用户名: 密码: 验证码:
邻苯二甲酸酯对小鼠植入前胚胎体外发育的影响及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯二甲酸酯(phthalate esters, PEs),是一类普遍使用的化学工业品,主要用作增塑剂,其中邻苯二甲酸二乙基己基酯(Di-2-ethylhexyl phthalate, DEHP)和邻苯二甲酸二丁酯(Dibutyl phthalate, DBP)是使用较为广泛的增塑剂。邻苯二甲酸-单-乙基己基酯(Mono-2-ethylhexyl phthalate, MEHP)和邻苯二甲酸单丁酯(Mono-n-butyl phthalate, MBP)分别是DEHP和DBP的主要代谢物。使用过程中,邻苯二甲酸酯会通过各种途径进入环境中,人类可经由食品、水和土壤接触邻苯二甲酸酯。现已发现邻苯二甲酸酯具有很强的生殖和发育毒性,能损害生物的生育力。然而,目前我们对于MEHP和MBP对植入前胚胎发育的影响仍知之甚少。
     为了研究MEHP对植入前胚胎发育的影响,我们用0,10-5,10-4,10-3M MEHP处理受精卵,发现10-3M MEHP会引起小鼠胚胎发生2-细胞阻滞。10-3M MEHP暴露24h后,小鼠胚胎细胞内活性氧水平显著升高。然而,抗氧化物(CAT和SOD)可以降低胚胎细胞中活性氧的水平,提高胚胎的存活率,但是没有恢复发生2-细胞阻滞胚胎的发育。进一步的实验结果表明,MEHP暴露后,只有死亡胚胎的凋亡水平升高了,但活的2-细胞阻滞的胚胎凋亡水平没有明显变化。这些结果提示ROS水平的升高和胚胎细胞凋亡并不是发生2-细胞发育胎阻滞的主要原因。通过分析胚胎基因组激活(embryonic genome activation, EGA)的关键基因(Hsc70, MuERV-L, Hsp70.1, eIF-1A和Zscan4)以及母源效应基因(OCT4和SOX2),我们发现胚胎2-细胞到4-细胞阶段,MEHP暴露显著降低了基因Hsc70、MuERV-L和SOX2的表达水平,提高了Hsp70.1、eIF-1A、Zscan4和OCT4的表达水平。添加抗氧化物(CAT和SOD)没能改变这些基因的表达趋势。由此可见,MEHP-诱导的胚胎发育阻滞是由母体向胚胎转换异常介导的,而不是氧化应激和细胞凋亡。
     为了研究MBP对植入前胚胎发育的影响,我们用0,10-5,10-4,10-3M MBP处理受精卵,发现10-3和10-4M MBP暴露96h,囊胚的数量均显著降低,当延迟培养24h时,即120h,10-3M MBP暴露组桑椹胚继续发育到囊胚的胚胎数量显著高于对照组,但96h和120h囊胚的总数仍显著低于对照组,并且10-3M MBP暴露显著降低了孵化囊胚的数量,这些结果显示了10-3M MBP会损害小鼠植入前胚胎的发育潜能,10-4M MBP暴露只是延缓了胚胎的发育进程。10-3M MBP暴露48h后,胚胎细胞内ROS水平显著升高,并通过促进线粒体释放细胞色素c提高了凋亡水平。免疫荧光染色分析显示MBP处理以剂量依赖(10-5,10-4,10-3M)的方式降低了DNA甲基化水平。这些结果显示MBP可能通过诱导氧化应激、细胞凋亡或抑制DNA甲基化降低胚胎的发育潜能。
     总之,本研究首次揭示了PEs暴露能对植入前胚胎发育造成损害。MEHP能够引起胚胎2-细胞发育阻滞,其主要是由于EGA启动失败和母源效应基因表达异常引起,与ROS和凋亡水平无显著相关性。MBP能够降低植入前胚胎的发育潜能,其主要与ROS和细胞凋亡相关,还可能与DNA甲基化水平的降低有关。
Phthalates (PEs) are a family of industrial chemicals that have been used as plasticizers. Among phthalates, the di-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are most widely used PEs. During use, they leach, migrate, or evaporate into environment over time and humans are potentially exposed to PEs through food, water, and soil. They are thought as an environmental contaminant, which is known to cause many serious diseases, especially in reproductive system. Mono-2-ethylhexyl phthalate (MEHP) and Mono-n-butyl phthalate (MBP) are metabolite of DEHP and DBP respectively. However, little is known about the effect of MEHP and MBP on preimplantation embryo development.
     In order to study the effect of MEHP on preimplantation embryos of mouse, embryos were treated by0,10-5,10-4,10-3M MEHP. We found that the development of mouse2-cell embryo was blocked by10-3M MEHP. A significant increase in the level of reactive oxygen species (ROS) was observed in arrested2-cell embryo following10-3M MEHP treatment for24h. However, antioxidants, catalase (CAT), and superoxide dismutase (SOD), reduced intracellular ROS and protected MEHP-exposed embryos from death but failed to return the arrested embryos. Further experiments demonstrated that the level of apoptosis was not altered in live arrested2-cell embryo and increased in dead arrested2-cell embryo after MEHP treatment, which implied that ROS and apoptosis were not related with2-cell block.
     During analysis of the indicators of embryonic genome activation (EGA) initiation (Hsc70, MuERV-L, Hsp70.1, eIF-1A, and Zscan4) and maternal-effect genes (OCT4and SOX2), we found that MEHP treatment could significantly decline Hsc70, MuERV-L mRNA level and SOX2protein level, and markedly enhance Hsp70.1, eIF-1A, Zscan4mRNA level, and OCT4protein level at2-cell to4-cell stage. Supplementation of CAT and SOD did not reverse the expression tendency of EGA related genes.
     In order to study the effect of MBP on preimplantation embryos of mouse, embryos were treated by0,10-5,10-4,10-3M MBP. We found the rate of blastocyst formation was significantly reduced following96h exposure to10-4and10-3M MBP compared with the control group. After96h culture, the blastocysts were removed and the remaining embryos were cultured for a further24h. After120h in culture, the rate of blastocyst formation was obviously increased in the10-3M MBP-treated group. However, exposure to10-3M MBP significantly decreased the total blastocyst rate (i.e. the sum of blastocysts at96and120h) and the formation of hatching/hatched embryos compared with that in the control group. These findings suggested that treatment of embryos with10"3M MBP impaired developmental competency, whereas exposure to10-4M MBP delayed the progression of preimplantation embryos to the blastocyst stage. Furthermore, reactive oxygen species (ROS) levels in embryos were significantly increased following treatment with10"3M MBP. In addition,10-3M MBP increased apoptosis via the release of cytochrome c, whereas immunofluorescent analysis revealed that exposure of preimplantation embryos to MBP concentration-dependently (10-5,10-4and10-3M) decreased DNA methylation.
