in asthma[J]. Am J Respir Crit Care Med,2012,185(7):715-722.
    [55]Wood LG, Garg ML, Simpson JL, et al. Induced sputum8-isoprostane concentrations ininflammatory airway diseases[J]. Am J Respir Crit Care Med,2005,171(5):426-430.
    [56]Caballero Balanzá S, Martorell Aragonés A, Cerdá Mir JC, et al, Leukotriene B4and8-isoprostane in exhaled breath condensate of children with episodic andpersistent asthma[J]. J Investig Allergol Clin Immunol,2010,20(3):237-243.
    [57]Park CS, Rhim T. Application of proteomics in asthma research[J]. Expert RevProteomics,2011,8(2):221-230.
    [58]Wilkins M R.Government backs proteome Proposal[J].Nature,1995,378(6558):653.
    [59]Chung L, Baxter RC. Breast cancer biomarkers: proteomic discovery and translation toclinically relevant assays[J]. Expert Rev Proteomics,2012,9(6):599-614.
    [60]Brinton LT, Brentnall TA, Smith JA,et al, Metastatic biomarker discoverythrough proteomics[J]. Cancer Genomics Proteomics,2012,9(6):345-355.
    [61]Napoli C, Zullo A, Picascia A, et al, Recent advances in proteomic technologies appliedto cardiovascular disease[J]. J Cell Biochem,2013,114(1):7-20.
    [62]Yilmaz Y. Serum proteomics for biomarker discovery in nonalcoholic fatty liver Disease[J].Clin Chim Acta,2012,413(15-16):1190-1193.
    [63]Hu WT, Holtzman DM, Fagan AM, et al,Plasma multianalyte profiling in mild cognitiveimpairment and Alzheimerdisease[J]. Neurology,2012,79(9):897-905.
    [64]Kikuchi T, Hassanein M, Amann JM, et al, In-depth proteomic analysis of nonsmallcell lung cancer to discover molecular targets and candidate biomarkers[J]. MolCell Proteomics,2012,11(10):916-932.
    [65]Hassanein M, Callison J C,allaway-Lane C, et al. The state of molecular biomarkers forthe early detection of lung cancer[J].Cancer Prev Res,2012,5(8):992-1006.
    [66]Casado B, Luisetti M, Iadarola P. Advances in proteomic techniques for biomarkerdiscovery in COPD[J]. Expert Rev Clin Immunol,2011,7(1):111-123.
    [67]Jurisicova A, Jurisica I, Kislinger T. Advances in ovarian cancer proteomics: the quest forbiomarkers and improved therapeutic interventions[J].Expert RevProteomics,2008,5:551-560.
    [68] Jeong H, Rhim T, Ahn MH et al. Proteomic analysis of differently expressed proteins in amouse model for allergic asthma[J]. J Korean Med Sci,2005,20:579-585.
    [69]Zhao J, Zhu H, Wong CH, et al. Increased lungkine and chitinase levels in allergic airwayinflammation: aproteomics approach[J]. Proteomics,2005,5(11):2799-2807.
    [70]Roh GS, Shin Y, Seo S W, et al. Proteome analysis of differential protein expression inallergen-induced asthmatic mice lung after dexamethasone treatment[J]. Proteomics,2004,4:3318-3327.
    [71]Zhao J, Yeong LH, Wong WS. Dexamethasone alters bronchoalveolar lavage fluidproteome in a mouse asthma model[J]. Int Arch Allergy Immunol,2007,142:219-229.
    [72]Ghosh S, Janocha AJ, Aronica MA, et al. Nitrotyrosine proteome survey in asthmaidentifies oxidative mechanism of catalase inactivation[J]. J Immunol,2006,176:5587-5597.
    [73]Lotvall J, Akdis CA, Bacharier LB, et al. Asthma endotypes: a new approach toclassification of disease entities within the asthma syndrome[J]. J allergy ClinImmunol,2011,127:355-360.
    [74]Lindahl M, Stahlbom B, Tagesson C. Newly identified proteins in human nasal andbronchoalveolar lavage fluids: potential biomedical and clinical applications[J].Electrophorresis,1999,20(18):3670-3676.
