用户名: 密码: 验证码:
入侵粉虱热激蛋白基因表达与功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级害虫烟粉虱的全球广泛入侵,引起了人们对粉虱入侵机制的理论探讨。目前的研究发现,B型烟粉虱和土著烟粉虱之间存在的“非对称交配互作”,是B型烟粉虱广泛入侵并取代土著烟粉虱的一个重要行为机制; B型烟粉虱的寄主范围远比土著烟粉虱广泛也被认为是B型烟粉虱入侵及取代的机制之一;B型烟粉虱与植物的双生病毒互利共生加剧入侵。浙江1型(ZHJ1)等本地生物型,是本地长期存在的物种,但在B型、Q型烟粉虱入侵本地之前,并没有本地生物型烟粉虱严重危害和广泛分布的报道,在B型、Q型烟粉虱入侵之后,又发现本地型正被入侵生物型取代。那么,在没有B型、Q型入侵之间,为什么本地生物型并没有大量扩张危害?入侵型和本地型存在哪些差异?
     本文从温度胁迫适应性差异的生态学现象出发,研究了不同生物型烟粉虱(B型、Q型、ZHJ1型和ZHJ2型)和温室白粉虱的3种hsp基因表达和温度胁迫耐受性的关系,并采用RNAi技术分别验证了温室白粉虱和B型烟粉虱3种hsp基因的功能,探讨从hsp表达和功能的差异来解释粉虱入侵粉虱温度的生态适应性差异,从温度适应性方面来揭示粉虱生物入侵扩展能力的差异。温室白粉虱和B型烟粉虱的hsp表达存在差异,温室白粉虱hsp基因开始诱导表达的温度Ton和表达量最高时的温度Tmax分别比B型烟粉虱低2~6℃。这与温室白粉虱低温耐受性强于B型烟粉虱,而B型烟粉虱有脚温室白粉虱耐高温胁迫的生态学现象相一致。全球广泛入侵的烟粉虱B型和Q型烟粉虱较土著种ZHJ1型烟粉虱具有较强的高低温胁迫耐受性,B型和Q型烟粉虱从高温胁迫存活率显著下降的温度到低温胁迫存活率显著下降的温度区间显著宽于ZHJ1型烟粉虱。B型和Q烟粉虱3中hsp基因开始诱导表达的温度Ton和表达量最高时的温度Tmax分别比ZHJ1型烟粉虱高2~4℃。另一本地烟粉虱生物型ZHJ2型,它的高温胁迫耐受性和ZHJ1没有显著差异,它的高温胁迫耐受性和hsp诱导表达的Ton和Tmax都比入侵生物型B型和Q型低2℃左右。温室白粉虱和B型烟粉虱的3中hsp的诱导表达机制和功能存在很大差异。B型烟粉虱的hsp70和hsp20低温不被诱导,hsp90的诱导量也非常低。但温室白粉虱低温诱导下3中hsp都能极显著的诱导表达。两种粉虱hsp90基因在高低温胁迫耐受性的作用不显著,hsp70和hsp20在两种粉虱的高温胁迫耐受性和温室白粉虱低温胁迫耐受性中起到关键作用,hsp70和hsp20对B型烟粉虱低温耐受性作用不显著。
     本研究试图构建这样的一个生物入侵机制的理论:烟粉虱的高温耐受性与其体内hsp表达相关;hsp表达差异可能促使入侵生物型有很强的高温逆境适应能力;hsp的表达较低可能是限制本地生物型高温增长的重要原因,从而限制其种群数量的扩增与分布的扩展。
Bemisia tabaci (Gennadius), called a“superbug”, has been reported to distribute over 90 countries in the world, the study of invasive mechanism has been aroused widely. Asymmetric mating interactions promote widespread invasion and displacement of indigenous B. tabaci population by the invasive biotype B. Mutualism between B. tabaci biotype B and begomoviruses via its host plants speed up widespread invasion. B. tabaci biotype B has a wide range of host plants make its invasion into new environmental location successful. Bemisia tabaci was found in China in 1949 and was not considered an important pest until the recent invasion of B. tabaci biotype B and biotype Q, which has been found in most provinces of China and become a severe pest of numerous field and ornamental crops. Why the indigenous B. tabaci biotype ZHJ1 and ZHJ2 were not widespread in China? What different between the invasive biotype and indigenous biotype?
     Temperature is an important factor that determines the distribution and expansion of a species. Our work to study the relation between hsp espression level and differential thermotolerent abilities in invasive biotype (biotype B and biotype Q) and indigenous biotype (biotype ZHJ1 and biotype ZHJ2), RNAi study proved that hsp play key roles for thermotolerence in whiteflies.The hsp expression profile results showed that temperatures for onset (Ton) or maximal (Tmax) induction of hsp expression in T. vaporariorum were generally 2~6℃lower than those in B. tabaci biotype B. These results suggest that the Ton (or Tmax) of hsps can represent the differences in temperature tolerance of these two whitefly species, and may be used to determine their natural geographical distribution and natural population seasonal dynamics. Our work found that B. tabaci biotype B and biotype Q were more heat and cold resistant than biotype ZHJ1, the hsp expression inductively Ton or Tmax in B. tabaci invasive biotype (biotype B and biotype Q) were generally 2~4℃higher than those in indigenous biotype ZHJ1. Another indigenous B. tabaci biotype ZHJ2, Its thermotolerent abilities has not different with biotype ZHJ1, the hsp expression inductively Ton or Tmax in indigenous biotype ZHJ2 were generally 2℃lower than those in B. tabaci invasive biotype (biotype B and biotype Q). hsp23, hsp70 and hsp90 mRNA levels were significantly decreased in both T. vaporariorum and B. tabaci biotype B after injection of dsRNA for 24h.RNAi study proved that hsp23 and hsp70 play key roles for thermotolerence in T. vaporariorum but not in B. tabaci biotype B cold tolerence, and hsp90 showed no significant roles for thermotolerence in both whiteflies species.
     Our work try to establish a theory of invasive mechanism in B. tabaci, the higher hsp expression Ton or Tmax promote the invasive biotype thermotolerence, conduces to B. tabaci biotype B and biotype Q have a strong ability to stress environment, accelerated the population broadly distributed and amount increased.
引文
1. Aldo N. P., James R. W., Walton W. D. Sequence features and phylogenetic analysis of the stress protein Hsp90a in Chinook Salmon (Oncorhynchus tshaw-ytscha), a poikilothermic vertebrate. Biochemical and Biophysical Research communications,1999, 258:784-791.
    2. Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350~355.
    3. Anderson A. R., Collinge J. E., Hoffmann A. A., Kellett M., McKechnie S. W. Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster. Heredity, 2003, 90: 195-201.
