用户名: 密码: 验证码:
内蒙古农牧交错带主要作物对气候的敏感性与适应弹性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北方农牧交错带是气候变化的敏感地带,气候干暖化对当地旱地作物将带来深刻的影响。研究该区域主要农作物对气候的响应,从而采取合理的适应性措施,对农业区域可持续发展有重要意义。为了明确北方农牧交错带地区主要农作物对生长期气候差异的敏感性及适应弹性,本研究选取该区域具有代表性的麦类作物(春小麦和莜麦)、油料作物(油菜和向日葵)以及淀粉类作物马铃薯为研究对象,于2009年至2013年在农业部武川环境观测试验站进行大田分期播种试验。主要结论如下:
     (1)定量了作物在不同气候环境条件下完成某一生育阶段及全生育期所需的积温和生理发育时间(最佳温度条件下作物的生育日数)。其中,春小麦全生育过程需要95.3个生理日数,所需大于0℃的积温1941℃·d;莜麦需要74.6个生理日数可以完成全生育过程,完成全生育过程所需的大于0℃的积温约1664℃·d;油菜完成全生育过程需要103.9个生理日数,大于0℃的积温约1988℃·d;向日葵完成全生育过程需要112.9个生理日数,大于0℃的积温约2180℃·d,马铃薯完成全生育过程需要97.72个生理日数,大于0℃的积温约2202℃·d。
     (2)探讨了不同作物各器官的生长发育与热量时间(积温)的关系。春小麦穗部干物质分配指数与积温的关系为:y=50.9661n(x)-340.17(R2=0.7581);莜麦穗部干物质分配指数与积温的关系为:y=1.7614e0.0019x(R2=0.5077);油菜角果及向日葵籽粒部分干物质分配指数与积温的关系分别为:y=1.7575e-0.002x(R2=0.5638)和y=0.1922e-.--29x(R2=0.7817);马铃薯的干物质在块茎中的分配指数成对数增长,方程为:y=3.4985e0.1119x(R2=0.6794)。
     (3)不同年份和不同播期处理下春小麦、莜麦、油菜、向日葵和马铃薯的产量依次为:1999±849kg/hm-2,2925±954kg/hm2,2189±526kghm-2,2175±325kg/ha和19440±2539kg/ha;同年处理间,随着播期的推迟,5月中旬之后播种的春小麦和向日葵产量及千粒重等呈显著降低的趋势;油菜的产量与所设播期无显著关系;莜麦的产量与播期的关系不显著,但是千粒重随着播期的推迟显著降低;不同播期间马铃薯的产量亦无显著差异,但是随着播期的推迟,商品薯的比例略有降低。五种作物中莜麦和马铃薯的水分利用效率、热量利用效率平均值较高。
     (4)通过分析研究区域1960-2013年的气象数据,结合本研究中作物全生育期积温等试验结果,确定了春小麦、莜麦、油菜、向日葵、马铃薯的弹性播种区间。2000年-2013年的平均值与20世纪60年代平均值相比,春小麦、莜麦、油菜、向日葵、马铃薯5种作物的适宜播种区间分别增加了13天,13天,16天,25天和22天。随着气候变暖,农牧交错带几种主要农作物的弹性播种区间呈现逐渐加大的趋势。
     综上,在气候变暖背景下北方地区气候呈现暖干化,北方农牧交错带地区春播作物的弹性播种区间加大,但是作物在不同气候条件下产量、资源利用效率存在差异,选择莜麦和马铃薯等稳定性较高的品种并适时播种,是北方农牧交错带雨养地区实现农业可持续发展的重要措施。
Agro-pastoral ecotone is very sensitive to climate change. The warmer and drier climate change would have a profound effect on the rain-fed crops. The research on the response of the main crops to the climate change and the reasonable measures accordingly are crucial important to the sustainable development of agricultural areas. To clarify the climate sensitivity and adaptation flexibility of growing seasons for main crops, five regional representative crops, including two cereal crops (spring wheat and oats), two oil-bearing crops (rapeseed and sunflower), and Starchy crops (potato) were selected for the different sowing date experiments conducted from2009to2013at Wuchuan Scientific Observing and Experimental Station of Agro-Environment, Inner Mongolia.
