用户名: 密码: 验证码:
风味甜瓜果实酸味形成机理及糖酸遗传和积累模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以风味甜瓜(新疆农科院哈密瓜研究中心选育出的酸味甜瓜)为材料,基于对风味甜瓜成熟时酸味的成分、酸味形成的生理机制、糖酸的遗传特点及与温光的关系等开展了以下四方面的研究工作:
     1.利用首张欧美甜瓜果实基因芯片Melon cDNA array ver1.0检测新疆厚皮甜瓜成熟果实基因表达分析,并检测了60Co-γ辐照酸味抗病变异株成熟果实基因表达水平,从酸代谢的分子水平探讨风味甜瓜酸味形成机理;
     2.利用盖钧镒具有主基因效应的数量性状理论,以60Co-γ射线诱变酸味突变自交系和‘黄皮脆’形成的P1、P2、F1、F2为试验材料,通过4个世代联合分析法,对果实糖酸含量性状的遗传进行了全面系统的研究;
     3.利用灰色关联度法对‘风味3号’果实坐果期、果实快速生长期及成熟期糖酸增量与温光积累增量和发育成熟期糖酸积累及温光因子的关系进行了研究,探讨在甜瓜果实发育过程中影响果实糖和酸积累的主要影响因子;
     4.利用大棚春、秋茬和温室春、秋茬栽培,对有效积温累积、日温差累积、光合有效辐射累积与甜瓜果实蔗糖、柠檬酸积累及糖酸比关系进行了模拟研究。
     获得的主要结论如下:
     1.风味甜瓜中的酸味主要是由于柠檬酸的积累所致;通过基因芯片转录谱检测,发现3类基因的上调表达可能和柠檬酸积累有关,分别是:柠檬酸合成酶、乙烯、Ca2+-CaM信号系统。
     2.酸味突变自交系和黄皮脆杂交组合的果实总糖含量、葡萄糖含量、果糖含量、蔗糖含量、总酸含量、柠檬酸含量、酸度和糖酸比均受主基因+多基因控制,但主基因和多基因在性状遗传控制上所起的作用有所不同:总糖、葡萄糖、果糖、柠檬酸、糖酸比受两对主基因+多基因混合遗传模型控制;蔗糖、总酸、酸度受一对主基因+多基因混合遗传模型控制。糖含量、酸度和糖酸比性状受主基因的影响较酸含量大,酸含量性状受多基因影响较糖含量、酸度和糖酸比大。主基因+多基因效应决定了糖含量、酸含量和糖酸比性状变异的95.74% - 99.45%,还有很小的变异是由环境因素决定的。
     葡萄糖与果糖之间、蔗糖与总糖之间、柠檬酸与总酸之间有高度的表型相关性;总糖与葡萄糖、总糖与果糖、总糖与可溶性固形物含量、糖酸比与果糖、蔗糖与柠檬酸、蔗糖与总酸、总酸与可溶性固形物含量之间、总酸与苹果酸之间、总糖与柠檬酸、总糖与总酸之间有较高的相关性。
     葡萄糖含量性状和酸度(pH)性状之间、蔗糖含量性状和酸度(pH)性状之间、总酸含量性状和酸度(pH)性状之间、柠檬酸含量性状和酸度(pH)性状之间均受同一对主基因控制,表现为一因多效现象。
     3.无论在坐果期、果实快速生长期还是成熟期光合有效辐射累积对‘风味3号’甜瓜果实的糖酸增量影响最大。在果实整个发育成熟期,对果实总糖影响最大的是日温差累积;对果实葡萄糖影响最大的是有效积温累积;对果糖影响最大的是光合有效辐射累积;对蔗糖影响最大的是光合有效辐射累积;对总酸含量影响最大的是日温差累积;对苹果酸和柠檬酸影响最大的是日温差累积。
     4.通过回归分析,建立了甜瓜果实蔗糖、柠檬酸及糖酸比受有效积温与日温差累积的驱动模型。不同茬口果实蔗糖、柠檬酸及糖酸比,随有效积温与日温差累积增加都呈logistic曲线函数变化,但不同茬口函数常数项不同,常数项均由日温差累积累积驱动,它们之间为线性关系。
The feasibility of using Melon cDNA array ver1.0 to detect the gene expression of mature fruit of Cucumis melo var.ameri were studied. The results showed that the melon cDNA array ver1.0 could detect the expression of 2008 genes in the variety which was sourness taste in fruit and diseases resistance of Cucumis melo var.ameri. The detected genes accounted for 65.4% of the total 3068 probe groups. 251 up-regulated and 224 down-regulated were detected in the variety, accounting for 12.5% and 11.16% of total detected genes respectively. This finding included additional 62 up- and 33 down-regulated unknown (“no hit”) genes. Among the identified ones, 47 genes expressed significant (FDR<0.01 and fold change≧2) differential expressed genes. The identified genes include, citric synthase mitochondrial precursor and those associated with defense response, cell wall modification, plant hormones and signal transduction, structural constituent of ribosome,transcriptional factor/regulatory factor. The changes in mRNA abundance detected by microarray analysis was validated by using RT-PCR, results showed that melon cDNA array ver1.0 could efficiently be used for gene expression analysis of Cucumis melo var.ameri. Component and content of organic acid and citrate synthase (CS) activity during pre- and post-irradiation fruit development were measured by using high performance liquid chromatography and uv-spectrophotometer. The comparative transcription profiling found that several genes that could be related to traits of sourness, disease resistance in the fruit of post 60Co-γirradiation. Our results also suggest that 60Co-γirradiation mutation changes the mRNA levels for CS mitochondria, followed by changes in the protein and/or activity levels that relates with the changes in the citrate levels. It may be a primary trigger for citrate accumulation in the fruit of sour-flavor matant.