    4. Banfield M. J., Salvucci M.E., Baker E.N., Smith C.A. Crystal structure of the NADP(H)-dependent ketose reductase from Bemisia argentifolii. Journal of Molecular Biology, 2001, 306 (2): 239-50.
    5. Barinaga M. Is devastating whitefly invader really a new species? Science, 1993, 259 30.
    6. Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004, 116(2): 281~297.
    7. Baum J. A., Bogaert T., Clinton W., Heck G. R., Feldmann P., Ilagan O., Johnson S., Plaetinck G., Munyikwa T., Pleau M., Vaughn T., Roberts J. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007, 25: 1322-1326
    8. Beckmann R.P., Mizzen L. A., Welch W. J. Interaction of HSP70 with newly synthesized proteins: Implications for protein folding and assembly. Science, 1990, 248: 850-654.
    9. Bellows T.S, Perring T.M, Gill R.J, Headrick D.H. Description of a species of Bemisia (Homoptera: Aleyrodidae). Annals of the Entomol Society of America, 1994, 87: 195-206.
    10. Bentz J.A, Reeves J.I, Barbosa P, Francis B. Nitrogen fertilizer effect on selection, acceptance, and suitability of Euphorbia pulcherrima ( Euphorbiaceae ) as a host plant to Bemisia tabaci (Homoptera: Aleyrodidae). Environmental Entomology, 1995, 24 (1): 40-45.
    11. Berlinger M.J, Nina L.S, Taylor R.A.J. Survival of Bemisia tabaci adults under different climatic conditions. Entomologia Experimentalis et Applicata, 1996, 80 (3): 511-519.
    12. Berns K, Hijmans E.M., Mullenders J. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428(6981): 431~437.
    13. Berns K, Hijmans EM, Mullenders J, A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428(6981): 431~437.
    14. Bernstein E, Caudy A.A, Hammond S.M. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363~366.
    15. Berthou E. Food of introduced mosquitofish: ontogenetic diet shift and prey selection. Journal of Fish Biology 1999, 55: 135 -147.
    16. Bettencourt B.R., Kim I., Hoffmann A.A., Feder M.E., Response to natural and laboratory selectionat the Drosophila Hsp70 genes. Evolution, 2002, 56:1796-1801
    17. Bowler K. Cellular heat injury. Are membranes involved? In: Bowler K., Fuller B.J., eds. Temperature and animal cells. Society Experimental Biology Symposium 41, Cambridge, England, 1987, 157-185.
    18. Boykin L.M, Shatters R.C.S Rosell R.C., McKenzie C.L., Bagnall R.A., De Barro P.J, Frohlieh D.R. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondria) CO1 DNA sequence. Molecular Phylogenetics and Evolution, 2007, 44: 1306-1319.
    19. Bradshaw W.E, Holzapfel .CM. The evolution of genetic architectures nd the divergence of natural populations. Epistasis and the evolutionary press, 2000, 245-263.
    20. Brown J.K., Frohlich D.R., Rosell R.C. The sweetpotato or silverleaf whiteflies: biotype of Bemisia tabaci or a species complex? Annual Revie of Entomology, 1995. 40:511-534.
    21. Brown J.K., Frohlich D.R., Rosel R.C. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review Of Entomology, 1995, 40: 511-532.
    22. Brown P., Russell B. Weather data and on-line documentation. The Arizona Meteorological Network (AZMET) Computer Bulletin Board. The University Of Arizona Cooperative Extension Service, Tucson, AZ. 1987.
    23. Brummelkamp T.R., Bernards R., Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296(5567): 550~553.
    24. Bryant E.H., Meffert L.M. Nonadditive genetic structuring of morphometric variation in relation to a population bottleneck. Heredity, 1996, 77: 168-176.
    25. Bubliy O.A., Loeschcke V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evolution. Biol., 2005, 18, 789-803.
    26. Buckley B.A., Owen M.E., Hofmann G.E. Adjusting the thermostat: the threshold induction temperature for the heat shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J. Exp. Biol. 2001, 204, 3571-3579.
    27. Byers J.E., Go I..L. Exposing the mechanism and timing of impact of nonindigenous species on native species. Ecology, 2001, 82(5): 1330-1343.
    28. Carol E.L. Evolutionary genetics of invasive species. Trends in ecology & evolution, 2002, 8 (17): 386-391.
    29. Carper S.W., Duffy J.J., Gerner E.W. Heat shock proteins in thermotolerance and other cellular processes. Cancer Res, 1987, 47: 5249-5255.
    30. Carrol S.P., Dinngle H. The biology of post2invasion events. Biological Conservation, 1996, 78: 207-214.
    31. Carroll S.P., Dingle H, Famula T.H. Genetic architecture if adaptation differentiation in evolving host race of the soapberry bug Jadera haematoloma. Genetica,2001, 112:257-272.
    32. Catherine T., Florence D., Annie B. Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii. Molecular and BiochemicalParasitology, 2000, 111 (2):319-332.
    33. Chen C.P, Denlinger D.L., Lee R.E. J. Responses of nondiapa using fleshflies (Diptera: Sarcophagidae) to low rearing temperatures: development alrate, cold tolerance, and glycerol concentrations. Annals of the Entomological Society of America, 1987, 80: 790-796.
    34. Chen C.P., Denlinger D.L. Reduction of cold shock injury in flies using and intermittent pulse of high temperature. Cryobiology, 1992, 29: 138-143.
    35. Chen C.P., Lee R.E., Denlinger D.L. Cold shock and heat shock: acomparison of the protection generated by brief pretreatment at less severe temperatures. Physiological Entomology, 1991, 16: 19-26.
    36. Cheney C M; Shearn A. Developmental regulation of Drosophila imaginal disc proteins: synthesis of a heat shock protein under non-heat-shock conditions. Developmental biology, 1983; 95(2):325-30.
    37. Cheverud J.M., Routman E.J. Epistasis as a source of increased additive genetic variance at population bottlenecks. Evolution, 1996, 50: 1042 -1051.
    38. Chou I. Listo de la konataj Aleurodoj "Homoteroj" encinio. Entomologia Sinica, 1994, 93, 1-18.
    39. Christine Q, Todd A .S, Susan L. Hsp90 as a capacitor of phenotypic variation. Nature, 2002, 417 (6889): 598-599.
    40. Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek, 1994, 65(3): 205~209.
    41. Cohen A., Patana R. Ontogenetic and stress-related changes in hemolymph chemistry of beet armyworm. Comparative Biochemistry and Physiology - Part A, 1982, 71: 193-198.
    42. Corces V., Holmgren R., Freund R., Morimoto R., Meselson M. Four heat shock proteins of Drosophila me-Cell. Mol. Life Sci., 1980 64: 20-27.
    43. Costa H.S., Brown J.K., Sivasupramaniam S., Bird J. Regional distribution,insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Insect Science and its Application, 1993, 14: 255-266.