     The main conclusions are as follows:
     (1) The accumulated temperature required completing a certain growth stage and the whole growth period, and the physiological development time (the growing days under the optimum temperature conditions) were determined in this article. The results showed that:spring wheat needs95.3physiological development days and1941℃-d to complete the whole growing season; oats needs74.6physiological development days and1664℃-d to complete the whole growing season; rapeseed needs103.9physiological development days and2180℃-d to complete the whole growing season; sunflower needs112.9physiological development days and2180℃-d to complete the whole growing season; potato needs97.7physiological development days and2202℃·d to complete the whole growing season.
     (2) The relationships between crop growth and development of different organs and the heat time (accumulated temperature) were discussed. The relationships between the dry matter distribution ratio of spring wheat spike and oats spike and the accumulated temperature were:y=50.9661n(x)-340.17, R2=0.7581, y=1.7614e00019x, R2=0.5077, respectively. The relationships between the dry matter distribution ratio of rapeseed pods and sunflower seeds and the accumulated temperature were: y=1.7575e0002x, R2=0.5638and y=0.1922e00029x, R2=0.7817, respectively. The relationship between the dry matter distribution ratio of potato tubers and the accumulated temperature was: y=3.4985e00019x,R2=0.6794.
     (3) The yields of spring wheat, oats, rapeseed, sunflower, and potato for different years and different sowing dates were1999±849kg/ha,2925±954kg/ha,2189±526kg/ha,2175±325kg/ha, and19440±2539kg/ha, respectively. After Mid-May sowing, the yield and1000kernel weight of spring wheat and sunflower decreased significantly. There was no significant relationship between the rapeseed yield and the sowing date, which was the same as the oats yield, while with delayed sowing date, the1000kernel weight decreased significantly. There was no significant difference between different sowing dates for potato, while the ratio of commercial potato got decreased with the delayed sowing date. Among these five crops, water utilization efficiency and heat utilization efficiency of oats and potato were higher than other three crops.
     (4) Combining the meteorological data from1960to2013with the results obtained from this study, the flexible sowing ranges of spring wheat, oats, rapeseed, sunflower and potato were determined. Compared with the1960s, during the past ten years, the average of suitable sowing interval of spring wheat, oats, rapeseed, sunflowers and potatoes increased by13,13,16,25and22days, respectively
     In conclusion, under the background of climate warming, it showed a warmer and drier trend in northern China, which resulted in an increasing trend for the flexible sowing range for spring crops at northern Agro-pastoral ecotone. The yield and resource use efficiency of different crops were different due to different climate conditions. It is one of the important measures to realize the agricultural sustainable development to choose the high stability species like oats and potato and to sow during a proper range.
引文
Abdel Rahman, Tawaha M, Munir AT. Effect of dates and rates of sowing on yield and yield components of Lentil (Lens culinaris medik.) under semi arid conditions. Pakistan Journal of Biological Sciences,2002,5 (5):531-532.
    Afroz MM, Sarkar MAR, Bhuiya MSU, et al. Effect of sowing date and seed rate on yield performance of two mustard varieties. Journal of the Bangladesh Agricultural University,2011,9(1):5-8.
    Alexandrov V, Hoogenboom G. Climate variation and crop production in Georgia, USA, during the twentieth century. Clim. Res,2001,17:33-43.
    Angus JF, Cunningham RB, Moncur MW, et al. Phasic development in field crops I. thermal response in the seedling phase. Field Crops Research,1980,3:365-378.
    Babaeian M, Javaheri M, Asgharzade A. Effect of row spacing and sowing date on yield and yield components of common bean (Phaseolus vulgaris L.). African Journal of Microbiology Research, 2012,6 (20):4340-4343.
    Bryan BA, King D, Zhao G Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps. Environmental Research,2014, Letters 9,044005 (044012 pp.)-044005 (044012 pp.).
    Carberry PS, Bruce SE, Walcott JJ, et al. Innovation and productivity in dryland agriculture:a return-risk analysis for Australia. Journal of Agricultural Science,2011,149:77-89.
    Cola G., Mariani L, Salinari F, et al. Description and testing of a weather-based model for predicting phenology, canopy development and source-sink balance in Vitis vinifera L. cv. Barbera. AGR FOREST METEOROL,2014,184:117-136.