     Collectively, this study demonstrates for the first time that there is a possible relationship between PEs exposure and developmental failure in preimplantation embryos. An intracellular redox imbalance and apoptosis are involved in this process. But, MEHP-induced2-cell block is mediated by the failure of EGA onset and maternal-effect genes, not oxidative stress and apoptosis. Redox imbalance and apoptosis are related with MBP-induced reductions in the developmental competency of preimplantation embryos. In addition, reductions in DNA methylation may be another mechanism.
引文
[1]Zhu J, Phillips S P, Feng Y L, et al. Phthalate esters in human milk:concentration variations over a 6-month postpartum time[J]. Environ Sci Technol, 2006,40(17):5276-5281.
    [2]Koo H J, Lee B M. Human monitoring of phthalates and risk assessment[J]. J Toxicol Environ Health A,2005,68(16):1379-1392.
    [3]Hogberg J, Hanberg A, Berglund M, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations[J]. Environ Health Perspect,2008,116(3):334-339.
    [4]Barr D B, Silva M J, Kato K, et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers[J]. Environ Health Perspect, 2003,111(9):1148-1151.
    [5]Calafat A M, Slakman A R, Silva M J, et al. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,805(1):49-56.
    [6]Calafat A M, Mckee R H. Integrating biomonitoring exposure data into the risk assessment process:phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case study[J]. Environ Health Perspect,2006,114(11):1783-1789.
    [7]Teitelbaum S L, Britton J A, Calafat A M, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States[J]. Environ Res,2008,106(2):257-269.
    [8]Moyer B, Hixon M L. Reproductive effects in F1 adult females exposed in utero to moderate to high doses of mono-2-ethylhexylphthalate (MEHP)[J]. Reprod Toxicol, 2012,34(1):43-50.
    [9]Desdoits-Lethimonier C, Albert O, Le Bizec B, et al. Human testis steroidogenesis is inhibited by phthalates[J]. Hum Reprod,2012,27(5):1451-1459.
    [10]Habert R, Muczynski V, Lehraiki A, et al. Adverse effects of endocrine disruptors on the foetal testis development:focus on the phthalates[J]. Folia Histochem Cytobiol,2009,47(5):S67-S74.
    [11]Chen X, Wang J, Qin Q, et al. Mono-2-ethylhexyl phthalate induced loss of mitochondrial membrane potential and activation of Caspase3 in HepG2 cells[J]. Environ Toxicol Pharmacol,2012,33(3):421-430.
    [12]Lovekamp-Swan T, Davis B J. Mechanisms of phthalate ester toxicity in the female reproductive system[J]. Environ Health Perspect,2003,111(2):139-145.
    [13]Heindel J J, Chapin R E. Inhibition of FSH-stimulated cAMP accumulation by mono(2-ethylhexyl) phthalate in primary rat Sertoli cell cultures[J]. Toxicol Appl Pharmacol,1989,97(2):377-385.
    [14]Dalman A, Eimani H, Sepehri H, et al. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on resumption of meiosis, in vitro maturation and embryo development of immature mouse oocytes[J]. Biofactors,2008,33(2):149-155.
    [15]Giammona C J, Sawhney P, Chandrasekaran Y, et al. Death receptor response in rodent testis after mono-(2-ethylhexyl) phthalate exposure[J]. Toxicol Appl Pharmacol,2002,185(2):119-127.
    [16]Kasahara E, Sato E F, Miyoshi M, et al. Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate[J]. Biochem J,2002,365(Pt 3):849-856.
    [17]Lim C K, Kim S K, Ko D S, et al. Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons[J]. Toxicology,2009,264(3):145-154.
    [18]Meeker J D, Sathyanarayana S, Swan S H. Phthalates and other additives in plastics: human exposure and associated health outcomes[J]. Philos Trans R Soc Lond B Biol Sci,2009,364(1526):2097-2113.
    [19]Fennell T R, Krol W L, Sumner S C, et al. Pharmacokinetics of dibutylphthalate in pregnant rats[J]. Toxicol Sci,2004,82(2):407-418.
    [20]Zhou Y, Fukuoka M, Tanaka A. Mechanisms of testicular atrophy induced by di-n-butyl phthalate in rats. Part 3. Changes in the activity of some enzymes in the Sertoli and germ cells, and in the levels of metal ions[J]. J Appl Toxicol, 1990,10(6):447-453.
    [21]Carruthers C M, Foster P M. Critical window of male reproductive tract development in rats following gestational exposure to di-n-butyl phthalate[J]. Birth Defects Res B Dev Reprod Toxicol,2005,74(3):277-285.
    [22]Struve M F, Gaido K W, Hensley J B, et al. Reproductive toxicity and pharmacokinetics of di-n-butyl phthalate (DBP) following dietary exposure of pregnant rats[J]. Birth Defects Res B Dev Reprod Toxicol,2009,86(4):345-354.
    [23]Kim T S, Jung K K, Kim S S, et al. Effects of in utero exposure to DI(n-Butyl) phthalate on development of male reproductive tracts in Sprague-Dawley rats[J]. J Toxicol Environ Health A,2010,73(21-22):1544-1559.
    [24]Saillenfait A M, Payan J P, Fabry J P, et al. Assessment of the developmental toxicity, metabolism, and placental transfer of Di-n-butyl phthalate administered to pregnant rats[J]. Toxicol Sci,1998,45(2):212-224.
    [25]Lee S K, Owens G A, Veeramachaneni D N. Exposure to low concentrations of di-n-butyl phthalate during embryogenesis reduces survivability and impairs development of Xenopus laevis frogs[J]. J Toxicol Environ Health A, 2005,68(10):763-772.
    [26]Swan S H, Main K M, Liu F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure[J]. Environ Health Perspect, 2005,113(8):1056-1061.
    [27]Duty S M, Silva M J, Barr D B, et al. Phthalate exposure and human semen parameters[J]. Epidemiology,2003,14(3):269-277.
    [28]Hauser R, Meeker J D, Duty S, et al. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites[J]. Epidemiology, 2006,17(6):682-691.
    [29]Aldyreva M V, Klimova T S, Iziumova A S, et al. [The effect of phthalate plasticizers on the generative function][J]. Gig Tr Prof Zabol,1975(12):25-29.
    [30]Frederiksen H, Sorensen K, Mouritsen A, et al. High urinary phthalate concentration associated with delayed pubarche in girls[J]. Int J Androl,2012,35(3):216-226.
    [31]Tranfo G, Caporossi L, Paci E, et al. Urinary phthalate monoesters concentration in couples with infertility problems[J]. Toxicol Lett,2012,213(1):15-20.