     Four generations of inbred line with sour-flavor matant and Huangpicui P1, P2, F1 and F2 were used to study the inheritance of melon sugar content、sour content and sugar acid radio traits by joint analysis method of multiple generations. The results showed that the total sugar content was controlled by two pairs of equal additive major genes plus additive-dominant polygene (E-4 model). The major gene heritability was 88.8%; the polygene heritability was 6.94%. The glucose content fitted two pairs of additive-dominance-epitasis major genes plus additive-dominant-epitasis polygene (E-0 model). The flucrose content fitted two pairs of additive-dominance-epitasis major genes plus additive-dominant polygene (E-1 model). The inheritance of sucrose content fitted one pair of additive–dominance major gene plus additive–dominance-epitasis polygene (D-0 model). The major gene heritability was 74.76%; the polygene heritability was 25.04%. The inheritance of total sour content fitted one pair of additive–dominance major gene plus additive–dominance-epitasis polygene (D-0 model). The major gene heritability was 26.68%; the polygene heritability was 72.77%. The citrate content fitted two pairs of additive-dominance major genes plus additive-dominant polygene (E-2 model). The major gene heritability was 90.13%; the polygene heritability was 8.78%. Sugar acid radio trait fitted two pairs of additive-dominance-epitasis major genes plus additive-dominant polygene (E-1 model). The major gene heritability was 82.86%; the polygene heritability was 16.02%. The inheritance of acidity fitted one pair of additive–dominance major gene plus additive–dominance-epitasis polygene (D-0 model). The major gene heritability was 84.21%; the polygene heritability was 14.13%. There were highly correlated between glucose content and fructose, sucrose content and total sugar, citrate content and total sour. It had high relativity between total sugar and glucose content, total sugar and fructose, sucrose content and citrate, citrate content and total sugar, total sugar and total sour, total sour and malate, sucrose content and total sour, sugar acid radio and fructose. The glucose content and acidity traits refer to only one pleiotropic major gene. The additive effect and dominance effect of the major gene were estimated as -2.53037 mg g-1 FW and 3.1681 mg g-1 FW on glucose, 0.6659 and -0.6325 on acidity, respectively. The major gene showed overdominance for glucose content and close to complete dominance for acidity. The sucrose content and acidity traits refered to only one pleiotropic major gene. The additive effect and dominance effect of the major gene were estimated as- 13.5563 mg g-1 FW and–1.5948 mg g-1 FW on sucrose, and–0.6122 and -0.7451 on acidity, respectively. The major gene showed incomplete dominance for sucrose content and complete dominance for acidity. The citrate content and acidity traits refered to only one pleiotropic major gene. The additive effect and dominance effect of the major gene were estimated as -1.0855 mg g-1 FW and-2.8537 mg g-1 FW on citrate, and 0.6476 and–0.6708 on acidity, respectively. The major gene shows overdominance for citrate content and close to complete dominance for acidity. The total sour content and acidity traits refered to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as1.2735 mg g-1 FW and -2.9746 mg g-1 FW on total sour content, and -0.647and–0.6697 on acidity, respectively, The major gene showed overdominance for glucose content and close to complete dominance for acidity.