    44. Craig E.A., Ingolia T.D., Manseau L.J. Expression of Drosophila heatshock cognate genes during heat-shock and development. Dev. Bioi., 1983, 99: 418-426.
    45. Cui X., Wan F., Xie M., Liu T. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science, 2008, 8: 22-32.
    46. Cui X.H., Chen Y.H., Xie M., Wan F.H. Survival characteristics of Bemisia tabaci B.biotype and Trialeurode vaporariorum (Homoptera: Aleyrodidae) after exposure to adverse temperature conditions. Acta Entomologica Sinica, 2007, 50, 1232-1238.
    47. Cui X.H., Xie M., Wan F.H. Temperature on Survival and Fecundity of Two Whitefly Species: Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Scientia Agricultura Sinica, 2008, 41, 424-430.
    48. Daehler C., Strong D.R. Hybridization between introduced smooth cordgrass (Spartina alterniflora,Poaceae) and native California cordgrass (S. foliosa) in San. Francisco Bay, California, USA. Amer. J. Bot., 1997. 84(5): 607
    49. Dahlgaard J., Loeschcke V., Michalak P., Justesen J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct Ecol, 1998, 12:786-793.
    50. Dahlgaard J., Loescheke V., Michalak P., Justesen J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Functional Ecology, 1998, 12: 786-793.
    51. De Barro P.J, Bourne A., Khan S.A, Brancatini VAL. Host plant and biotype density interactions-their role in the establishment of the invasive B biotype of Bemisia tabaci. Biological Invasions, 2006, 8: 287-294.
    52. DeBarro P.J, Hart P.J. Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological Research, 2000, 90, 103-112.
    53. Denli A.M, Tops B.B, Plasterk R.H. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432(7014): 231~235.
    54. Denlinger D.L., Yocum G.D. Physiology of heat sensitivity.In:Hallman G.J, Denlinger D.L., eds. Temperature Sensitivity in Insects and Application in Integrated Pest Management, Oxford: Westview Press, 1998, 29.
    55. DiDomenico B.J, Bugaisky G.E, Lindquist S. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell, 1982, 31, 593-603.
    56. Downward J. RNA interference. BMJ, 2004, 328(7450): 1245~1248.
    57. Drost Y.C., van Lenteren J.C., van Roermund H.J.W. Life history parameters of different biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review. Bulletin of Entomological Research, 1998, 88: 219-229.
    58. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development, 2005, 132(21): 4645~4652.
    59. Dunbar HE, Wilson ACC, Ferguson R, Moran NA. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. Plos Biology, 2007, 5: 1006-1016.
    60. Ekengren S, Hultmark D. A family of Turandotrelatedgenes in humoral stress response of Drosophila. Biochemical and Biophysical Research Communications, 2001, 284: 998-1003.
    61. Elbashir SM, Harborth J, Lendeckel Wl. Duplexes of 21-nucleotide RNAs mediates RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494~498.
    62. Ellstrand NC, S chierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants. Proc. Natl. Acad. Sci. USA, 2000, 97: 7043-7050.
    63. Elton CS. The Ecology of Invasion by Animals and Plants. London: Methuen and Co Ltd, 1958.
    64. Evgen'ev M.B., Zatsepina O.G., Garbuz D., Lerman D.N., Velikodvorskaya V., Zelentsova E., Feder M.E. Evolution and arrangement of the Hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma, 2004, 113: 223-232.
    65. Feder JL, Smith MH, Chesser RK. Biochemical genetics of mosquitofish. II. Demographic differentiation of population in a thermally altered reservoir. Cop., 1984, 4: 108 - 109.
    66. Feder M.E., Krebs R.A. Ecological and evolutionary physiology of heat-shock proteins and the stress response in: complementary insights from genetic engineering and natural variation. In: Bijlsma R., Loeschcke V., eds. Environmental Stress, Adaptation and Evolution. Birkhauser Basel, 1997, 155-173.
    67. Feder ME, Hofmann GE. Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol, 1999, 61, 243-282.
    68. Feder ME, Krebs RA. Natural and genetic engineering of the heat-shock protein Hsp70 in Drosophila melanogaster: consequences for thermotolerance. American Zoologist, 1998, 38: 503-517.
    69. Fire A, Xu S, Montgomery MK. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806~811.
    70. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double stranded RNA in Caenorhabdits elegans. Nature, 1998, 391: 806-811.
    71. Flynn CR, Komalavilas P, Tessier D, Thresher J, Niederkofler EE, Dreiza CM, Nelson RW, Panitch A, Joshi L, Brophy CM. Transduction of biologically active motifs of the small heat shock-related protein HSP20 leads to relaxation of vascular smooth muscle. FASEB J., 2003, 17, 1358-1360.
    72. Fowler HW. Gam busia in New Jersey. Science, New Series, 1907, 26 (671): 639.
    73. Franck E, Madsen O, Van RT, Ricard G, Huynen MA, De JWW. Evolutionary diversity of vertebrate small heat shock proteins. J. Mol. Evol, 2004, 59, 792–805.
    74. Fran?oise A. Adjuvants for vaccines, a quest. International Immunopharmacology, 2003, 3 (8): 1187-1193.
    75. Garbuz D, Evgenev MB, Feder ME, Zatsepina OG. Evolution of the thermotolerance and heat-shock response: evidence from inter/intra-specific comparison and interspecific hybridization in the virilis species group of Drosophila. J. Exp. Biol, 2003, 206, 2392–2408.
    76. Ge Q, Filip L, Bai A. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci U S A, 2004, 101(23): 8676~8681.
    77. Gehring WJ, Werner R. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc. Natl. Acad. Sci. USA, 1995, 92, 2994-2998.
    78. Gething M J, Sambrook J. Protein folding in the cell. Nature, 1992, 355 (6355): 33-45.
    79. Ghanim M., Kontsedalov S., Czosnek H. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochemistry and Molecular Biology, 2007, 37: 732-738.
    80. Gibbs AG. Lipid melting and cuticular permeability: New insights into an old problem.Journal of Insect Physiology, 2002, 48(4): 391-400.
    81. Giraldez AJ, Cinalli RM, Glasner ME. MicroRNAs regulate brain morphogenesis in zebrafish. Science, 2005, 308(5723): 833~838.
    82. Goto M, Takahashi K, Suzuki C. Ecological st udy on t he barnyard grass stem borer, Enosima Leucotaeniella (Lepidoptera : Pyralidae)Ⅷ. Seasonal changes of carbohydrate content s in overwintering larvae. App. Entomol Zoo, 1993, 28 (4): 417-421.
    83. Goto SG. Expression of Drosophila homologue of senescence marker protein 30 during cold acclimation Journa lof Insect Physiology, 1998, 46: 1111-1120.