    [32]Swan S H. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans[J]. Environ Res,2008,108(2):177-184.
    [33]Pant N, Shukla M, Kumar P D, et al. Correlation of phthalate exposures with semen quality[J]. Toxicol Appl Pharmacol,2008,231(1):112-116.
    [34]Latini G, De Felice C, Presta G, et al. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy[J]. Environ Health Perspect,2003,111(14):1783-1785.
    [35]Schultz R M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo[J]. Hum Reprod Update,2002,8(4):323-331.
    [36]Christians E, Campion E, Thompson E M, et al. Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription[J]. Development,1995,121(1):113-122.
    [37]Christians E, Michel E, Renard J P. Developmental control of heat shock and chaperone gene expression. Hsp 70 genes and heat shock factors during preimplantation phase of mouse development[J]. Cell Mol Life Sci, 1997,53(2):168-178.
    [38]Suzuki T, Minami N, Kono T, et al. Zygotically activated genes are suppressed in mouse nuclear transferred embryos[J]. Cloning Stem Cells,2006,8(4):295-304.
    [39]Davis W J, De Sousa P A, Schultz R M. Transient expression of translation initiation factor eIF-4C during the 2-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication in zygotic gene activation[J]. Dev Biol,1996,174(2):190-201.
    [40]Falco G, Lee S L, Stanghellini I, et al. Zscan4:a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells[J]. Dev Biol,2007,307(2):539-550.
    [41]Conover J C, Temeles G L, Zimmermann J W, et al. Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo[J]. Dev Biol,1991,144(2):392-404.
    [42]Herrera B, Alvarez A M, Sanchez A, et al. Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes[J]. FASEB J,2001,15(3):741-751.
    [43]Lin L C, Wang S L, Chang Y C, et al. Associations between maternal phthalate exposure and cord sex hormones in human infants[J]. Chemosphere, 2011,83(8):1192-1199.
    [44]Muczynski V, Cravedi J P, Lehraiki A, et al. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis:In vitro and in vivo approaches[J]. Toxicol Appl Pharmacol,2012,261(1):97-104.
    [45]Janer G, Verhoef A, Gilsing H D, et al. Use of the rat postimplantation embryo culture to assess the embryotoxic potency within a chemical category and to identify toxic metabolites[J]. Toxicol In Vitro,2008,22(7):1797-1805.
    [46]Onorato T M, Brown P W, Morris P L. Mono-(2-ethylhexyl) phthalate increases spermatocyte mitochondrial peroxiredoxin 3 and cyclooxygenase 2[J]. J Androl, 2008,29(3):293-303.
    [47]Zhang C, Liu C, Li D, et al. Intracellular redox imbalance and extracellular amino acid metabolic abnormality contribute to arsenic-induced developmental retardation in mouse preimplantation embryos[J]. J Cell Physiol, 2010,222(2):444-455.
    [48]Ahmad K A, Wang G, Ahmed K. Intracellular hydrogen peroxide production is an upstream event in apoptosis induced by down-regulation of casein kinase 2 in prostate cancer cells[J]. Mol Cancer Res,2006,4(5):331-338.
    [49]Green D R, Reed J C. Mitochondria and apoptosis[J]. Science, 1998,281(5381):1309-1312.
    [50]Kroemer G, Reed J C. Mitochondrial control of cell death[J]. Nat Med, 2000,6(5):513-519.
    [51]Susin S A, Lorenzo H K, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor[J]. Nature,1999,397(6718):441-446.
    [52]Chhabra A, Mehrotra S, Chakraborty N G, et al. Activation-induced cell death of human melanoma specific cytotoxic T lymphocytes is mediated by apoptosis-inducing factor[J]. Eur J Immunol,2006,36(12):3167-3174.
    [53]Schultz R M. Regulation of zygotic gene activation in the mouse[J]. Bioessays, 1993,15(8):531-538.
    [54]Bell C E, Calder M D, Watson A J. Genomic RNA profiling and the programme controlling preimplantation mammalian development[J]. Mol Hum Reprod, 2008,14(12):691-701.
    [55]Rother F, Shmidt T, Popova E, et al. Importin alpha7 is essential for zygotic genome activation and early mouse development[J]. PLoS One,2011,6(3):e18310.
    [56]Bachvarova R. Gene expression during oogenesis and oocyte development in mammals[J]. Dev Biol (N Y 1985),1985,1:453-524.
    [57]Hamatani T, Carter M G, Sharov A A, et al. Dynamics of global gene expression changes during mouse preimplantation development[J]. Dev Cell, 2004,6(1):117-131.
    [58]Wang Q, Latham K E. Requirement for protein synthesis during embryonic genome activation in mice[J]. Mol Reprod Dev,1997,47(3):265-270.
    [59]Qiu J J, Zhang W W, Wu Z L, et al. Delay of ZGA initiation occurred in 2-cell blocked mouse embryos[J]. Cell Res,2003,13(3):179-185.
    [60]Morisato D, Anderson K V. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo[J]. Annu Rev Genet,1995,29:371-399.
    [61]Newport J, Kirschner M. A major developmental transition in early Xenopus embryos:Ⅰ. characterization and timing of cellular changes at the midblastula stage[J]. Cell,1982,30(3):675-686.
    [62]Li L, Zheng P, Dean J. Maternal control of early mouse development[J]. Development,2010,137(6):859-870.
    [63]Zheng P, Dean J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis[J]. Proc Natl Acad Sci U S A, 2009,106(18):7473-7478.
    [64]Foygel K, Choi B, Jun S, et al. A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition[J]. PLoS One,2008,3(12):e4109.
    [65]Palmieri S L, Peter W, Hess H, et al. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation[J]. Dev Biol, 1994,166(1):259-267.
    [66]Ovitt C E, Scholer H R. The molecular biology of Oct-4 in the early mouse embryo[J]. Mol Hum Reprod,1998,4(11):1021-1031.
    [67]Avilion A A, Nicolis S K, Pevny L H, et al. Multipotent cell lineages in early mouse development depend on SOX2 function[J]. Genes Dev,2003,17(1):126-140.
    [68]Keramari M, Razavi J, Ingman K A, et al. Sox2 is essential for formation of trophectoderm in the preimplantation embryo[J]. PLoS One,2010,5(11):e13952.
    [69]Foster P M, Mylchreest E, Gaido K W, et al. Effects of phthalate esters on the developing reproductive tract of male rats[J]. Hum Reprod Update, 2001,7(3):231-235.
    [70]Jurewicz J, Hanke W. Exposure to phthalates:reproductive outcome and children health. A review of epidemiological studies[J]. Int J Occup Med Environ Health, 2011,24(2):115-141.