    Crauford PQ, Wheeler TR.2009. Climate change and the flowering time of annual crops. J Exp Bot.60: 2529-2539
    Crout NMJ, Craigon J, Cox GM, et al. An objective approach to model reduction:Application to the Sirius wheat model. AGR FOREST METEOROL,2014,189:211-219.
    ElSarag E1, Ismaeil RIM, Evaluation of some bread wheat cultivars productivity as affected by sowing dates and water stress in semi-arid region[J]. Asian Journal of Crop Science,2013,5(2):167-178.
    Farquhar GD, Ehleringer JR, Hubick KT, Carbon isotope discriminat ion and photosynthesis [J]. Annu Rev Plant Physiol,1989,40:503-537.
    Foulkes MJ, Hawkesford MJ, Barraclough PB, et al. Identifying traits to improve the nitrogen economy of wheat:Recent advances and future prospects. Filed Crops Research.2009,114:329-342.
    Gardner FP, RB Pearce, RL Mitchell, Physiology of crop plants. Iowa State University Press, Ames, USA,1985.
    Hakala K, Jauhiainen L, Himanen SJ, et al. Sensitivity of barley varieties to weather in Finland. Journal Agricultural Science.2012,150:145-160.
    Helmreich B, Horn H, Opportunities in rain water harvesting. Desalination,2010,251,118-124.
    Jin K, Cornelis WM, Schiette, et al. Redistribution and loss of soil organic carbon by overland flow under various soil management practices on the Chinese Loess Plateau[J]. Soil Use and Management, 2008,24,181-191.
    Ju Hui, Velde M, Lin Erda, et al. The impacts of climate change on agricultural production systems in China[J]. Climatic Change,2013,120:313-324. (in Chinese with English abstract)
    Kondra ZP, Effect of planting date on rapeseed [J].Canadian Journal of Plant Science,1977,57(2): 607-609.
    Larcher W, Physiological plant ecology,3rd edn, Springer Verlag, Berlin,1995.
    Li X,Zuo C, Sustainable agriculture and rural development in China,part 1:The agro-ecosystem and China's rural economy. In Promotion of sustainable agriculture and rural development in China:an element for a policy framework and a national agenda 21 action programme. FAO/UNDP/Ministry of Agriculture, China,1997
    Li XY, Shi PJ, Gao SY, Wang JH, et al. Wind erodibility.
    M Yuan, L Zhang, F Gou et al. Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia [J] Agricultural Water Management,2013,122:28-38.
    Markus S, Angelika K, Kai UT, et al. Grazing effects on soil chemical and physical properties in semiarid steppe of Inner Mongolia (P.R.China)[J], Geoderma,2008,143:63-72.
    Mart in BJ, Nienhuis J, King G, et al. Restriction fragment length polymorphisms associated with water use efficiency in tomato[J].Science,1989,243:1725-1728.
    McMaster GS, Phenology, development and growth of wheat shoot apex:A review. Adv.Agron,1997, 59:63-118.
    Miri Y, Bagheri H. Evaluation planting date on agronomical traits of canola (Brassica napus L)[J]. International Research Journal of Applied and Basic Sciences,2013,4(3):601-603.
    Moll RH, Kamprath EJ, Jackson WA. Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization[J]. Agronomy Journal,1981,74:562-564.
    Moreno LSB, Pedreira CGS, Boote KJ, et al. Base temperature determination of tropical Panicum spp. grasses and its effects on degree-day-based models. Agr Forest Meteorol,2014,186:26-33.
    Mossad MG, Ortizferrara G and Mahalak-Shmi V. Tiller development and contribution to yield under different moisture regimes in two Triticum species. Journal of Agronomy and Crop Science,1995,174: 173-180.
    Namakka A, Abubakar U, Sadik IA, et al. Effect of sowing date and nitrogen level on yield and yield components of two extro early maize varieties (Zea mays L.) in Sudan Savanna of Nigera. ARPN Journal of Agricultural and Biologicalll Science,2008,3(2):1-5. of major soils in the farming-pastoral ecotone of China[J]. Journal of Arid Environments,200768, 611-623.
    Olesen JE, Borgesen CD, Elsgaard L, et al. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment,2012,29(10):1527-1542.