    84. Graham L A, Liou YC, Walker VK. Hyperactive antifree protein from beetles. Nature, 1997, 388: 727-728.
    85. Greenspan R.J., Finn J.A., Hall J.C. Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. Journal of Comparative Neurology, 1980, 189: 741-774.
    86. Greenspan RJ, Finn JA., Hall JC. Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. Journal of Comparative Neurology 1980, 189: 741-774.
    87. Guo S, Kemphues KJ. A gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(4): 611~620.
    88. Guttman SD, Glover CV, Allis CD, Gorovsky MA. Heat shock, deciliation and release from anoxia induce the synthesis of the same polypeptides in starved T.pyriformis. Cell, 1980, 22: 299-307.
    89. Hadley NR. Water relations of terrestrial arthropods. San Diego: Academic Press, 1994.
    90. Hahn JS, Hu ZZ, Thiele DJ, Iyer VR. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Molecular and Cellular Biology, 2004, 24(12): 5249-5256.
    91. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286(5441): 950~952.
    92. Harrison CJ, Bohm AA, Nelson HC. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science, 1994 263 (5144): 224–227.
    93. Hazel JR. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology, 1995, 57: 19-42.
    94. Hendrix DL, Salvucci ME. Polyol metabolism in homopterans at high temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology - Part A, 1998, 120 (3): 487-494.
    95. Hendrix DL, Salvucci ME. Polyol metabolism in homopterans at high temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology - Part A, 1998, 120 (3): 487-494.
    96. Hendrix DL, Salvucci ME. Isobemisiose: an unusual trisaccharide abundant in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 2001, 47 (4-5): 423-32.
    97. Henry D, Prange HD. Evaporative cooling in insects. Journal of Insect Physiology, 1996, 42(5): 493-499.
    98. Henry D, Prange HD. Evaporative cooling in insects. Journal of Insect Physiology, 1996, 42(5): 493-499.
    99. Hepburn H.R. Structure of the integument. In: Kerkut G.A., Gilbert L.I., eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology, 1985, 3: 1-58.
    100. Herber H, Walter B, Barbara N. Evolutionary processes associated with biological invasions in the Brassicaceae. Biological Invasions 5: Kluwer Academic Publishers. Printed in the Netherlands, 2003. 281-292.
    101. Hightower LE. Heat shock, stress proteins, chaperones and proteotoxicity. Cell, 1991, 66, 191-197.
    102. Hochachka PW, Somero GN. Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, New York, 2002.
    103. Hoffmann AA, Hallas R. Sinctair C. Rapid loss of stress resistance in Drosophila melanogaster under adaptation to laboratory culture. Evolution, 2001, 55: 436-438.
    104. Hoffmann AA, Sorensen JG, Loeschcke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol., 2003, 28, 175-216.
    105. Hoffmann AA. Acclimation: increasing survival at a cost. Trends Ecol. Evol., 1995, 10, 1-2.
    106. Holmstrup M., Hedlundb K., Borissc H. Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. Journal of Insect Physiology, 2002, 48(10): 961-970.
    107. Holt S E, Aisner D L, Baur J, Tesmer V M, Dy M, Ouellette M, Trager J B, Morin G B, Toft D O, Shay J W, Wright W E, White M A. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes, 1999, 13: 817-826.
    108. Holway D A, Suarez A V. Animal behavior: an essential component of invasion biology. Trends in Ecology & Evolution, 1999, 14(8): 328- 330.
    109. Holway D A. Competitive mechanisms underlying the displace of native ants by the invasive argentine. Ecology 1999, 80(1): 218-251.
    110. Hozenberg M, Dupont J, Ducos B, Leneuve P, Gélo?n A, Even P C. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 2003, 421(6919): 125-126.
    111. Hsu A L, Murphy C T, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 2003, 300 (5628): 2 033.
    112. Huang LH, Kang L. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Mol. Biol., 2007, 16, 491-500.
    113. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589): 2056~2060.
    114. Ivanovic J. Metabolic response to stressors. In: Ivanovic J., Jankovic M., Hladni, eds. Horm ones and metabolism in insect stress. Boca Raton. Florida, CRC Press, 1991, 27- 67
    115. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. European Journal of Biochemistry, 1991, 202: 715-728.
    116. Janitz M, Vanhecke D, Lehrach H. High-throughput RNA interference in functional genomics. Handb Exp Pharmacol, 2006, (173): 97~104.
    117. Jenkins NL, Hoffmann AA. Limits to the southern border of Drosophila serrata: cold resistance,heritable variation, and trade-offs. Evolution, 1999, 53, 823–1834.
    118. Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol, 1990, 8(12): 340~344.
    119. Ketting RF, Fischer SE, Bernstein E. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 2001, 15(20): 2654~2659.
    120. Khazaeli AA, Tatar M., Pletcher SD, Curtsinger JW. Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, and thermotolerance. Biology Science, 1997, 52: 489-452.
    121. Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology, Pharmacol. Ther, 1998, 80:183-201.
    122. Kimura MT, Ohtsu T, Yoshida T. Climatic adaptations and distributions in the Drosophila takahashii species subgroup (Diptera; drosophilidae). JocrnaL of Natural History, 1994, 28 : 401-409
    123. King V, Tower J. Aging-specific expression of Drosophila Hsp22. Dev Biol, 1999, 207:107-118.
    124. Koehn RK, Bayne BL. Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc., 1989, 37, 157-171.
    125. Kostal V, Tollarova Borovanska M. The 70 kDa Heat Shock Protein Assists during the Repair of Chilling Injury in the Insect, Pyrrhocoris apterus. PLoS ONE, 2009, 4(2): e4546. doi:10.1371/journal.pone.0004546.
    126. Kostal V, Tollarova-Borovanska M. The 70kDa Heat Shock Protein Assists during the Repair of Chilling Injury in the Insect, Pyrrhocoris apterus. PLoS ONE, 2009, 4(2): e4546.
    127. Krebs RA, Feder ME. Deleterious consequences of Hsp70 over- expression in Drosophila melanogaster larvae. Cell Stress Chaperones, 1997, 2: 60-71.
    128. Krebs RA, Feder ME. Deleterious consequences of Hsp70 over- expression in Drosophila melanogaster larvae. Cell Stress Chaperon, 1997, 2, 60–71.
    129. Krebs RA, Loeschcke V. Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. J. Evol. Biol., 1994, 7, 39-49.
    130. Krieger MJB, Ross KG.. Identification of a major gene regulating complex social behavior. Science, 2000, 295: 328-332.
    131. Laayouni H, García FF, Chávez SBE. Thermal evolution of gene expression profiles in Drosophila Subobscura. BMC Evolutionary Biology, 2007, doi: 10.1186/ 1471-2148-7-42.