    [71]Kleymenova E, Swanson C, Boekelheide K, et al. Exposure in utero to di(n-butyl) phthalate alters the vimentin cytoskeleton of fetal rat Sertoli cells and disrupts Sertoli cell-gonocyte contact[J]. Biol Reprod,2005,73(3):482-490.
    [72]Simon H U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction[J]. Apoptosis,2000,5(5):415-418.
    [73]Kondo T, Shono T, Suita S. Age-specific effect of phthalate ester on testicular development in rats[J]. J Pediatr Surg,2006,41(7):1290-1293.
    [74]Alam M S, Ohsako S, Tay T W, et al. Di(n-butyl) phthalate induces vimentin filaments disruption in rat sertoli cells:a possible relation with spermatogenic cell apoptosis[J]. Anat Histol Embryol,2010,39(3):186-193.
    [75]Kang S C, Lee B M. DNA methylation of estrogen receptor alpha gene by phthalates[J]. J Toxicol Environ Health A,2005,68(23-24):1995-2003.
    [76]Montag M, Koll B, Holmes P, et al. Significance of the number of embryonic cells and the state of the zona pellucida for hatching of mouse blastocysts in vitro versus in vivo[J]. Biol Reprod,2000,62(6):1738-1744.
    [77]Wang J Z, Sui H S, Miao D Q, et al. Effects of heat stress during in vitro maturation on cytoplasmic versus nuclear components of mouse oocytes[J]. Reproduction, 2009,137(2):181-189.
    [78]Li G, Khateeb K, Schaeffer E, et al. Genes of the transforming growth factor-beta signalling pathway are associated with pre-implantation embryonic development in cattle[J]. J Dairy Res,2012,79(3):310-317.
    [79]Prasanth G K, Divya L M, Sadasivan C. Effects of mono and di(n-butyl) phthalate on superoxide dismutase[J]. Toxicology,2009,262(1):38-42.
    [80]Wright K, Brown L, Brown G, et al. Microarray assessment of methylation in individual mouse blastocyst stage embryos shows that in vitro culture may have widespread genomic effects[J]. Hum Reprod,2011,26(9):2576-2585.
    [81]Barboni B, Russo V, Cecconi S, et al. In vitro grown sheep preantral follicles yield oocytes with normal nuclear-epigenetic maturation[J]. PLoS One, 2011,6(11):e27550.
    [82]Heinzmann J, Hansmann T, Herrmann D, et al. Epigenetic profile of developmentally important genes in bovine oocytes[J]. Mol Reprod Dev, 2011,78(3):188-201.
    [83]Oliver V F, Miles H L, Cutfield W S, et al. Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population[J]. Fertil. Steril,2012,97(1):147-153.
    [84]Al-Khtib M, Perret A, Khoueiry R, et al. Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro[J]. Fertil Steril, 2011,95(6):1955-1960.
    [85]Jones P A, Takai D. The role of DNA methylation in mammalian epigenetics[J]. Science,2001,293(5532):1068-1070.
    [86]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science,2001,293(5532):1089-1093.
    [87]Rideout W R, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome[J]. Science,2001,293(5532):1093-1098.
    [88]Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos[J]. Proc Natl Acad Sci U S A,2001,98(24):13734-13738.
    [89]Beaujean N, Taylor J, Gardner J, et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer[J]. Biol Reprod,2004,71(1):185-193.
    [90]Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo[J]. Dev Biol,2002,241(1):172-182.
    [91]Fulka H, Mrazek M, Tepla O, et al. DNA methylation pattern in human zygotes and developing embryos[J]. Reproduction,2004,128(6):703-708.
    [92]Shi W, Dirim F, Wolf E, et al. Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos[J]. Biol Reprod,2004,71(1):340-347.
    [1]Hauser R, Calafat A M. Phthalates and human health[J]. Occup Environ Med, 2005,62(11):806-818.
    [2]Adibi J J, Perera F P, Jedrychowski W, et al. Prenatal exposures to phthalates among women in New York City and Krakow, Poland[J]. Environ Health Perspect, 2003,111(14):1719-1722.
    [3]Rudel R A, Camann D E, Spengler J D, et al. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust[J]. Environ Sci Technol,2003,37(20):4543-4553.
    [4]Clausen P A, Lindeberg B R, Nilsson T, et al. Simultaneous extraction of di(2-ethylhexyl) phthalate and nonionic surfactants from house dust. Concentrations in floor dust from 15 Danish schools[J]. J Chromatogr A,2003,986(2):179-190.
    [5]Becker K, Seiwert M, Angerer J, et al. DEHP metabolites in urine of children and DEHP in house dust[J]. Int J Hyg Environ Health,2004,207(5):409-417.
    [6]Rudel R A, Camann D E, Spengler J D, et al. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust[J]. Environ Sci Technol,2003,37(20):4543-4553.
    [7]Bornehag C G, Sundell J, Weschler C J, et al. The association between asthma and allergic symptoms in children and phthalates in house dust:a nested case-control study[J]. Environ Health Perspect,2004,112(14):1393-1397.
    [8]Oie L, Hersoug L G, Madsen J O. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma[J]. Environ Health Perspect,1997,105(9):972-978.
    [9]Fromme H, Lahrz T, Piloty M, et al. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany)[J]. Indoor Air,2004,14(3):188-195.
    [10]Bornehag C G, Lundgren B, Weschler C J, et al. Phthalates in indoor dust and their association with building characteristics[J]. Environ Health Perspect, 2005,113(10):1399-1404.
    [11]Huang P C, Kuo P L, Guo Y L, et al. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women[J]. Hum Reprod, 2007,22(10):2715-2722.
    [12]Huang P C, Kuo P L, Chou Y Y, et al. Association between prenatal exposure to phthalates and the health of newborns[J]. Environ hit,2009,35(1):14-20.
    [13]Itoh H, Yoshida K, Masunaga S. Evaluation of the effect of governmental control of human exposure to two phthalates in Japan using a urinary biomarker approach[J]. Int J Hyg Environ Health,2005,208(4):237-245.
    [14]Itoh H, Yoshida K, Masunaga S. Quantitative identification of unknown exposure pathways of phthalates based on measuring their metabolites in human urine[J]. Environ Sci Technol,2007,41(13):4542-4547.
    [15]Berman T, Hochner-Celnikier D, Calafat A M, et al. Phthalate exposure among pregnant women in Jerusalem, Israel:results of a pilot study[J]. Environ Int, 2009,35(2):353-357.
    [16]Ye X, Pierik F H, Hauser R, et al. Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands:the Generation R study[J]. Environ Res, 2008,108(2):260-267.
    [17]Fromme H, Bolte G, Koch H M, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population[J].Int J Hyg Environ Health, 2007,210(1):21-33.