    Olesen JE and Bindi M. Consequences of climate change for European agricultural productivity, land use and policy. European Journal Agronomy,2002,16:239-262.
    Olesen JE, Borgesen CD, Elsgaard L, et al. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment,2012,29(10):1527-1542.
    Osaki M, Malkoto L, Toshiaki T. Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase,and chlorophy Ⅱ in dividual leaves of maize. Soil Science and Plant Nutrition,1995,41:285-293.
    Ouda SA, R. Abou-Elenin and M.A.Shreif,2010.Simulation of the effect if irrigation water saving on wheat yield at Middle Egypt. Proceeding of the 14th International Water Technology Conference,March 21-23,2010,Cario,Erypt,:407-419
    Pavlova VN, Varcheva SE, Bokusheva R, et al. Modelling the effects of climate variability on spring wheat productivity in the steppe zone of Russia and Kazakhstan. ECOL MODEL,2014,277:57-67.
    Peter BB, Jonthan RH, Janina J, et al. Nitrogen efficiency of wheat:Genotypic and environmental variation and prospects for improvement. European Journal ofAgronomy,2010,33:1-11.
    Petersen CT,Jorgensen U,Svendsen H,et al.1995.Parameter assessment for simulation of biomass production
    Porter JR, Semenov MA. Crop responses to climatic variation. Philosophical Transactions of the Royal Society B:Biological Sciences,2005,360:2021-2035.
    Yu Q, Li LH, Luo QY, et al. Year patterns of climate impact on wheat yields. International Journal of Climatology,2014,34:518-528.
    Ren,T.,2005. Overview of China's Cropping Systems,Promoting environmentally-friendly agricultural production in China,Resource Management for Sustainable Intensive Agriculture Systems. International Conference in Beijing,China,April 5-7,2004,Ecological Book Series-1,Ecological Research for Sustaining the Environment in China,issued by UNESCO,Beijing,96-101.
    Saleh,S.H.,2011.Performance,correlation and path coefficient analysis for grain yield and its related trairs in diallel crosses of bread wheat under normal irrigation and drought conditions. WorldJ.Agric.Sci.,7:270-279
    SharmaaDLD, Antuono MF, Anderson WK, et al. Variability of optimum sowing time for wheat yield in Western Australia. Australian Journal of Agricultural Research,2008,59:958-970.
    Fathi G, Siadai SA, Hemayati SS. Effect of sowing date on yield and yield components of three oilseed rape varieties. Plant Ecophysiology,2003,1:31-35.
    SiallMA,aArian MA, Dahot MU, et al.2010. Effect of sowing dates onyield and yield comonents on mutant-cum-hybrid lines of bread wheat. Pak. J. Bot.,2010,42(1):267-277.
    Sokoto MB and Singh A. Yield and yield components of bread wheat as influenced by water stress,sowing date and cultivar in Sokoto,Sudan Savannah,Nigeria. American Journal of Plant Sciences, 2013,4:122-130.
    Suaste-Franco MP, Solis-Moya E, Ledesma-Ramirez L, et al. Effect of planting density and sowing method on wheat (Triticum aestivum L.) grain yield in Elbajio Mexico. Agrociencia,2013,47(2): 159-170.
    Tapley M, Ortiz B, van Santen E, et al. Location,Seeding Date,and Variety Interactions on Winter Wheat Yield in Southeastern United States. Agronomy Journal,2013,105(2):509-517.
    Tayor AJ and Smith C.I. Effect of sowing date and seeding rate on yield and yield components of irrigated canola (Brassica napus L.) grown on a red-brown earth in south-eastern Australia. Australian Journal of Agricultural,1992,43(7):1629-1641.
    Trnka M, Olesen JE, Kersebaum KC, et al. Agroclimatic conditions in Europe under climate change. Global Change Biology,2011,17:2298-2318.
    Waha K, Van Bussel LGJ, Muller C, et al. Climate-driven simulation of global crop sowing dates. Global Ecology and Biogeography,2012,21(2):247-259.
    Wajid A, Hussain A, Ahmad A, et al. Effect of sowing date and plant population on biomass,grain yield and yield comonents of wheat. International Journal of Agricultural Biology,2004,6(6):1003-1005.