    132. Le BE, Valenti P, Lucchetta P, Payre F. Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology, 2001, 2: 155-164.
    133. Lecellier CH, Dunoyer P, Arar K. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308(5721): 557~560.
    134. Lee RE. Ice-nucleating active bacteria decrease t he cold-hardiness of stored gralo insects L Econ. Entomol, 1992, 72 :476 478.
    135. Leemans R, Egger B, Loop T, Kammermeier L, Haiqiong H, Hartmann B, Certa U, Hirth F, Reichert H. Quantitative transcript imaging in normal and heat-shocked Drosophila embryos byusing high-density oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 12138-12143.
    136. Lerman DN, Feder ME. Laboratory selection at different temperatures modifies heat-shock transcription factor (HSF) activation in Drosophila melanogaster. Journal of Experiment Biology, 2001, 204: 315-323.
    137. Leuschner PJ, Ameres SL, Kueng S. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep, 2006, 7(3): 314~320.
    138. Lewis J , Devin A , Miller A. Disruption of Hsp90 function result s in degradation of the death domain kinase , receptor2interacting protein ( RIP) , and blockage of tumor necrosis factor2induced nuclear factor kappa B activation. J Biol Chem , 2000 , 275 (14) :10519-10526
    139. Li H, Fu X, Chen Y. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology, 2005, 128(7): 2029~2041.
    140. Li YP, Sumiko O, Goto M. Physiology of diapause and cold hardiness in overwintering pupae of t he apple leaf miner Phyllonorycter ringoniella in Japan. Physiology Entomology, 2002, 27: 92-96.
    141. Li ZX. Molecular phylogenetic analysis reveals at least five genetic races of Bemisia tabaci in China. Phytoparasitica, 2006, 34: 431-440.
    142. Lima LHC, Campos L, Moretzsohnm MC, Navia D, de Oliveira MRV. Genetic diversity of Bemisia tabaci (Germ.) populations in Brazil revealed by RAPD markers. Genetics and Molecular Biology, 2002, 25, 217-223.
    143. Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science, 1998, 282: 934-946
    144. Lindquist L. The heat-shock response. Annual Review of Biochemistry, 1986, 55: 1151-1191
    145. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 2001, 107(3): 297~307.
    146. Liu H T,Li B,Shang Z L. Calmodulin is involved in heat shock signal transduction in wheat, Plant Physiology, 2003, 132 (7): 1 186-1 195.
    147. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan PH. Asymmetric mating Science interactions drive widespread invasion and displacement in a whitefly. Science, 2007, 318: 1769-1772.
    148. Loveridge JP. The control of water loss in Locusta migratoria migratorioides R. and E.II. water loss through the spiracles. Journal of Experimental Biology, 1986, 49: 15-29.
    149. Lu Z., Chen J., Percy R.G., Zeiger E. Photosynthetic rate, stomatal conductance and leaf area in two cotton specieses ( Gossypium barbadense and Gosspium hirsutum ) and their relation with heat resistance and yield. Journal of Plant Physiology, 1997, 24: 693-700.
    150. Luo B, Heard AD, Lodish HF. Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci U S A, 2004, 101(15): 5494~5499.
    151. Luo C, Wang SQ, Cui WQ, Zhang ZL. The population dynamics of whiteflies and their natural enemy in Beijing suburb. In: Modern Entomology Research. Ed. by Li DM, Agricultural SciencePress, Beijing, China, 2004, 465-468.
    152. Luo C, Yao Y, Wang RJ, Yan FM, Hu DX, Zhang ZL. The use of mitochondrial cytochrome oxidase I (mt COI) gene sequences for identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomologia Sinica, 2002, 45, 759-763.
    153. MacRae TH. Structure and function of small heat shock/α-crystallin proteins: established concepts and emerging ideas. Cell Mol. Life Sci., 20005, 7, 899–913.
    154. Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev, 2005, 19(24): 2979~2990.
    155. Mao Y.B., Cai W.J., Wang J.W., Hong G.J., Tao X.Y., Wang L.J., Huang Y.P., Chen X.Y. Silencing a cotton bollworm P450 monooxygenase gene by plantmediated RNAi impairs larval tolerance to gossypol. Nature Biotechnology, 2007, 25: 1307-1313
    156. Marber M, Mestril R, Chi S H, Sayen R, Yellon Y M, Dillman W H. Overexpression of the rat inducible 70-kDa heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. The Journal of Clinical Investigation, 1995, 95 (4): 1 446-1 456.
    157. McColl G, Hoffmann AA, McKechnie SW. Response to two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics, 1996, 143: 1615-1627.
    158. McColl G, McKechnie SW. The Drosophila heat shock hsr-omega gene: an allele frequency cline detected by quantitative PCR. Molecular Biology and Evolution, 1999, 16: 1568-1574.
    159. McGarry T, Lindquist S. The preferential translation of Hsp70 mRNA requires sequences in the untranslated leader. Cell, 1986, 42, 903-911.
    160. Meister G, Landthaler M, Dorsett Y. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA, 2004, 10(3): 544~550.
    161. Michalak P, Minkov I, Helin A., Lerman D.N., Bettencourt B.R., Feder M.E., Korol A.B., Nevo E. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along the microclimate contrast in‘‘Evolutionary Canyon’’, Israel. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 13195-13200.
    162. Mitchell HK, Moller G, Peterson NS, Lipps SL. Specific protection from phenocopy induction by heat shock. Dev. Genet., 1979, 1, 181–192.
    163. Morcillo G, Gorab E, Tanguay R.M, Díez JL. Specific intranucleolar distribution of Hsp70 during heat shock in polytene cells. Experimental Cell Research, 1997, 236: 361-370.
    164. Morganelli CM, Berger EM, Pelham HR. Transcription of Drosophila small Hsp-tk hybrid genes is induced by heat shock and by ecdysterone in transfected Drosophila cells. Proc Natl Acad Sci U S A., 1985, 82(17): 5865–5869.
    165. Morimoto RI. Cell in stress: transcriptional activation of heat shock genes. Science, 1993, 259(5100): 1409-1410.
    166. Morimoto RI. Regulation of the heat shock transcriptional response: crosstalk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev., 1998, 12, 3788-3796.
    167. Morrow G, Heikkila JJ, Tanguay RM. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones, 2006, 11: 51-60.
    168. Moseley P L. Heat shock proteins and heat adaptation of the whole organism. Journal of Applied Physiology, 1997, 83: 1 413-1 417.
    169. Mosser D D, Kotzbauer P T, Sarge K D, Morimoto R I. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proceedings of the Nationa1 Academy of Sciences of United States of America, 1990, 87 (10): 3 748-3 752.