    [18]Koch H M, Drexler H, Angerer J. Internal exposure of nursery-school children and their parents and teachers to di(2-ethylhexyl)phthalate (DEHP)[J].Int J Hyg Environ Health,2004,207(1):15-22.
    [19]Koch H M, Rossbach B, Drexler H, et al. Internal exposure of the general population to DEHP and other phthalates--determination of secondary and primary phthalate monoester metabolites in urine[J]. Environ Res,2003,93(2):177-185.
    [20]Blount B C, Silva M J, Caudill S P, et al. Levels of seven urinary phthalate metabolites in a human reference population[J]. Environ Health Perspect, 2000,108(10):979-982.
    [21]Kato K, Silva M J, Reidy J A, et al. Mono(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate[J]. Environ Health Perspect,2004,112(3):327-330.
    [22]Barr D B, Silva M J, Kato K, et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers[J]. Environ Health Perspect,2003,111(9):1148-1151.
    [23]Adibi J J, Whyatt R M, Williams P L, et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples[J]. Environ Health Perspect,2008,116(4):467-473.
    [24]Hines E P, Calafat A M, Silva M J, et al. Concentrations of phthalate metabolites in milk, urine, saliva, and Serum of lactating North Carolina women[J]. Environ Health Perspect,2009,117(1):86-92.
    [25]Mortensen G K, Main K M, Andersson A M, et al. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS)[J]. Anal Bioanal Chem,2005,382(4):1084-1092.
    [26]Hogberg J, Hanberg A, Berglund M, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations[J]. Environ Health Perspect,2008,116(3):334-339.
    [27]Sathyanarayana S. Phthalates and children's health[J]. Curr Probl Pediatr Adolesc Health Care,2008,38(2):34-49.
    [28]Sorensen L K. Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom, 2006,20(7):1135-1143.
    [29]Zhu J, Phillips S P, Feng Y L, et al. Phthalate esters in human milk:concentration variations over a 6-month postpartum time[J]. Environ Sci Technol, 2006,40(17):5276-5281.
    [30]Silva M J, Reidy J A, Herbert A R, et al. Detection of phthalate metabolites in human amniotic fluid[J]. Bull Environ Contam Toxicol,2004,72(6):1226-1231.
    [31]Duty S M, Ackerman R M, Calafat A M, et al. Personal care product use predicts urinary concentrations of some phthalate monoesters[J]. Environ Health Perspect, 2005,113(11):1530-1535.
    [32]Green R, Hauser R, Calafat A M, et al. Use of di(2-ethylhexyl) phthalate-containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants[J]. Environ Health Perspect,2005,113(9):1222-1225.
    [33]Weuve J, Sanchez B N, Calafat A M, et al. Exposure to phthalates in neonatal intensive care unit infants:urinary concentrations of monoesters and oxidative metabolites[J]. Environ Health Perspect,2006,114(9):1424-1431.
    [34]Foster P M, Mylchreest E, Gaido K W, et al. Effects of phthalate esters on the developing reproductive tract of male rats[J]. Hum Reprod Update, 2001,7(3):231-235.
    [35]Sharpe R M. Hormones and testis development and the possible adverse effects of environmental chemicals[J]. Toxicol Lett,2001,120(1-3):221-232.
    [36]Calafat A M, Brock J W, Silva M J, et al. Urinary and amniotic fluid levels of phthalate monoesters in rats after the oral administration of di(2-ethylhexyl) phthalate and di-n-butyl phthalate[J]. Toxicology,2006,217(1):22-30.
    [37]Ablake M, Itoh M, Terayama H, et al. Di-(2-ethylhexyl) phthalate induces severe aspermatogenesis in mice, however, subsequent antioxidant vitamins supplementation accelerates regeneration of the seminiferous epithelium[J]. Int J Androl,2004,27(5):274-281.
    [38]Latini G, De Felice C, Verrotti A. Plasticizers, infant nutrition and reproductive health[J]. Reprod Toxicol,2004,19(1):27-33.
    [39]Lehmann K P, Phillips S, Sar M, et al. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate[J]. Toxicol Sci,2004,81(1):60-68.
    [40]Thompson C J, Ross S M, Gaido K W. Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism[J]. Endocrinology,2004,145(3):1227-1237.
    [41]Liu K, Lehmann K P, Sar M, et al. Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis[J]. Biol Reprod,2005,73(1):180-192.
    [42]Mahood IK, Hallmark N, Mckinnell C, et al. Abnormal Leydig Cell aggregation in the fetal testis of rats exposed to di (n-butyl) phthalate and its possible role in testicular dysgenesis[J]. Endocrinology,2005,146(2):613-623.
    [43]Hotchkiss A K, Parks-Saldutti L G, Ostby J S, et al. A mixture of the "antiandrogens" linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion[J]. Biol Reprod,2004,71(6):1852-1861.
    [44]Shono T, Shima Y, Kondo T, et al. In utero exposure to mono-n-butyl phthalate impairs insulin-like factor 3 gene expression and the transabdominal phase of testicular descent in fetal rats[J]. J Pediatr Surg,2005,40(12):1861-1864.
    [45]Kai H, Shono T, Tajiri T, et al. Long-term effects of intrauterine exposure to mono-n-butyl phthalate on the reproductive function of postnatal rats[J]. J Pediatr Surg,2005,40(2):429-433.
    [46]Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction:phthalates expert panel report on the reproductive and developmental toxicity of di-n-octyl phthalate[J]. Reprod Toxicol, 2002,16(5):721-734.
    [47]Tabacova S, Balabaeva L, Little R E. Maternal exposure to exogenous nitrogen compounds and complications of pregnancy [J]. Arch Environ Health, 1997,52(5):341-347.
    [48]Gladen B C, Tabacova S, Baird D D, et al. Variability of lipid hydroperoxides in pregnant and nonpregnant women[J]. Reprod Toxicol,1999,13(1):41-44.
    [49]Wolff M S, Engel S M, Berkowitz G S, et al. Prenatal phenol and phthalate exposures and birth outcomes[J]. Environ Health Perspect,2008,116(8):1092-1097.
    [50]Latini G, De Felice C, Presta G, et al. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy[J]. Environ Health Perspect,2003,111(14):1783-1785.
    [51]Main K M, Mortensen G K, Kaleva M M, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age[J]. Environ Health Perspect,2006,114(2):270-276.
    [52]Palanza P, Parmigiani S, Vom S F. Urine marking and maternal aggression of wild female mice in relation to anogenital distance at birth[J]. Physiol Behav, 1995,58(5):827-835.
    [53]Faber K A, Hughes C J. Anogenital distance at birth as a predictor of volume of the sexually dimorphic nucleus of the preoptic area of the hypothalamus and pituitary responsiveness in castrated adult rats[J]. Biol Reprod,1992,46(1):101-104.