    [75]Yang-ching KO, Wu-Huei Hsu et al. Proteomic analysis of CD4+T lymphocytes inpatients with asthma between typical theraphy and no typical theraphy[J]. Hum. ExpToxicol,2011,30:541-549.
    [76]Gray RD, Mac Gregor G, Noble D et al. Sputum proteomics ininflammatory andsuppurative respiratory diseases[J]. Am J Respir Crit Care Med,2008,178:444-452.
    [77]Sina A. Gharib et al. Induced sputum proteome in healthy subjects and asthmaticpatients[J]. J. Allergy Clin. Immunol,2011,128(6):1176-1184.
    [78]Verrills NM, Irwin JA, He XY,et al. Identification of Novel Diagnostic Biomarkers forAsthma and Chronic Obstructive Pulmonary Disease[J]. Am J Rsepir Crit Care Med,2011,183(12):1633-1643.
    [79]Lee SH, Rhim T, Choi YS, et al. Complement C3a and C4a increased in plasma ofpatients with aspirin-induced asthma[J]. Am J Respir Crit Care Med,2006,173(4),370-378.
    [80]Z. Diamanta, J.D. Boot, E. Mantzouranis, et al. Biomarkers in asthma and allergicrhinitis[J]. Pulmonary Phar Ther,2010,23:468-481.
    [81]Tirumalai RS, Chan KC, Prieto DA, et al. Characterization of the low molecular weighthuman serum proteome[J].Mol Cell Proteomics,2003,2(10):1096-1103.
    [82]Orvisky E, Drake SK, Martin BM, et al. Enrichment of low molecular weight fraction ofserum for MS analysis of peptides associated with hepatocellularcarcinoma[J].Proteomics,2006,6(9):2895-2902.
    [83]Hood BL, Lucas DA, Kim G, et al. Quantitative analysis of the low molecular weightserum proteome using18O stable isotope labeling in a lung tumor xenograft mousemodel[J].J Am Soc Mass Spectrom,2005,16(8):1221-1230.
    [84]Travis J, Bowen J, Tewksbury D,et al. Isolation of albumin from whole human plasmaand fractionation of albumin-depleted plasma[J].Biochem J,1976,157(2):301-306.
    [85]Warder SE, Tucker LA, Strelitzer TJ, et al. Reducing agent-mediated precipitation ofhigh-abundance plasma proteins[J]. Anal Biochem,2009,387(2):184-193.
    [86]Venkiteshwaran A, Heider P, Teysseyre L. Selective precipitation-assisted recovery ofimmunoglobulins from bovine serumusing controlled-fouling crossflow membranemicrofiltration[J]. Biotechnol Bioeng,2008,101(5):957-966.
    [87]Chen YY, Lin SY, Yeh YY, et al. A modified protein precipitation procedure for efficientremoval of albumin from serum[J]. Electrophoresis,2005,26(11):2117-2127.
    [88]Fu Q, Garnham CP, Elliott ST, et al. A robust, streamlined, and reproducible method forproteomic analysis of serum by delipidation, albumin and IgG depletion, andtwo-dimensional gel electrophoresis[J]. Proteomics,2005,5(10):2656-2664.
    [89]Mortezai N, Wagener C, Buck F. Combining lectin affinity chromatography andimmunodepletion-A novel method for the enrichment of disease-specific glycoproteinsin human plasma[J]. Methods,2012,56(2):254-259.
    [90]Mortezai N, Harder S, Schnabel C. Tandem affinity depletion: a combination of affinityfractionation andimmunoaffinity depletion allows the detection of low-abundancecomponents in the complex proteomes of body fluids[J]. J ProteomeRes,2010,9(12):6126-6134.
    [91]Roche S, Tiers L, Provansal M, et al. Depletion of one, six, twelve or twenty major bloodproteins before proteomic analysis: the more the better[J]?J Proteomics,2009,72(6):945-951.
    [92]Veronika P,Amit K,Alamgir K, et al. High-abundance protein depletion: Comparison ofmethods for human plasma biomarker discovery[J]. Electrophoresis,2010,31:471-482.