    170. Mulvey M, Keller GP, Meffe GK. Single and multiple-locus genotypes and life-history responses of Gambusia holbrooki reared at two temperatures. Evolution, 1994, 48 (6): 1810-1819.
    171. Murad G, Svetlana K, Henryk C. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem. Mol. Biol., 2007, 37, 732–738.
    172. Mutero A, Bride J.M., Pralavorio M., Fournier D. Drosophila melanogaster acetylcholinesterase:Identification and expression of two mutations responsible for cold and heat-sensitive phenotypes. Molecular and General Genetics, 1994, 243: 699-705.
    173. Naka K, Dansako H, Kobayashi N. Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-beta via Toll-like receptor 3 signaling pathway without replicating viral genomes. Virology, 2006, 346(2): 348~362.
    174. Nakai A, Morimoto RI. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol., 1993, 13(4):1983–1997.
    175. Nann A F, Myriam H, Patricia MS. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol., 2006, 209, 2859-2872.
    176. Neven LG. Physiological responses of insects to heat. Postharvest Biology and Technology, 2000, 21: 103-111.
    177. Nordlie FG, Mirandi A. Salinity relationships in a freshwater population of eastern mosquito fish. Journal of Fish Biology, 1996, 49: 1226 -1232.
    178. Ohtsu T, Katagiri C, Kimura MT. Biochemical aspects of climatic adaptations in Drosophila curviceps, D. immigrans, and D. albomicans (Diptera: Drosophilidae). Environment Entomology, 1999, 28: 968-972.
    179. Oliveira MRV, Henneberry TJ, Anderson P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 2001, 20 (9): 709-723.
    180. Olsen TM, Duman JG. Maintenance of the super-cooled state in the gut fluid of overwintering pyrochroid beetle larvae, Dendroides canadensis: role of ice nucleators and antiffreeze proteins. J. Comp. Physiol. (B), 1997, 167: 114-122.
    181. Olsen TM, Seass SJ, Li N. Factors contributing to seasonal incresaes in inoculative freezing resistance in overwintering firecolored beetle larvae Dendroides canadensis (Pyrochroidae). J. Exp. Bio., 1998, 201: 1585-1594.
    182. Paddison PJ, Silva JM, Conklin DS. A resource for large-scale RNA-interference-based screens in mammals. Nature, 2004, 428(6981): 427~431.
    183. Pandey P, Saleh A, Nakazawa1 A. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. The EMBO Journal, 2000, 19, 4310– 4322.
    184. Papaconstantinou M, Wu Y, Pretorius HN. Menin is a regulator of the stress response in Drosophila melanogaster. Molecular and Cellular Biology, 2005, 25(22): 9960-9972.
    185. Parsell D A, Lindquist S. Heat shock proteins and stress tolerance. In: Morimoto R I, Tissieres A, Georgopoulous C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. New York: Cold Spring Harbor Laboratory Press, 1994: 457-494.
    186. Parsell DA, Lindquist S. Heat shock proteins and stress tolerance. In: Morimoto R.I., Tissiêres A, Georgopoulos C, eds. The Biology of heat shock proteins and molecular chaperones. ColdSpring Harbor Laboratory Press, ColdSpring Harbor, NY, 1994, 457-494.
    187. Parsell DA, Lindquist S. Heat shock proteins and stress tolerance. In: The Biology of Heat Shock Proteins and Molecular Chaperones. Ed. by Morimoto RI, Tissieres A, Georgopoulos C, Cold Spring Harbor Laboratory Press, Plainview, 1994, 457–494.
    188. Parsell DA, Lindquist S. The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet., 1993, 27, 437-496.
    189. Paterson AH,Schertz KF,Lin YR. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense. Proc Natl Acad sci USA, 1995, 92:6127-6131.
    190. Pelham HR. A regulatory upstream promoter element in the Drosophila Hsp 70 heat-shock gene. Cell, 1982, 30(2): 517-528.
    191. Perring TM. The Bemisia tabaci species complex. Crop Protection, 2001, 20(9):725-737.
    192. Peter C, Tamas S, Csaba S. The 90-kDa molecular chaperone family: Structure, function and clinical applications. A comprehensive review. Pharmacology Therapeutics, 1998, 79 (2): l29-l68.
    193. Petersen R, Lindquist S. The Drosophila Hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene, 1988, 72, 161-168.
    194. Petr P, Karel P. Research into plant invasions in a crossroads region: history and focus. Biological Invasions 5. Kluwer Academic Publishers. Printed in the Nerherlands, 2003. 337-348.
    195. Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 2001, 15 (7): 1118-1131.
    196. Prange HD. Evaparative cooling in insects. Journal of Insect Physiology, 1996, 42: 493-499.
    197. Pratt HD, Bruner P L, Berrett DG. A field guide to the birds of Hawaii and the tropical Pacific. Priceton: Princeton University Press, NJ. 1987.
    198. Price DRG, Gatehouse JA. RNAi-mediated crop protection against insects. Trends in Biotechnology, 2008, doi:10.1016/j.tibtech.2008.04.004.
    199. Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature. 2002,417,618–624.
    200. Quintero C, Cardona C, Ramirez D, Jimenez N. First report of biotype B of Bemisia tabaci (Homoptera: Aleyrodidae) in Colombia. Revista Colombiana de Entomologia, 1998, 12: 23-28.
    201. Radford IJ, Cousens RD. Invasiveness and comparative life history traits of exotic and indigenous Senecio species in Australia. Oecologia, 2000, 125: 531-542.
    202. Radin J.W., Lu Z., Percy R.G., Zeiger E. Genetic variability for stomatal conductance in pima cotton and its relations to improvements of heat adaptation. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 7217-7221
    203. Rand TA, Petersen S, Du F. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 2005, 123(4): 621~629.
    204. Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 2001, 3(9): 839-843.
    205. Rensing L, Ruoff P. Temperature effect on entrainment, phases shifting, and amplitude of circadian clocks and its molecular bases. Chronobiology International, 2002, 19(5): 807-864.
    206. Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962, 18: 571-573.
    207. Roberts DA, Hofmann GE, Somero GN. Heat shock protein expression in Mytilus californianus: acclimatization (seasonal and tidal-height comparisons) and acclimation effects. Biol. Bull., 1997, 192, 309-320.
    208. Rutherford S L, Lindquist S. Hsp90 as capacitor for morphological evolution. Nature, 1998, 396 (6709): 336-342
    209. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I. Inbreeding and extinction in a butterfly metapopulation. Nature, 1998, 392: 491-494.
    210. Sakai AK, Allendorf FW, Holt JS. The population biology of invasive species. Annual Review of Ecology System, 2001, 32: 305-332.