    [54]Gallavan R J, Holson J F, Stump D G, et al. Interpreting the toxicologic significance of alterations in anogenital distance:potential for confounding effects of progeny body weights[J]. Reprod Toxicol,1999,13(5):383-390.
    [55]Andrade A J, Grande S W, Talsness C E, et al. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity[J]. Toxicology,2006,227(3):185-192.
    [56]Lee B M, Koo H J. Hershberger assay for antiandrogenic effects of phthalates[J]. J Toxicol Environ Health A,2007,70(15-16):1365-1370.
    [57]Swan S H, Main K M, Liu F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure[J]. Environ Health Perspect, 2005,113(8):1056-1061.
    [58]Huang P C, Kuo P L, Chou Y Y, et al. Association between prenatal exposure to phthalates and the health of newborns[J]. Environ Int,2009,35(1):14-20.
    [59]Colon I, Caro D, Bourdony C J, et al. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development[J]. Environ Health Perspect,2000,108(9):895-900.
    [60]Ge R S, Chen G R, Tanrikut C, et al. Phthalate ester toxicity in Leydig cells: developmental timing and dosage considerations[J]. Reprod Toxicol, 2007,23(3):366-373.
    [61]Borch J, Axelstad M, Vinggaard A M, et al. Diisobutyl phthalate has comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis[J]. Toxicol Lett, 2006,163(3):183-190.
    [62]Duty S M, Calafat A M, Silva M J, et al. Phthalate exposure and reproductive hormones in adult men[J]. Hum Reprod,2005,20(3):604-610.
    [63]Hauser R, Meeker J D, Duty S, et al. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites[J]. Epidemiology, 2006,17(6):682-691.
    [64]Duty S M, Silva M J, Barr D B, et al. Phthalate exposure and human semen parameters[J]. Epidemiology,2003,14(3):269-277.
    [65]Pant N, Shukla M, Kumar P D, et al. Correlation of phthalate exposures with semen quality[J]. Toxicol Appl Pharmacol,2008,231(1):112-116.
    [66]Hauser R, Meeker J D, Singh N P, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites[J]. Hum Reprod, 2007,22(3):688-695.
    [67]Duty S M, Singh N P, Silva M J, et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay[J]. Environ Health Perspect,2003,111(9):1164-1169.
    [68]Zhang Y H, Zheng L X, Chen B H. Phthalate exposure and human semen quality in Shanghai:a cross-sectional study[J]. Biomed Environ Sci,2006,19(3):205-209.
    [69]Foster P M. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters[J]. Int J Androl,2006,29(1):140-147,181-185.
    [70]Culty M, Thuillier R, Li W, et al. In utero exposure to di-(2-ethylhexyl) phthalate exerts both short-term and long-lasting suppressive effects on testosterone production in the rat[J]. Biol Reprod,2008,78(6):1018-1028.
    [71]Bility M T, Thompson J T, Mckee R H, et al. Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters[J]. Toxicol Sci,2004,82(1):170-182.
    [72]Kluwe W M, Haseman J K, Douglas J F, et al. The carcinogenicity of dietary di(2-ethylhexyl) phthalate (DEHP) in Fischer 344 rats and B6C3F1 mice[J]. J Toxicol Environ Health,1982,10(4-5):797-815.
    [73]Rao M S, Yeldandi A V, Subbarao V. Quantitative analysis of hepatocellular lesions induced by di(2-ethylhexyl)phthalate in F-344 rats[J]. J Toxicol Environ Health, 1990,30(2):85-89.
    [74]Larsen S T, Hansen J S, Hansen E W, et al. Airway inflammation and adjuvant effect after repeated airborne exposures to di-(2-ethylhexyl)phthalate and ovalbumin in BALB/c mice[J]. Toxicology,2007,235(1-2):119-129.
    [75]Thor L S, My L R, Damgard N G, et al. Di-(2-ethylhexyl) phthalate possesses an adjuvant effect in a subcutaneous injection model with BALB/c mice[J]. Toxicol Lett,2001,125(1-3):11-18.
    [76]王立鑫,杨旭.邻苯二甲酸酯毒性及健康效应研究进展[J].环境与健康杂志,2010,27(3):276-281.
    [1]Bellier S, Chastant S, Adenot P, et al. Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase Ⅱ delineate the two phases of zygotic gene activation in mammalian embryos[J]. EMBO J,1997,16(20):6250-6262.
    [2]Bouniol C, Nguyen E, Debey P. Endogenous transcription occurs at the 1-cell stage in the mouse embryo[J]. Exp Cell Res,1995,218(1):57-62.
    [3]Latham K E, Garrels J I, Chang C, et al. Quantitative analysis of protein synthesis in mouse embryos. Ⅰ. Extensive reprogramming at the one- and two-cell stages[J]. Development,1991,112(4):921-932.
    [4]Nothias J Y, Majumder S, Kaneko K J, et al. Regulation of gene expression at the beginning of mammalian development[J]. J Biol Chem,1995,270(38):22077-22080.
    [5]Schultz R M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo[J]. Hum Reprod Update,2002,8(4):323-331.
    [6]Flach G, Johnson M H, Braude P R, et al. The transition from maternal to embryonic control in the 2-cell mouse embryo[J]. EMBO J,1982,1(6):681-686.
    [7]Bachvarova R. Gene expression during oogenesis and oocyte development in mammals[J]. Dev Biol(N Y 1985),1985,1:453-524.
    [8]Hamatani T, Carter M G, Sharov A A, et al. Dynamics of global gene expression changes during mouse preimplantation development[J]. Dev Cell,2004,6(1):117-131.
    [9]Wang Q, Latham K E. Requirement for protein synthesis during embryonic genome activation in mice[J]. Mol Reprod Dev,1997,47(3):265-270.
    [10]Galloway S M, Mcnatty K P, Cambridge L M, et al. Mutations in an oocyte-derived growth factor gene (BMP 15) cause increased ovulation rate and infertility in a dosage-sensitive manner[J]. Nat Genet,2000,25(3):279-283.
    [11]Dong J, Albertini D F, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis[J]. Nature,1996,383(6600):531-535.
    [12]Liang L, Soyal S M, Dean J. FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes[J]. Development, 1997,124(24):4939-4947.
    [13]Morisato D, Anderson K V. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo[J]. Annu Rev Genet,1995,29:371-399.
    [14]Newport J, Kirschner M. A major developmental transition in early Xenopus embryos:Ⅰ. characterization and timing of cellular changes at the midblastula stage[J]. Cell,1982,30(3):675-686.
    [15]Acevedo N, Smith G D. Oocyte-specific gene signaling and its regulation of mammalian reproductive potential[J]. Front Biosci,2005,10:2335-2345.