    [93]Wilkins M R,Sanchez J C,Gooley A A,et al. Progress with proteomeprojects:why allproteins expressed by a genome should be identified andhow to do it[J]. Biotechnol GenetEng Rev,1996,13:19-50.
    [94]Wilkins M R.Government backs proteome Proposal[J].Nature,1995,378(6558):653.
    [95]Bjellqvist B, Ek K, Righetti PG, et al. Isoelectric focusing in immobilized pH gradients:principle, methodology and some applications[J]. J Biochem Biophys Methods,1982,6(4):317-339.
    [96]Griffin TJ, Aebersold R. Advances in Proteome Analysis by Mass Spectrometry[J]. J BiolChem,2001,76:45497–45500.
    [97]Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis. A single gel method fordetecting changes in protein extracts[J]. Electrophoresis,1997,18:2071–2077.
    [98]Sapra R. The use of difference in-gel electrophoresis for quantitation of proteinexpression[J]. Methods Mol Biol,2009,492:93-112.
    [99]Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescencetwo-dimensional differential gel electrophoresis proteomics technology[J]. Proteomics,2001,1:377–381.
    [100]Liu J, Liu Y, Gao M, et al. An accurate proteomic quantification method: Fluorescencelabeling absolute quantification (FLAQ) using multidimensional liquid chromatographyand tandem mass spectrometry[J]. Proteomics,2012,12(14):2258-2270.
    [101]钱小红,贺福初.蛋白质组学理论与方法[M].北京:科学出版社,2003,343.
    [102]Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome bymultidimensional protein identification technology[J]. Nat Biotechnol,2001,19(3):242-247.
    [103]Medzihradszky KF, Campbell JM, Baldwin MA, et al. The characteristics of peptidecollision-induced dissociation using a high-performance MALDI-TOF/TOF tandemmass spectrometer[J]. Anal Chem,2000,72(3):552-558.
    [104]Shevchenko A, Loboda A, Shevchenko A. MALDI quadrupole time-of-flight mass Spec-trometry: a powerful tool for proteomic research[J]. Anal Chem,2000,72(9):2132-2141.
    [105]Rampitsch C, Bykova NV. Methods for functional proteomic analyses[J]. Methods MolBiol,2009,513:93-110.
    [106]UniProt Consortium. The Universal Protein Resource (UniProt) in2010[J]. NucleicAcids Res,2010,38:D142-8.
    [107]Lane L, Argoud-Puy G, Britan A. neXtProt: a knowledge platform for human proteins[J].Nucleic Acids Res,2012,40:D76-83.
    [108]刘莹.氧化应激对内皮祖细胞作用的蛋白质组学分析[D].吉林:吉林大学博士学位论文,2012.
    [109]Leitner JM, Firbas C, May FB, et al. Recombinant human antithrombin inhibitsthrombin formation and interleukin6release in human endotoxemia [J]. Clin PharmacolTher,2006,79(1):23-34.
    [110]Kawada H, Katsura H, Kamimura M, et al. Coagulation activity in the airways ofasthmatic patients[J]. Nihon Kokyuki Gakkai Zasshi,2003,41(9):620-625.
    [111]Marc MM, Korosec P, Kosnik M, et al. Complement factors c3a, c4a, and c5a in chronicobstructive pulmonary disease and asthma[J]. Am J Respir Cell Mol Biol,2004,31(2):216-219.
    [112]Tan JY, Li FX, Wu D, et al. Association of the C3gene polymorphisms withsusceptibility to adult asthma[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2011,28(2):204-207.
    [113]Mizutani N, Nabe T, Yoshino S. Complement C3a regulates late asthmatic response andairway hyperresponsiveness in mice[J]. J Immunol,2009,183(6):4039-4046.
    [114]Nakano Y, Morita S, Kawamoto A, et al. Elevated complement C3a in plasma frompatients with severe acute asthma[J]. J Allergy Clin Immunol,2003,112(3):525-530.
    [115]Mosca T, Menezes MC, Dionigi PC, et al. C3and C4complement system componentsas biomarkers in the intermittent atopic asthma diagnosis[J]. J Pediatr (RioJ),2011,87(6):512-516.