     The influence of temperature and solar on sugar and acid content of fruit FN3 melon cultured in spring film house, autumn film house and autumu green house, were analyzed by using grey relational grade analysis method. The results showed that the influence rankings on sugar content were: accumulative solar radiation > accumulative daily temperature difference > effective accumulative temperature. The influence of temperature and solar on acid content of FN3 fruit were in order of accumulative daily temperature difference > accumulative solar radiation > effective accumulative temperature.
     With different crops for rotation, the effects of air temperature and accumulated daily difference in temperature on the sucrose, citrate accumulation and sugar acid radio of greenhouse melon fruit were studied, with related simulation model established. The results showed that the sucrose, citrate accumulation and sugar acid radio model were logistic function, all of which were driven by effective accumulative temperature. The constant term in the functions was driven by accumulative daily difference in temperature, and the correlation was a linear function. Model test showed that the models were able to objectively simulate and predict the changes of fruit sucrose, citrate accumulation and sugar acid radio with fruit development, and possessed practical value for the accurate estimates to melon fruit inherent quality and optimization to determine harvest of melon fruit.
引文
[1] Http://old.sanya.gov.cn/news/200612254241.shtml.首届中国西瓜甜瓜发展论坛.
    [2]王坚.中国西瓜甜瓜[M].北京:中国农业出版社,2000.
    [3]汤谧,别之龙,吴明珠等.“风味2号”甜瓜果实成熟过程中的品质变化[J].核农学报. 2008, 22(4): 474-477.
    [4]汤谧,别之龙,张保才等.风味3号甜瓜光合特性和果实品质研究初报[J].华中农业大学学报. 2008, 27(3): 426-429.
    [5]吕忠恕等.白兰瓜光合产物的运输及其机理[J].植物学报, 1959, 8(3): 221-228、1962, 10 (4): 317-326.
    [6] Rosa JT. Changes in composition during ripening and storage of melons. Hilgardia, 1928, 3: 421-443.
    [7]张上隆,陈昆松.果实品质形成与调控的分子生理[M].北京:中国农业出版社, 2007, pp: 67-106
    [8]曾骧主编.果树生理学.北京:北京农业大学出版社[M], 1992, 186-273.
    [9] Diakou P, Svanella L, Raymond P et al. Phosphoenolpyruvate carboxylase during grape berry development[J]. Australian Journal of Plant Physiology, 2000, 27: 221-229.
    [10] Moing A, Svanella L, Gaudillere M et al. Organic acid concentration is little controlled by phosphoenolpyruvate carboxylase activity in peach fruit[J]. Australian Journal of Plant Physiology, 1999, 26: 579-585.
    [11]黄辉白.夏季修剪对玫瑰葡萄结果、果实品质和树势调节效应的研究[J].北京农业大学学报,1981, (1): 45-58.
    [12]李明启.果实生理.北京:科学出版社,1989, pp86.
    [13] Allentoff N WR, Phllips FB, Johnston AC. Study of carbon dioxide fixation in the apple. The distribution of incorporated 14C in the (letache l MIcIntosh apple) [J]. Journal of the Science of Food Agriculture, 1954, 5: 231-234.
    [14] Young L B, Biale J B. Carbon dioxide effects on fruitsⅢ: The fixation of 14CO2 in lemon in an atmosphere enriched with carbon dioxide[J]. Planta, 1968, 81: 253-263.
    [15] Bean R C, Todd GW. Photosynthesis and respiration in developingfruits. I 14CO2 uptake by young oranges in light and dark[J]. Plant Physiology, 1960, 35: 425- 429.
    [16]罗安才.柑桔果实有机酸代谢生理和奉节脐橙芽变株系的AFLP分析研究[D].西南农业大学. 2003.
    [17]罗安才,李道高,杨晓红.柑橘果实有机酸代谢研究进展[J].园艺学报2001, (28)增刊: 597-602.
    [18] Sadka A, Artzi B, Cohen L, Dahan E, Hasdai D, Tagari E. Arsenite reduces acid content in Citrus fruit, inhibits activity of citrate synthase but induces its gene expression[J]. Journal of the American Society for Horticultural Science, 2000a, 125: 288-293.