    [16]Tadros W, Lipshitz H D. The maternal-to-zygotic transition:a play in two acts[J]. Development,2009,136(18):3033-3042.
    [17]Li L, Zheng P, Dean J. Maternal control of early mouse developmen[J]. Development,2010,137(6):859-870.
    [18]Golbus M S, Calarco P G, Epstein C J. The effects of inhibitors of RNA synthesis (alpha-amanitin and actinomycin D) on preimplantation mouse embryogenesis[J]. J Exp Zool,1973,186(2):207-216.
    [19]Warner C M, Versteegh L R. In vivo and in vitro effect of alpha-amanitin on preimplantation mouse embryo RNA polymerase[J]. Nature, 1974,248(450):678-680.
    [20]Schultz R M. Regulation of zygotic gene activation in the mouse[J]. Bioessays, 1993,15(8):531-538.
    [21]Qiu J J, Zhang W W, Wu Z L, et al. Delay of ZGA initiation occurred in 2-cell blocked mouse embryos[J]. Cell Res,2003,13(3):179-185.
    [22]Telford N A, Watson A J, Schultz G A. Transition from maternal to embryonic control in early mammalian development:a comparison of several species[J]. Mol Reprod Dev,1990,26(1):90-100.
    [23]Howlett S K, Webb M, Maro B, et al. Meiosis II, mitosis I and the linking interphase: a study of the cytoskeleton in the fertilised mouse egg[J]. Cytobios, 1985,43(174S):295-305.
    [24]Taylor K D, Piko L. Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos[J]. Development,1987,101(4):877-892.
    [25]Aoki F, Worrad D M, Schultz R M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo[J]. Dev Biol, 1997,181(2):296-307.
    [26]Lecuyer E, Yoshida H, Parthasarathy N, et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function[J]. Cell, 2007,131(1):174-187.
    [27]De Renzis S, Elemento O, Tavazoie S, et al. Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo[J]. PLoS Biol, 2007,5(5):e117.
    [28]Hamatani T, Carter M G, Sharov A A, et al. Dynamics of global gene expression changes during mouse preimplantation development[J]. Dev Cell,2004,6(1):117-131.
    [29]Mathavan S, Lee S G, Mak A, et al. Transcriptome analysis of zebrafish embryogenesis using microarrays[J]. PLoS Genet,2005,1(2):260-276.
    [30]Wiekowski M, Miranda M, Depamphilis M L. Regulation of gene expression in preimplantation mouse embryos:effects of the zygotic clock and the first mitosis on promoter and enhancer activities[J]. Dev Biol,1991,147(2):403-414.
    [31]Bolton V N, Oades P J, Johnson M H. The relationship between cleavage, DNA replication, and gene expression in the mouse 2-cell embryo[J]. J Embryol Exp Morphol,1984,79:139-163.
    [32]Kigami D, Minami N, Takayama H, et al. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos[J]. Biol Reprod,2003,68(2):651-654.
    [33]Nonchev S, Tsanev R. Protamine-histone replacement and DNA replication in the male mouse pronucleus[J]. Mol Reprod Dev,1990,25(1):72-76.
    [34]Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo[J]. Dev Biol,2002,241(1):172-182.
    [35]Adenot P G, Mercier Y, Renard J P, et al. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos[J]. Development, 1997,124(22):4615-4625.
    [36]Ura K, Kurumizaka H, Dimitrov S, et al. Histone acetylation:influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression[J]. EMBO J,1997,16(8):2096-2107.
    [37]Wade P A, Pruss D, Wolffe A P. Histone acetylation:chromatin in action[J]. Trends Biochem Sci,1997,22(4):128-132.
    [38]Majumder S, Depamphilis M L. A unique role for enhancers is revealed during early mouse development[J]. Bioessays,1995,17(10):879-889.
    [39]Martinez-Salas E, Linney E, Hassell J, et al. The need for enhancers in gene expression first appears during mouse development with formation of the zygotic nucleus[J]. Genes Dev,1989,3(10):1493-1506.
    [40]Majumder S, Miranda M, Depamphilis M L. Analysis of gene expression in mouse preimplantation embryos demonstrates that the primary role of enhancers is to relieve repression of promoters[J]. EMBO J,1993,12(3):1131-1140.
    [41]Wiekowski M, Miranda M, Depamphilis M L. Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei[J]. Dev Biol,1993,159(1):366-378.
    [42]Henery C C, Miranda M, Wiekowski M, et al. Repression of gene expression at the beginning of mouse development[J]. Dev Biol,1995,169(2):448-460.
    [43]Christians E, Campion E, Thompson E M, et al. Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription[J]. Development,1995,121(1):113-122.
    [44]Bensaude O, Babinet C, Morange M, et al. Heat shock proteins, first major products of zygotic gene activity in mouse embryo[J]. Nature,1983,305(5932):331-333.
    [45]Howlett S K, Barton S C, Surani M A. Nuclear cytoplasmic interactions following nuclear transplantation in mouse embryos[J]. Development,1987,101(4):915-923.
    [46]Howlett S K. A set of proteins showing cell cycle dependent modification in the early mouse embryo[J]. Cell,1986,45(3):387-396.
    [47]Vernet M, Bonnerot C, Briand P, et al. Changes in permissiveness for the expression of microinjected DNA during the first cleavages of mouse embryos[J]. Mech Dev, 1992,36(3):129-139.
    [48]Poueymirou W T, Schultz R M. Differential effects of activators of cAMP-dependent protein kinase and protein kinase C on cleavage of one-cell mouse embryos and protein synthesis and phosphorylation in one-and two-cell embryos[J]. Dev Biol,1987,121(2):489-498.
    [49]Latham K E, Solter D, Schultz R M. Activation of a two-cell stage-specific gene .following transfer of heterologous nuclei into enucleated mouse embryos[J]. Mol Reprod Dev,1991,30(3):182-186.
    [50]Latham K E, Solter D, Schultz R M. Acquisition of a transcriptionally permissive state during the 1-cell stage of mouse embryogenesis[J]. Dev Biol, 1992,149(2):457-462.
    [51]Conover J C, Temeles G L, Zimmermann J W, et al. Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo[J]. Dev Biol,1991,144(2):392-404.
    [52]Wang Q, Chung Y G, Devries W N, et al. Role of protein synthesis in the development of a transcriptionally permissive state in one-cell stage mouse embryos[J]. Biol Reprod,2001,65(3):748-754.
    [53]Suzuki T, Minami N, Kono T, et al. Zygotically activated genes are suppressed in mouse nuclear transferred embryos[J]. Cloning Stem Cells,2006,8(4):295-304.
    [54]Davis W J, De Sousa P A, Schultz R M. Transient expression of translation initiation factor eIF-4C during the 2-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication in zygotic gene activation[J]. Dev Biol,1996,174(2):190-201.