    Yuan M, Zhang L, Gou F, et al. Assessment of crop water productivity in semi-arid Inner Mongolia. Agricultural Water Management,2013,122:28-38.
    Zhang WL, Chen SP, Chen J, et al. Biophysical regulations of carbon fluxes of a steppe and a cultivated cropland in semiarid Inner Mongolia. Agricultural and Forest Meteorology,2007,146:216-229.
    Zhang L, Van der Werf W, Cao WX, et al. Development and validation of SUCROS-Cotton:a potential crop growth simulation model for cotton. NJAS-Wageningen Journal of Life Sciences,2008a,56: 59-83.
    Zhang L, Van der Werf W, Zhang SP, et al. Temperature-mediated developmental delay may limit yield of cotton in relay intercrops with wheat. Field Crops Research,2008b,106:258-268.
    Zhao CX, Zheng DW, Stigter CJ, et al.An index guiding temporal planting policies for wind erosion reduction. Arid Land Research and Management,2006,20:233-244.
    Zhao H, Xiong YC, Li FM., et al. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agriculture Water Management,2012,104:68-78.
    Zhao HL, Cui JY, Zhou RL, et al. Soil properties, crop productivity and irrigation effects on five croplands of Inner Mongolia. Soil & Tillage Research,2007,93:346-355.
    Zheng BY, Chenu K, Dreccer MF, et al. Breeding for the future:what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Global Change Biology,2012,18:2899-2914.
    蔡瑞国,张迪,张敏,等.雨养和灌溉条件下施氮量对小麦干物质积累和产量的影响.麦类作物学 报,2014,02:194-202.
    曹卫星,江海东.小麦温光反应与发育进程的模拟.南京农业大学学报,1996,19(1):9-16.
    程博.早熟油菜碳氮代谢特征研究[D].四川:四川农业大学,2012.
    程序,毛留喜.农牧交错带系统生产力概念及其对生态重建的意义.应用生态学,2003,14(12):2311-2315.
    程序.西北黄土高原农业与生态恶化及恢复重建的关系.中国农业科学,2001,34(1):1-4.
    邓根云,郑大玮.小麦分蘖与积温的关系及其在生产实践中的应用.植物学报,1975,17(3):222-230.
    邓振镛,王强,张强,等.中国北方气候暖干化对粮食作物的影响及应对措施.生态学报,2010,30(22):6278-6288.
    董宛麟,张立祯,于洋,等.向日葵和马铃薯间作模式的生产力及水分利用.农业工程学报,2012.28(18):127-133.
    杜文勇,何雄奎,Shamaila Z,等.冬小麦生物量和产量的AquaCrop模型预测.农业机械学报,2011,04:174-178+183.
    付驰,李双双,李晶,等.AquaCrop作物模型在松嫩平原春麦区的校正和验证.灌溉排水学报,2012,05:99-102.
    李晶,付驰,张铁楠,等.基于AquaCrop模型的东北春麦区小麦冠层生长模拟研究[J].水土保持研究,2013,06:106-110.
    高聚林,刘克礼,张宝林,等.马铃薯干物质积累与分配规律的研究.中国马铃薯,2003,17(4):209-212.
    高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一水稻钟模型—水稻发育动态的计算机模型.中国农业气象,1989,3:3-6.
    高涛,肖苏君,乌兰.近47年(1961-2007年)内蒙古地区降水和气温的时空变化特征.内蒙古气象,2009,(1):3-8.
    房世波,韩国军,张新时,等.气候变化对农业生产的影响及其适应.气象科技进展,2011,02:15-19.
    葛全胜,方修琦,郑景云.中国历史时期气候变化影响及其应对的启示.地球科学展,2014,01:23-29.
    苟芳,张立祯,董宛麟,等.农牧交错带不同间套作模式的土地生产力.农业工程学报,2013,29(6):129-141.
    苟芳,张立祯,董宛麟,等.向日葵和马铃薯间作的生育期模拟模型.应用生态学报,2012,23(10):2773-2778.
    何磊.气候变化对北方农牧交错带农业生产脆弱性的影响研究[D].南京:南京信息工程大学,2007.
    胡化广,张振铭,吴生才,等.植物水分利用效率及其机理研究进展.节水灌溉,2013,03:11-15.