    [116]Abdel Fattah M, El Baz M, Sherif A.Complement components (C3, C4) as inflammatorymarkers in asthma[J]. Indian J Pediatr,2010,77(7):771-773.
    [117]Kurdowska A, Alden SM, Noble JM, et al. Involvement of a2-macroglobulin receptor inclearance of interleukin-8a2-macroglobulin complexes by human alveolarmacrophages[J]. Cytokine,2000,12:1046-1053.
    [118]Schoonbrood DF, Lutter R, Habets FJ,et al. Analysis of plasma-protein leakage and localsecretion in sputum from patients with asthma and chronic obstructive pulmonarydisease[J]. Am J Respir Crit Care Med,1994,150(6):1519–1527.
    [119]Sarrias MR, Roselló S, Sánchez-Barbero F, et al. A Role for Human SP as a Patternrecognition receptor[J].J Biol Chem,2005,280(42):35391–35398.
    [120]Haruta I, Kato Y, Hashimoto E, et al. Association of AIM, a novel apoptosis inhibitoryfactor, with hepatitis via supporting macrophage survival and enhancing phagocytoticfunction of macrophages[J]. J Biol Chem,2001,276(25):22910-22914.
    [121]Kuwata K, Watanabe H, Jiang SY, et al. AIM inhibits apoptosis of T cells and NKT cellsin Coryne bacterium-induced granuloma formation in mice[J]. Am J Pathol,2003,162(3):837-847.
    [122]Kim WK, Hwang HR, Kim do H, Lee PY,et al.Glycoproteomic analysis of plasma frompatients with atopic dermatitis: CD5L and ApoE as potential biomarkers[J]. Exp MolMed,2008,40(6):677-685.
    [123]Lian X, Yan C, Qin Y, et al. Neutral lipids and peroxisome proliferator-activatedreceptor-{gamma} control pulmonary gene expression and inflammation-triggeredpathogenesis in lysosomal acid lipase knockout mice[J]. Am J Pathol,2005,67(3):813-821.
    [124]Li Y, Qu P, Wu L, et al. Api6/AIM/Spa/CD5L Overexpression in Alveolar Type IIEpithelial Cells Induces Spontaneous Lung Adenocarcinoma[J]. Cancer Res,2011,71(16):5488-5499.
    [125]Liu YP, Hu SW, Wu ZF, et al. Proteomic analysis of human serum from diabeticretinopathy[J]. Int J Ophthalmol,2011,4:616–622.
    [126]Lindstr m I, Suojalehto H, Lindholm H, et al. Positive exercise test and obstructivespirometry in young male conscripts associated with persistent asthma20years later[J].J Asthma,2012,49(10):1051-1059.
    [127]Anderson NL, Anderson NG..The human plasma proteome:history,character, anddiagnostic prospects[J].Mol Cell Proteomics,2002,1(11):845-867.
    [128]Berna M, Ackermann B. Increased throughput for low-abundance protein biomarkerverification by liquid chromatography/tandem mass spectrometry[J].AnalChem,2009,81(10):3950-3956.
    [129]Goodsaid F, Frueh F. Biomarker qualification pilot process at the US Food and DrugAdministration[J].AAPS J,2007,9(1):E105-108.
    [130]Palmblad M, Tiss A, Cramer R. Mass spectrometry in clinical proteomics-from thepresent to the future[J].Proteomics Clin Appl,2009,3(1):6-17.
    [131]Paulovich AG, Whiteaker JR, Hoofnagle AN, et al. The interface between biomarkerdiscovery and clinical validation: The tar pit of the protein biomarker pipeline[J].Proteomics Clin Appl,2008,2(10-11):1386-1402.
    [132]Simpson KL, Whetton AD, Dive C. Quantitative mass spectrometry-based techniquesfor clinical use: biomarker identification and quantification[J].J Chromatogr B AnalytTechnol Biomed Life Sci,2009,877(13):1240-1249.
    [133]Anderson NL.The clinical plasma proteome: a survey of clinical assays for proteins inplasma and serum[J]. Clin Chem,2010,56(2):177-185.
    [134]Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation:the long anduncertain path to clinical utility[J].Nat Biotechnol,2006,24:971–983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700