    [55]Zeng F, Baldwin D A, Schultz R M. Transcript profiling during preimplantation mouse developmen[J]. Dev Biol,2004,272(2):483-496.
    [56]Ma J, Svoboda P, Schultz R M, et al. Regulation of zygotic gene activation in the preimplantation mouse embryo:global activation and repression of gene expression[J]. Biol Reprod,2001,64(6):1713-1721.
    [57]Akam M. The molecular basis for metameric pattern in the Drosophila embryo[J]. Development,1987,101(1):1-22.
    [58]Duval C, Bouvet P, Omilli F, et al. Stability of maternal mRNA in Xenopus embryos:role of transcription and translation[J]. Mol Cell Biol, 1990,10(8):4123-4129.
    [59]Thompson E M, Legouy E, Renard J P. Mouse embryos do not wait for the MBT: chromatin and RNA polymerase remodeling in genome activation at the onset of development[J]. Dev Genet,1998,22(1):31-42.
    [60]Piko L, Clegg K B. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos[J]. Dev Biol,1982,89(2):362-378.
    [61]Paynton B V, Rempel R, Bachvarova R. Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse[J]. Dev Biol,1988,129(2):304-314.
    [62]Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs[J]. Science,2006,312(5770):75-79.
    [63]Giraldez A J, Cinalli R M, Glasner M E, et al. MicroRNAs regulate brain morphogenesis in zebrafish[J]. Science,2005,308(5723):833-838.
    [64]Merz E A, Brinster R L, Brunner S, et al. Protein degradation during preimplantation development of the mouse[J]. J Reprod Fertil,1981,61(2):415-418.
    [65]Clegg K B, Piko L. Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+RNA in early mouse embryos[J]. Dev Biol,1983,95(2):331-341.
    [66]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science,2001,293(5532):1089-1093.
    [67]Bultman S J, Gebuhr T C, Pan H, et al. Maternal BRG1 regulates zygotic genome activation in the mouse[J]. Genes Dev,2006,20(13):1744-1754.
    [68]Burns K H, Viveiros M M, Ren Y, et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos[J]. Science,2003,300(5619):633-636.
    [69]Christians E, Davis A A, Thomas S D, et al. Maternal effect of Hsfl on reproductive success[J]. Nature,2000,407(6805):693-694.
    [70]Gurtu V E, Verma S, Grossmann A H, et al. Maternal effect for DNA mismatch repair in the mouse[J]. Genetics,2002,160(1):271-277.
    [71]Howell C Y, Bestor T H, Ding F, et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmtl gene[J]. Cell,2001,104(6):829-838.
    [72]Ma J, Zeng F, Schultz R M, et al. Basonuclin:a novel mammalian maternal-effect gene[J]. Development,2006,133(10):2053-2062.
    [73]Payer B, Saitou M, Barton S C, et al. Stella is a maternal effect gene required for normal early development in mice[J]. Curr Biol,2003,13(23):2110-2117.
    [74]Ramos S B, Stumpo D J, Kennington E A, et al. The CCCH tandem zinc-finger protein Zfp3612 is crucial for female fertility and early embryonic development J]. Development,2004,131(19):4883-4893.
    [75]Tong Z B, Gold L, Pfeifer K E, et al. Mater, a maternal effect gene required for early embryonic development in mice[J]. Nat Genet,2000,26(3):267-268.
    [76]Wu X, Viveiros M M, Eppig J J, et al. Zygote arrest 1 (Zarl) is a novel maternal-effect gene critical for the oocyte-to-embryo transition[J]. Nat Genet, 2003,33(2):187-191.
    [77]Latham K E, Schultz R M. Embryonic genome activation[J]. Front Biosci, 2001,6:D748-D759.
    [78]Kanka J. Gene expression and chromatin structure in the pre-implantation embryo[J]. Theriogenology,2003,59(1):3-19.
    [79]Fiorenza M T, Bevilacqua A, Canterini S, et al. Early transcriptional activation of the hsp70.1 gene by osmotic stress in one-cell embryos of the mouse[J]. Biol Reprod,2004,70(6):1606-1613.
    [80]Pedersen T, Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary[J]. J Reprod Fertil,1968,17(3):555-557.
    [81]Ohsumi K, Katagiri C. Characterization of the ooplasmic factor inducing decondensation of and protamine removal from toad sperm nuclei:involvement of nucleoplasmin[J]. Dev Biol,1991,148(1):295-305.
    [82]Bachvarova R, De Leon V. Polyadenylated RNA of mouse ova and loss of maternal RNA in early development[J]. Dev Biol,1980,74(1):1-8.
    [83]Clegg K B, Piko L. Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+RNA in early mouse embryos[J]. Dev Biol,1983,95(2):331-341.
    [84]Ma J, Zeng F, Schultz R M, et al. Basonuclin:a novel mammalian maternal-effect gene[J]. Development,2006,133(10):2053-2062.
    [85]Filippova G N. Genetics and epigenetics of the multifunctional protein CTCF[J]. Curr Top Dev Biol,2008,80:337-360.
    [86]Donohoe M E, Silva S S, Pinter S F, et al. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting[J]. Nature, 2009,460(7251):128-132.
    [87]Wan L B, Pan H, Hannenhalli S, et al. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development[J]. Development, 2008,135(16):2729-2738.
    [88]Foygel K, Choi B, Jun S, et al. A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition[J]. PLoS One,2008,3(12):e4109.
    [89]Avilion A A, Nicolis S K, Pevny L H, et al. Multipotent cell lineages in early mouse development depend on SOX2 function[J]. Genes Dev,2003,17(1):126-140.
    [90]Hamatani T, Carter M G, Sharov A A, et al. Dynamics of global gene expression changes during mouse preimplantation development[J]. Dev Cell, 2004,6(1):117-131.
    [91]Evsikov A V, Graber J H, Brockman J M, et al. Cracking the egg:molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo[J]. Genes Dev,2006,20(19):2713-2727.
    [92]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science,2001,293(5532):1089-1093.
    [93]Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo[J]. Dev Biol,2002,241(1):172-182.
    [94]Mcgrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes[J]. Cell,1984,37(1):179-183.
    [95]Barton S C, Surani M A, Norris M L. Role of paternal and maternal genomes in mouse development[J]. Nature,1984,311(5984):374-376.
    [96]Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood[J]. Nature,2004,428(6985):860-864.
    [97]Okano M, Bell D W, Haber D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell, 1999,99(3):247-257.
    [98]Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting[J]. Nature, 2004,429(6994):900-903.
    [99]Bourc'His D, Xu G L, Lin C S, et al. Dnmt3L and the establishment of maternal genomic imprints[J]. Science,2001,294(5551):2536-2539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700