    胡利平,张华兰,乔艳君,等.天水冬小麦光能利用率的气候影响及动态变化.干旱地区农业研究,2010,06:258-262.
    胡立峰,张海林,等.北方农牧交错带农田风蚀成因与防治[J],中国水土保持SWCC,2006,5:9-11
    黄冲平,张放,王爱华,等.马铃薯发育期进程的动态模拟研究.应用生态学报,2004,15(7):1203-1206.
    黄冲平.马铃薯生长发育的动态模拟研究[D].浙江:浙江大学,2003.
    黄伟.保水剂不同用量处理对甜菜生长和产量的影响.西北农业学报,2014,03:80-84.
    黄占斌,朱书全,张铃春.保水剂在农业改土节水中的效应研究.水土保持研究,2004,11(3):57-60.
    黄震,黄占斌,李文颖,等.不同保水剂对土壤水分和氮素保持的比较研究.中国生态农业学报,2010,02:245-249.
    姬强,孙汉印,Taraqqi AK,等.不同耕作措施对冬小麦-夏玉米复种连作系统土壤有机碳和水分利用效率的影响.应用生态学报,2014,25(4):1029-1035.
    贾殿勇.不同灌溉模式对冬小麦籽粒产量、水分利用效率和氮素利用效率的影响.山东农业大学,2013.
    李哲清,赵万春,杜军志.不同灌溉模式对冬小麦穗部性状及籽粒产量的影响.河南农业科学,2013,12:33-36.
    李秉柏,方娟.棉花生育期模拟模型的研究.棉花学报,1991,3(2):59-68.
    李超,刘亚南,潘志华,等.北方农牧交错带气候变化的时空特征研究[A].中国气象学会.S5全球典型干旱半干旱地区气候变化及其影响[C].中国气象学会,2012:9.
    李敏敏,延军平.华北段农牧交错带气候变化特征及其响应.干旱区资源与环境,2013,05:100-106.
    李秋月,潘学标.气候变化对我国北方农牧交错带空间位移的影响.干旱区资源与环境,2012,26(10):1-6.
    李荣生,许煌灿,尹光天,等.植物水分利用效率的研究进展.林业科学研究,2003,03:366-371.
    李世清,李凤民,宋秋华,等.半干旱地区不同地膜覆盖时期对土壤氮素有效性的影响.生态学报,2001,21(9):1519-1526.
    李希,刘玉荣,郑袁明,等.保水剂性能及其农用安全性评价研究进展.环境科学,2014,01:394-400.
    李希辰,鲁传一.我国农业部门适应气候变化的措施、障碍与对策分析.农业现代化研究,2011,03:324-327.
    李杨.保水剂与肥料及土壤的互作机理研究[D].北京:北京林业大学,2012.
    廖桂平,官春云.不同播期对不同基因型油菜产量特性的影响.应用生态学报,2001,12(6):853-858.
    刘慧,潘志华,等.北方农牧交错带不同退耕方式对生态健康的影响—以武川县为例.干旱地区农业研究[J],2010.1,1(28):175:192
    刘纪远,匡文慧,张增祥,等.20世纪80年代末以来中国土地利用变化的基本特征与空间格局.地理学报,2014,01:3-14.
    刘任涛,朱凡,赵哈林.北方农牧交错区土地利用覆盖变化对大型土壤动物群落结构的影响.草地学报,2013,04:643-649.
    刘铁梅,曹卫星,罗卫红.小麦抽穗后生理发育时间的计算与生育期的预测.麦类作物学报,2000,20(3):29-34.
    刘铁梅,胡立勇,赵祖红,等.油菜发育过程及生育期机理模型的研究I.模型的描述.中国油料作物学报,2004,26(1):27-31.
    刘铁梅,曹卫星,罗卫红,等.小麦器官间干物质分配动态的定量模拟.麦类作物学报,2001,21(1):25-31.
    刘铁宁,徐彩龙,谷利敏,等.高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控.作物学报,2014,01:143-153.
    刘文,王恩利.棉花生长发育模拟模型的研究.中国农业气象,1992,13(6):10-16
    刘巽浩,韩湘玲.论提高光能利用率的途径与种植改革.植物学通报,1984,Z1:12-17.
    刘巽浩,牟正国.中国耕作制度.北京:中国农业出版社,1993,P151-159.