    211. Sala OE, Chapin FS, Armesto JJ. Global biodiversity scenarios for the year 2100. Science, 2000, 287: 1770-1774.
    212. Salin C., Vernon P, Vannier G. Effects of temperature and humidity on transpiration in adults of the lesser mealworm, Alphitobiu diaperinus (Coleoptera:Tenebrionidae). Journal of Insect Physiology, 1999, 45(10): 907-914.
    213. Salvucci ME, Hendrix DL, Wolfe GR. Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1999, 45: 21-27.
    214. Salvucci ME, Wolfe GR, Hendrix DL. Effect of sucrose concentration on carbohydrate metabolism in Bemisia argentifolii: biochemical mechanism and physiological role for trehalulose synthesis in the silverleaf whitefly. Journal of Insect Physiology, 1997, 43: 457-464.
    215. Salvucci ME. Sorbitol accumulation in whiteflies: evidence for a role in protecting proteins during heat stress. Journal of Thermal Biology, 2000, 25: 353-361.
    216. Sanborn AF., Heath JE, Heat MS. Thermoregulation and evaporative cooling in the cicada Okanagodes gracilis (Homoptera: Cicadidae). Comparative Biochemistry and Physiology - Part A, 1992, 102(4): 751-757.
    217. Sangwan V, Orvar B L, Beyerly J. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant kinase pathways. The Plant, 2002, 31 (5): 629-638.
    218. Scannapieco AC, S?rensen JG, Loeschcke V, Norry FM. Heat-induced hormesis in longevity of two sibling Drosophila species. Biogerontology, 2007, 8: 315-325.
    219. Sen G, Wehrman TS, Myers JW. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet, 2004, 36(2): 183~189.
    220. Shamovsky I., Nudler E. New insights into the mechanism of heat shock response activation. Cellular and Molecular Life Sciences, 2008, 65: 855-861.
    221. Sharma P, Singh DP, Fatma N, Chylack LTJ, Shinohara T. Activation of LEDGF gene by thermaland oxidative-stresses. Biochemical and Biophysical Research Communications, 2000, 276: 1320-1324.
    222. Shirane D, Sugao K, Namiki S. Enzymatic production of RNAi libraries from cDNAs. Nat Genet, 2004, 36(2): 190~196.
    223. Silbermann R, Tatar M. Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution, 20005, 4, 2038-2045.
    224. Silva JM, Li MZ, Chang K. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet, 2005, 37(11): 1281~1288.
    225. Singer SJ. The molecular organization of membranes. Annual Review of Biochemistry, 1974, 43: 805-833.
    226. Somero GN. Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front. Zoo, 2005, 2, 1-9.
    227. Somero GN. Proteins and temperature. Annual Review of Physiology, 1995, 57: 43-68.
    228. Somero GN. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr. Comp. Biol., 2002, 42, 780-789.
    229. S?rensen JG, Kristensen GTN, Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett., 2003, 6, 1025-1037.
    230. S?rensen JG, Loeschcke V. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect Physiol., 2001, 44, 1301-1307.
    231. Sorensen JG, Michalak P, Justesen J, Loeschcke V. Expression of the heat shock protein HSP70 in Drosophila buzzattii lines selected for thermal resistance. Hereditas, 1999, 131, 155-164.
    232. S?rensen JG, Nielsen MM, Kruh?ffer M, et al. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress and Chaperones, 2005, 10 (4): 312-328.
    233. Sorger P, Lewis M, Pelham H. Heat shock factor is regulated differently in yeast and HeLa cells. Nature, 1987, 329: 81-84.
    234. Sreedhar, A.S. and Csermely, P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol. Ther., 2004, 101: 227-57.
    235. Stratman R, Markow IA. Resistance to thermal stress in desert Drosophila. Functional EcoLogv, 1998, 12: 965-970
    236. Suarez AV, Tsutsui ND, Holway DA, Case T J. Behavioral and genetic differentiation between native and introduced populations of the Arentine ant. Biological Invasions, 1999, 1(1): 43-53.
    237. Sun W., Van Montagu M., Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta-Gene Structure and Expression, 2002, 1577: 1-9.
    238. Sung D Y, Kaplan F, Lee K J. Acquired tolerance to temperature extremes. Trends in Plant Science, 2003, 8 (4): 179-187.
    239. Svoboda P, Stein P, Hayashi H. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development, 2000, 127(19): 4147~4156.
    240. Taylor RP, Benjamin IJ. Small heat shock proteins: a new classification scheme in mammals. J. Mol. Cell Cardiol, 2005, 38, 433–444.
    241. Theodoraki MA, Mintzas AC. cDNA cloning, heat shock regulation and developmental expression of the Hsp83 gene in the Mediterranean fruit fly Ceratitis capitata. Insect Mol. Biol., 2006, 15, 839–852.
    242. Thompson JD. The biology of an invasive plant: what makes Spartina anglica so successful? BioScience, 1991, 41(6): 393-401.
    243. Tolson EC. Water profligacy as an adaptation to hot deserts:water loss and evaporative cooling in the Sonoran desert cicada Diceroptera Apache (Homoptera: Cicadidae). Physiological Zoology, 1987, 60: 379-385.
    244. Tomanek L, Somero GN. Evolutionary and acclimationinduced variation in the heat shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J. Exp. Biol., 1999, 202, 2925-2936.
    245. Tsutsui ND, Suarez AV, Holway DA, Case TJ. Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Science USA, 2000, 97(11): 5948-5953.
    246. Tsutsui ND, Suarez AV, Holway DA.Reduced genetic variation and the Success of an invasive species.Proc Nail Acad Sci USA, 2000, 97:5948-5958.
    247. Tsvetkova NM, Horvath I, Torok Z. Small heat-shock proteins regulate membrane lipid polymorphism. Proc. Natl. Acad. Sci. USA, 2002, 99, 13504-13509.
    248. Tuschl T. Functional genomics: RNA sets the standard. Nature, 2003, 421: 220-221.
    249. Vaistij FE, Jones L, Baulcombe DC. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 2002, 14(4): 857~867.
    250. Vermeulen CJ, Loeschcke V. Longevity and the stress response in Drosophila. Experimental Gerontology, 2007, 42: 153-159.
    251. Vitousek PM, Walker LR, Whiteaker LD. Biological invasion by Myrica faya alters ecosystemdevelopment in Hawaii. Science, 1987, 238: 802-804.
    252. Vitousek PM, Walker LR. Biological invasion by Myrica faya in Hawaii: plant demography, nitrogenfixation, ecosytem effects. Ecological Monographs, 1989, 59: 247-265.
    253. Walker LR, Smith SM. Impacts of invasive plants on community and ecosystem properties. In Luken JO and Thieret JW eds: Assessment and management of plant invasions, 1997, 59-58.
    254. Wang H, Kazemi EP, Benzer S. Multiple-stress analysis for isolation of Drosophila longevity genes. Proc. Natl. Acad. Sci. USA, 2004, 101, 12610–12615.