    [19] Sadka A, Dahan E, Cohen L, Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing citrus cultivars[J]. Australian Journal of Plant Physiology, 2001, 28: 383-390.
    [20] Sadka A, Dahan E, Cohen L, Marsh KB. Aconitase activity and expression during the development of lemon fruit[J]. Physiologia Plantarum, 2000, 108: 255-262
    [21] Sadka A, Dahan E, Cohen L. NADP-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development[J]. Plant Science, 2000, 158: 173-181
    [22] Walker R P, Chenzh, Achesonr M, Leegoodr C. Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C4 plant, guinea grass[J]. Plant Physiology, 2002, 128: 165-172.
    [23] Ruffner H P, Kliewer M W. Phosphoenolpyruvate carboxykinase activity in grape berries[J]. Plant Physiology, 1975, 56: 67-71.
    [24] Bahramei A R, Chen Z H, Walker R P et al. Ripening-related occurrence of phosphoenlpyruvate carboxykinase in tomato fruit[J].Plant Molecular Biology, 2001, 47: 499-506.
    [25] Franco, Cultrera N G, Battistelli A et al. Phosphoenolpyruvate carboxykinase and its potential role in thecatabolism of organic acids in the flesh of soft fruit during ripening[J]. Journal of Experimental Botany, 2005, 56(421): 2959-2969.
    [26]赵淼,吴延军,蒋桂华等.柑橘果实有机酸代谢研究进展[J].果树学报, 2008, 25 (2): 225-230.
    [27]文涛,熊庆娥,曾伟光等.脐橙果实发育过程中有机酸合成代谢酶活性的变化[J].园艺学报, 2001, 28(2): 161-163.
    [28] Canel C, Bailey-Serres JN, Roose ML. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pumelo(Citrus maxima) [J]. Plant Molecular Biology, 1996, 31: 143-147
    [29] Hirai M, Ueno I. Development of citrus fruits: Fruit development and enzymaic changes in juice vesicle tissue[J]. Plant and Cell Physiology, 1977, 18: 791-799.
    [30] Kubo T, Kihara T, Hirabayashi T. The effect of spraying lead arsenate on citrate accumulation and the related enzyme activities in the juice saces of Citrus natsudaidai[J]. Journal of the Japanese Society for Horticultural Science, 2002, 71(3): 305-310.
    [31] Sekhara Varma TN, Ramakrishnan CV. Biosynthesis of citric acid in citrus fruits[J]. Nature, 1956, 178: 1358-1359.
    [32] Bogin E, Wallace A. Organic acid synthesis and accumulation in sweet and sour lemon fruits[J]. Proceedings of the American Society for Horticultural Science, 1966, 89: 182-194
    [33] Rentsh D, Martinola E. Citrate transport into barley mesophyllvacuoles - comparison with malate - uptake in activity[J]. Planta, 1991, 184: 532- 537.
    [34] Oleski N, Mahdavi P, Bennent AB. Transport properties ofthe tomato fruit tonoplast.ПCitrate transport[J]. Plant physiology, 1987, 84: 997- 1000.
    [35] Canel C, Bailey–Aerres JN, Roose ML. In vitro (14C) citrateuptake by tonoplast vesicles of acidless citrus juice cells [J]. Journal of the American Society for Horticultural Science, 1995, 120(3): 510- 514.
    [36] Takanokura Y, Komatsu A, Omura M et al. Cloning and expression analysis of vacuolar H+-ATPase 69kDa catalytic subunit cDNA in citrus (Citrus unshiu Mare.) [J]. Biochim Biophys Acta, 1998, 1 414: 265-272.
    [37] Etienne C, Moing A, Dirlewanger E et al. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity [J]. Physiol Plantarum, 2002, 114: 259-27.
    [38] Müller M L, Irkens– Kiesccker U, Kramer D, Taiz L.Purification and reconstitution of the vacuolar H +- ATPases fromlemon fruits and epicotyls[J]. J Biological Chemistry, 1997, 272: 12762- 12770.
    [39]陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展[J].果树学报, 2005, 22(5): 526-531.
    [40] Rafaelr, Ulrich L, Pedro G, Etxeberria E. Malate and malate-channel antibodies inhibit electrogenic and ATP-dependentcitrate transport across the tonoplast of citrus juice cells [J]. Plant Physiology, 2003, 160: 1313- 1317.