    刘亚南,潘志华,李超,等.近50年北方农牧交错带气候月季变化和空间分布规律.中国农业大学学报,2012,17(4):96-102.
    林而达,许吟隆等.气候变化国家评估报告(Ⅱ):气候变化的影响与适应.气候变化研究进展.2006,2(3):51-56
    吕丽华,董志强,曹洁璇,等.播期、收获期对玉米物质生产及光能利用的调控效应.华北农学报,2013,S1:177-183.
    马玉峰,高春香.农牧交错带气候变化对土地利用的影响及对策—以内蒙古伊金霍洛旗为例.内蒙古气象,2013,04:24-28.
    马柱国,任小波.1951-2006年中国区域干旱化特征.气候变化研究进展,2007,3(4):1673-1719.
    毛留喜,刘国彬,王利文,等.北方农牧交错带的粮食生产率胁迫力研究.水土保持学报,2000,14(5):98-103.
    潘学标,韩湘玲.棉花生长发育模拟模型COTGROW的建立,Ⅱ发育与形态发生.棉花学报,1999,11(4):174-181.
    潘志华,安萍莉,刘亚玲,等.北方农牧交错带生态系统自然环境变化研究:以武川县为例.中国农业资源与区划,2003,24(5):37-41.
    裴浩,Alex Cannon, Paul Whitfield,等.近40年内蒙古候平均气温变化趋势.应用气象学报,2009,20(4):443-450.
    蒲金涌,李晓东,许彦平,等.陇东南地区玉米分期播种试验及适时播种期探讨[J].安徽农业科学,2010,38(11):5739-5740,5754.
    钱锦霞,郭建平.东北地区春玉米生长发育和产量对温度变化的响应.中国农业气象,2013,34(3):312-316.
    秦红灵,高旺盛,马月存,等.免耕对农牧交错带农田休闲期土壤风蚀及其相关土壤理化性状的影响.生态学报,2007,09:3778-3784.
    裘国旺,赵艳霞等.气候变化对我国北方农牧交错带及其气候生产力的影响.干旱区研究.2001,18(1):23-28
    任小龙,贾志宽,陈小莉,等.模拟不同雨量下沟垄集雨种植对春玉米生产力的影响[J].生态学报,2008,28(3):1006-1015
    申孝军,孙景生,张寄阳,等.水分调控对麦茬棉产量和水分利用效率的影响.农业机械学报,2014,06:.
    沈国权.影响作物发育速度的非线性温度模式.气象,1980,6:9-11.
    沈姣姣,王靖,陈辰,等.播种期对农牧交错带莜麦生长发育和产量形成的影响.中国农学通报,2011,27(15):52-56.
    沈姣姣,王靖,徐虹,潘学标,李建科,高红燕.播期对农牧交错带春油菜生长发育、产量形成和水分利用效率的影响.西北农林科技大学学报(自然科学版),2013a,(8):58-64.
    沈姣姣,王靖,潘学标,李建科,徐虹.播期对农牧交错带豌豆生长发育、产量形成和水分利用效率的影响.中国农业大学学报,2013b,(3):55-60.
    孙特生,李波,张新时.北方农牧交错带农业生态系统结构的能值分析—以准格尔旗为例.干旱区资源与环境,2013,12:7-14.
    田媛,李凤民,等.半干旱区不同垄沟集雨种植马铃薯模式对土壤蒸发的影响[J].应用生态学报,2007,18(4):795-800
    王尔大,Wyatte Harman,郑大玮,等.旱作农区轮作和留茬处理方式对风蚀的影响—应用EPIC模型进行模拟和分析的武川案例.中国农业科学,2002,35(11).
    王海霞,李玉义,任天志,等.冬小麦生长季不同灌溉模式对冬小麦-夏玉米产量与水分利用的影响.应用生态学报,2011,07:1759-1764
    王冀川,马富裕,冯胜利.基于生理发育时间的加工番茄生育期模拟模型.应用生态学报,2008,19(7):1544-1550.
    王立为,安萍莉,潘志华,等.半干旱区气候变化背景下近20年内蒙古武川县耕地质量变化.农业工程学报,2013,29(11):224-231.
    王琪,马树庆,郭建平,等.温度对玉米生长和产量的影响.生态学杂志,2009,28(2):255-260.