    255. Wang HS, Wang XH, Zhou CS, Huang LH, Zhang SF, Guo W, Kang L. cDNA cloning of heat shock proteins and their expression in the two phases of the migratory locust. Insect Mol. Biol., 2007, 16, 207–219.
    256. Westwood JT, Clos J, Wu C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature, 1991, 353(6347):822–827.
    257. Wiederrecht G, Seto D, Parker CS. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell, 1988 54(6):841–853.
    258. Wieske M, Benndorf R, Behlke J, Dolling R, Grelle G, Bielka H, Lutsch G. Defined sequence segments of the small heat shock proteins HSP25 and a-crystallin inhibit actin polymerization. Eur. J. Biochem., 2001, 268, 2083–2090.
    259. Wilson ACC, Dunbar HE, Davis GK, Hunter WB, Stern DL, Moran NA. A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola. BMC Genomics, 2006, 7: 50-60.
    260. Wolfe G.R., Hendrix D.L., Salvucci M.E. A thermoprotective role for sorbitol in the silverleaf whitefly. Journal of Insect Physiology, 1998, 44: 597-603.
    261. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol., 1995, 11:441–469.
    262. Yocum GD. Differential expression of two HSP70 transcripts in response to colds hock, thermoperiod, and adult diapause in the Colorado potato beetle. Journal of Insect Physiology, 2001, 47: 1139-1145.
    263. Yoder J.A., Denlinger D.L. Water balance in flesh fly pupae and water vapor absorption associated with diapause. Journal of Experimental Biology, 1991, 157: 273-286.
    264. Yoo B.C., Kragler F., Varkonyi-Gasic E., Haywood V., Archer-Evans S., Lee Y.M., Lough T.J., Lucas W.J. A systemic small RNA signaling system in plants. Plant Cell 2004, 16: 1979-2000.
    265. Zachariassen KE, Husby JA . Antifreeze effect of thermal hysteresis agent’s proteins highly supercooled insects. Nature, 1982, 285-287.
    266. Zachariassen KE. Physiology of cold tolerance in insects. Physiol Rev, 1985, 65:832-977.
    267. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25~33.
    268. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell. Biol., 2001, 2(1):67-71.
    269. Zang LS, Chen WQ, Liu SS. Comparison of performance on different hostplants between the B biotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomoliga Experimentalis etApplicata, 2006, 121:221-227.
    270. Zimmerman JL, Petri W, Meselson M. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell, 1983, 32(4):1161–1170.
    271.藏连生,刘树生,刘银泉,陈伟强.浙江B型与一非B型(China-ZHJ-1)烟粉虱形态学和生物学特性的比较研究.昆虫学报,2005, 48(5): 742-748.
    272.藏连生,刘树生,刘银泉,阮永明,万方浩. B型烟粉虱与浙江非B型烟粉虱的竞争.生物多样性, 2005,13(3): 181-187.
    273.藏连生. B型对浙江本地非B型烟粉虱的竞争取代及其行为机制(博士学位论文).杭州:浙江大学,2005.
    274.陈兵,康乐.昆虫对环境温度胁迫的适应与种群分化.自然科学进展2005, 15(3): 265-271.
    275.陈兵,康乐.生物入侵及其与全球变化的关系.生态学杂志, 2003, 22(1): 31-34.
    276.陈兵,康乐.南美斑潜蝇在我国的发生趋势和地理差异分析.植物检疫, 2002 .16 (3): 138-140.
    277.陈兵,赵云鲜,康乐.外来斑潜蝇入侵和适应机理及管理对策.动物学研究, 2002, 23: 155-160.
    278.陈毅峰,严云志.生物入侵的进化生物学.水生生物学报, 2005, 29(2): 220-224.
    279.褚栋,张友军,毕玉平,李新国,范仲学.警惕Q型烟粉虱在我国进一步扩散.植物检疫, 2005, 9(3): 171-174.
    280.褚栋,张友军,丛斌,徐宝云,吴青君.云南Q型烟粉虱种群的鉴定.昆虫知识,2005, 42(1): 54-56.
    281.崔旭红. B型烟粉虱和温室粉虱热胁迫适应性及其分子生态机制[博士学位论文].北京:中国农业科学院植物保护研究所,2007.
    282.冯玉香,何维勋.细菌冰核提高印度谷螟过冷却点的研究.昆虫学报, 1996 , 39 (1) :5-57.
    283.胡敦孝,吴杏霞.银叶粉虱发生的指示植物—西葫芦银叶.植物检疫, 2001, 15: 132-136.
    284.黄国洋,王荫长,尤子平.黄地老虎耐寒性机理初探.浙江林学院学报, 1990 , 7 (2) :140-146.
    285.霍云霞.应用RNAi技术抑制猪繁殖与呼吸综合征病毒复制的研究(博士学位论文).北京:中国农业科学院研究生院,2006.
    286.李占鹏,李东军,王连东,等.外来有害生物入侵现状及防范对策.山东林业科技, 2003, 4:
    27-28.
    287.吕志创.高温热激下雌雄B型烟粉虱差异表达基因的筛选和Hsps基因功能的鉴定[博士学位论文].北京:中国农业科学院植物保护研究所,2008.
    288.罗晨,张君明,石宝才,张帆,张芝利.北京地区烟粉虱Bemisia tabaci (Gennadius)调查初报.北京农业科学,2000, 18(增刊):42-47.
    289.倪丽萍,郭水良.论DNA C-值与植物入侵性的关系.生态学报, 2005, 25(9): 2372-2381.
    290.宋尔卫,RNA干扰的生物学原理与应用(第二版).北京:高等教育出版社,2006.
    291.孙绪艮,郭慧玲,李恕廷等.桑尺蠖越冬幼虫的耐寒性研究.蚕业科学, 2000 , 26 (3) :129-133.
    292.万方浩郑晓波郭建英.重要农林外来入侵物种的生物学与控制.北京:科学出版社, 2005, 3-6.
    293.万方浩,郭建英.农林危险生物入侵机理及控制基础研究.中国基础科学, 2407, 5: 8-14.
    294.王海鸿. B型烟粉虱热休克蛋白基因的克隆和表达及其与胁迫耐受性关系的研究[博士学位论文].北京:中国农业科学院植物保护研究所,2005.
    295.徐倩,王文丽,刘树生,2006. Q型烟粉虱在浙江局部地区大量发生危害.植物保护,32(4): 121.
    296.张芝利.关于烟粉虱大发生的思考.北京农业科学(增刊), 2000,18: 1-3.
    297.赵莉,张荣,肖艳,崔元习黄伟.危害棉花的重要害虫烟粉虱在新疆发现.新疆农业科学, 2000. 27-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700