    [41] Müller ML, Taiz L. Regulation of the lemon-fruit V-ATPase byvariable stoichiometry and organic acids[J]. The Journal of Membrane Biology, 2002, 185: 209- 220.
    [42] Shimada T, Nakano R, Shulaey V et al. Vacuolar citrate/H+ symporter of citrus juice cells[J]. Planta, 2006, 2 (224): 472- 480.
    [43] Forment J, Gadea J, Huerta L et al. Development of a citrus gemone-wide EST collention and cDNA microarray as resources for genomic studies[J]. Plant Molecular Biology, 2005, 57: 375-391.
    [44] Mcero’S, Guillerno S, Domingo JI et al. Global analysis of gene expression during development and ripening of citrus fruit flesh, a proposed mechanism for citric acid utilization[J]. Plant Molecular Biology, 2006, 62, 513-527.
    [45] Katzir N, Lewinsohn E, Portnoy V et al. The melon fruit: a study of genes and their function. Plant & Animal Genomes XIV Conference. 2006. San Diego, CA, USA. 80pp.
    [46] Http://www.icugi.org/
    [47]盖钧镒,章元明,王健康.植物数量性状遗传体系[M].北京:科学出版社. 2003.
    [48] Mather K. Biometrical Genetics.London: Methuen & Co. Ltd.1949.
    [49] Mather K,Jinks J L.Introduction to Biometrical Genetics.London: Chapman and Hall Ltd. 1977.
    [50] Mather K, Jinks J L.Biometrical Genetics(3nd edition).London: Chapman and Hall Ltd. 1982.
    [51] Comstock RC and HF Robinson. Estimation of average dominance of genes heterosis. Ames IA: Iowa State UnivPress, 1948, pp. 494-516.
    [52] Comstock RC and Robinson HF. The component of quantitative variance in populations. Biometrics, 1952, 4: 254-266.
    [53] Comstock RC, Robinson HF, Harvey PH. A breeding procedure designed to make maximum use of both general and specific combing ability[J]. Agronomy Journal, 1949, 41: 360-367.
    [54] Kermpathorne O. The correlation between relatives in a random matin population. Proc R Soc London B, 1954, 143: 103-113.
    [55] Kermpathorne O. The theoretical valuss of correlation between relatives in a random mating populations Agron[J]. Genetics, 1955, 40: 153-157
    [56] Kermpathorne O. An Introduction to Genetics Statistics. New York: Johm Wiley & sons. 1957.
    [57] Cockerhan CC. An extension of the concept of partitioning hereditary variance for analysis of Covance among relatives when epistasis is present[J]. Genetics, 1954, 39: 859-882.
    [58] Cockerhan CC. Analysis of quantitative gene action. Brookhaven Symp Biol, 1956, 9: 53-58.
    [59] Cockerhan CC. Estimation of genetic variances. In: W D Hanson & H F Robinson(eds.) Genetics Statistics and Plant Breeding, NASNRC Publ, 1963, 982: 53-94.
    [60] Zalapa JE, Staub JE, McCreight J. Generation means analysis of plant architectural traits and fruit yield in melon[J]. Plant Breeding, 2006, 125: 482-487.
    [61] Zalapa JE, Staub JE, McCreight JD.Variance component analysis of plant architectural traits and fruit yield in melon[J]. Euphtica, 2008, 162: 129-143.
    [62] Elston R C and Stewart J.The analysis of quantitative traits for simple genetic models from parental F1 and backcross data[J]. Genetics, 1973, 73: 695-711.
    [63] Morton NE and Maclean CJ. Analysis of family resemblance.Ⅲ. Complex segregation of quantitative traits[J]. American Journal of Human Genetics, 1974, 26: 489-503.
    [64] Elkiind Y and A Cahaner. A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits. 1. The model and experimental design[J]. Theorteical and Applied Genetics, 1986, 72: 377-383.
    [65]莫惠栋.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差[J].作物学报, 1993, 19(3): 193-200.
    [66] Loisel P, Goffinet B, Monod H, Montes G. Detecting a major in an F2 population[J]. Biometrics, 1994, 50: 512-516.
    [67] Jiang CJ, Pan XB, Gu MH.The use of mixture models to detect effects of major genes on quantitative characters in a plant breeding experiment[J]. Genetics, 1994, 136: 383-394.
    [68]姜长鉴,莫惠栋.质量-数量性状的遗传分析Ⅳ.极大似然法的应用[J].作物学报, 1995, 21(6): 641-648.