    王琦,张恩和,李凤民,等.半干旱地区沟垄微型集雨种植马铃薯最优沟垄比的确定.农业工程学报,2005,21(1):38-41
    王树丽.播期和种植密度对小麦群体结构与氮素利用效率的影响.山东:山东农业大学,2012.
    王延琴,崔秀稳,潘学标,等.不同密度群体对棉花光能利用率和生长发育影响的研究.耕作与栽培,1999a,04:14-16.
    王延琴,崔秀稳,潘学标,等.棉花株间竞争对光能利用率和生长发育影响的研究.中国棉花,1999,26(8):19-20.
    王云奇,陶洪斌,赵鑫,等.非灌溉条件下播前深松对冬小麦水分利用和产量的影响.麦类作物学报,2014,01:64-70.
    王芳,潘学标.气候变化对北方农牧交错带人口承载力的影响.中国农业气象.2010,31(增1):90-93
    吴孔明,刘孝纯.棉花生育的积温模型.华北农学报,1996,11(2):74-80.
    肖生春,肖洪浪,段争虎.干旱沙漠地区春小麦的水分与氮肥利用效率研究.中国沙漠,2004,24(3),360-364.
    徐学华.作物光能利用率的影响因素及提高途径.现代农业科技,2011,19:127-130.
    薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响.植物生理学报,1990,16(1):49-56.
    闫冠华,李巧萍,吕冬红.中国北方农牧交错带气候变化特征及未来趋势.南京气象学院学报,2008,31(5):671-678.
    严力蛟,全为民.水稻生长动态模拟研究进展.生态学报,2002,22(7):1143-1152
    严美春,曹卫星,罗卫红,等.小麦发育过程及生育期机理模型的研究E.建模的基本设想与模型的描述.应用生态学报,2000,11(2):1-9.
    殷新佑.水稻发育温度效应的非线性模型及其应用.作物学报,1994,06:692-700.
    殷新佑.对预测作物发育的积温法的评价.作物学报,1999,25(4):474-482.
    云冬梅,云存柱,蔺淑岚,等.2012年和林格尔县玉米、马铃薯、大豆全生育期气候评述.内蒙古农业科技,2013,2:94-96.
    张定一,张永清,闫翠翠,等.基因型、播期和密度对不同成穗型小麦籽粒产量是和灌浆特性的影响.应用与环境生态学报,2009,15(1):28-34.
    张建华,李迎春.水分影响作物发育进程的研究.气象,1997,06:53-56.
    张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型.棉花学报,2003,15(2):97-103.
    张明达,朱勇,胡雪琼,等.基于生理发育时间和生长度日的烤烟生育期预测模型.应用生态学报,2013,24(3):713-718.
    张庆江,张立言,毕桓武.春小麦品种氮的吸收积累和运转特征及籽粒蛋白质的关系.作物学报,23(6):712-718.
    张正斌,山仑.作物水分利用效率和蒸发蒸腾估算模型的研究进展.干旱地区农业研究,1997,15(1):73-78.
    张志红,李书岭,秦福生,等.冬小麦光能利用率与叶面积及相关因素分析[A].中国气象学会.中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集[C].中国气象学会:,2007:5.
    赵艳霞,裘国旺.气候变化对北方农牧交错带的可能影响.气象,2001,27(5):3-7.
    郑大玮,潘志华.我国适应气候变化的区域农业技术体系[A].农业部科技教育司.发展低碳农业应对气候变化——低碳农业研讨会论文集[C].农业部科技教育司:,2010:5.中国棉花,1999b,08:19-21.
    周道纬,卢文喜,夏丽华,等.北方农牧交错带东段草地退化与水土流失.资源科学,1999,21(5):57-61.
    周晓虎,何明荣,代兴龙,等.播期和播量对不同类型小麦品种产量及氮素利用效率的影响.山东农业科学,2013,45(9):65-69.
    朱新开,郭文善,封超年,等.不同类型专用小麦氮素吸收积累差异研究.植物营养与肥料学报,2005,11(2):148-154.
    左青松,顾芹芹,董召娣,等.氮素水平对油菜根茎叶氮素输出及角果中氮素积累的影响.中国油 料作物学报,2006,28(2):151-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700