    [69]莫惠栋.质量-数量性状的遗传分析I.遗传组成和主基因基因型鉴别[J].作物学报, 1993, 19(1):1-6.
    [70]莫惠栋,徐辰武.质量-数量性状的遗传分析Ш.受三倍体遗传控制的胚乳性状[J].作物学报, 1994, 20(5): 513-519.
    [71]徐辰武,莫惠栋.胚乳性状的质量-数量遗传分析[J].江苏农学院学报, 1995, 16 (1): 9-13.(in Chinese)
    [72] Tan WY, Chang WC.Convolution approach to the genetic analysis of quantitative characters of self-fertilized populations[J]. Biometrics, 1972, 28:1 073-1090.
    [73] Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits. Massachusetts: Sinauer Associates, Inc.1998.
    [74]王健康.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究[D].南京农业大学, 1996.
    [75]章元明.植物数量性状遗传分离分析法的改进和拓展[D].南京农业大学, 2001.
    [76]东方阳.大豆对SMV株系抗性的遗传分析和RAPD标记研究[D].南京农业大学, 1999.
    [77]郭志刚.数量性状主基因-多基因混合遗传分析的应用研究[D].南京农业大学, 1998.
    [78]戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量的主基因+多基因遗传[J].遗传学报, 2001, 28(2): 182-187.
    [79]孙祖东.南京地区大豆对食叶性害虫抗性的鉴定、机制和遗传的研究[D].南京农业大学, 1997.
    [80]王建设,朱立宏,张红生等.杂交稻白叶枯病的遗传机制[J].作物学报, 2000, 26(1): 1-8.
    [81]王晋华.大豆茎生长习性类型的鉴别及环境变异[D].南京农业大学, 1998.
    [82]吴建宇.玉米对矮花叶病毒抗性的鉴定和遗传研究[D].南京农业大学, 1997.
    [83]邢邯.大豆对大豆包囊线虫1号生理小种的鉴定、遗传与选育研究[D].南京农业大学, 1998.
    [84]詹秋文,盖钧镒,章元明等.大豆对斜纹夜蛾幼虫抗性研究的发展表达过程[J].遗传学报, 2001, 28(10): 956-963.
    [85]张孟臣.黄淮海地区大豆茎生长习性类型鉴别方法及有关性状的变异与遗传研究[D].南京农业大学, 1998.
    [86]王庆钰,朱立宏,盖钧镒等.水稻广亲和性遗传的主基因多基因混合模型分析[J].遗传, 2004,(6):115-119.
    [87]向道权,黄烈健,曹永国等.玉米产量性状主基因-多基因遗传效应的初步研究[J].华北农学报, 2001, 16(3)1-5.
    [88]肖静,胡治球,汤在祥等.多个相关数量性状主基因的联合分析方法[J].中国农业科学, 2005,38(9): 1117-1124.
    [89]梅拥军,徐宝昌.海岛棉纤维含糖量的遗传和亲子相关[J].西北农业学报, 1998, 7(4): 66-68.
    [90]井立军,崔鸿文,张秉奎.茄子品质性状遗传研究[J].西北农业学报, 1998, 7(1): 45-48
    [91]赵仁贵,牟琪,张健.加强型甜玉米含糖量性状的遗传研究[J].吉林农业大学学报, 2000, 22(4):32-35
    [92]徐强,陈学好,于杰等.加工黄瓜品质性状遗传力和遗传相关的研究初步[J].江苏农业研究, 2001, 22(4): 18-20.
    [93]林碧英,高山,林峰.甜瓜可溶性固形物含量的遗传表现与基因效应分析[J].中国瓜菜, 2007, (1): 4-6.
    [94]李宝江,景士西,丁玉英等.苹果糖酸遗传和选择研究[J].遗传学报, 1994, 21(2): 147-154
    [95]王得元,李颖,王恒明.辣椒主要经济性状遗传研究进展[J].长江蔬菜, 2001, (11): 28-30.
    [96]曾国平,曹寿椿.不结球白菜主要品质性状遗传效应分析[J].园艺学报, 1997, 24(1): 43-47
    [97]张增翠,侯喜林,曹椿寿.不结球白菜维生素C和可溶性糖含量的遗传分析[J].园艺学报, 1999, 26(3): 170-174
    [98]沈德绪,王元裕,陈力耕.柑桔遗传育种学[M].北京:科学出版社, 1998, 204-205
    [99] Iwagaki I, Kato Y. Relationship between early growth and harvest fruit quality in satasua mandarin[J]. Journal of the Japanese Society for Horticultrual Science, 1982, 51 (3):263-269
    [100] Utsunomiya LN, Yamada H, Kataoka I et al. The effect of fruit temperatures on the maturation of satsuma mandarin fruits. Journal of the Japanese Society for Horticultrual Science, 1982, 51 (2):135-141
    [101] Matsumoto A, Shiraishi S. Effect of soil on the organic acid of satsuma mandaria fruit[J]. Journal of the Japanese Society for Horticultrual Science, 1980, 48(4):413、417
    [102]姚玉新,翟衡,赵玲玲等.苹果果实酸/低酸性状的SSR分析[J].园艺学报, 2006, 33: 118-121.
    [103] Fulton TM, Grandillo S, BeckBunn T et al. Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross[J]. Theoretical and Applied Genetics, 2000, 100:1025-1042
    [104] Saliba-Colombani V, Causse M, Langlois D et al. Genetic analysis of organoleptic quality in fresh market tomato.1. Mapping QTLs for physical and chemical traits[J]. Theoretical and Applied Genetics, 2001, 102:259-272
    [105] Stevens MA. Citrate and malate concentration in tomato fruits: Genetic control and maturational effects[J]. Journal of the American Society for Horticultural Science, 1972, 97:655-658.
    [106] Yoshida M. Genetical studies on the fruit quality of peach varieties.I Acidity[J]. Bull Hortic Res Stn Jpn Series A, 1970, 9:1-15
    [107] Boubals D, Bourzeix M, Guitraud J. Gora Chirine, an. Iranian cv. with a low berry acid levels[J]. Ann Amelior Plantes, 1971, 21:281-285
    [108] Cameron JW, Soost RK. Acidity and total soluble solids in Citrus hybrids and advanced crossesinvolving acidless orange and acidless pummelo[J]. Journal of the American Society for Horticultural Science, 1977, 120: 510-514
    [109] Monet R. Genetic transmission of the‘fruit sweetness’character: Incidence on selection for quality. Eucarpia fruit section. Tree Fruit Breeding, Angers, France, INRA, Angers. 1979.
    [110] Fang DQ, Federici CT, Roose ML. Development of molecular markers linked to a gene controlling fruit acidity in citrus[J]. Genome, 1997, 40:841–849
    [111] Kubicki B. Inheritance of some characters in muskmelons (Cucumis melo) [J]. Genet Polonica,1962,3:265-274.
    [112] Périn C, Dogimont C, Giovinazzo N, Besombes D, Guitton L, Hagen L, Pitrat M. Genetic control and linkages of some fruit characters in melon[J]. Cucurbit Genetics Cooperative Repor, 1999, 22:16-18.
    [113] Maliepaard C, Alston FH, Arkel GV et al. Aligning male and female linkage maps of apple (Malus pumils Mill.) using multi-allelic markers[J]. Theoretical Applied Genetics, 1998, 97:60-73.
    [114]鲍江峰,夏仁学,彭抒昂.生态因子对柑橘果实品质的影响[J].应用生态学报, 2004, 15(8): 1477-1480.
    [115]吴光林,张光伦,黄寿波编著.果树生态学.北京:农业出版社, 1992.
    [116]文涛,熊庆娥,曾伟光等.气候因子与脐橙果实糖、酸含量的灰色关联度分析[J].西川农业大学学报, 2001, 19(3): 225-227.
    [117]罗琴.江苏省吴县温州蜜橘品质的多元分析[J].气象, 1994, 20 (5): 42-45.
    [118] Chen JW, Zhang SL, Zhang LC et al. Fruit photosynthesis and assimilate translocation and partitioning: their characteristics and role in sugar accumulation in developing citrus unshiu fruit[J]. Acta Botanica Sinica, 2002, 44: 158-163.
    [119]陈俊伟,张上隆,张良诚等.柑橘果实遮光处理对光合产物分配、糖代谢与积累的影响[J].植物生理学报, 2001b, 27(6): 499-504.
    [120] Watson R, Wright CJ, Mcburney T et al. Influence of harvest date and light integral on the development of strawberry favour compounds[J]. Journal of Experimental Botany, 2002, 53(377): 2121-2129.
    [121]马跃.气温对温州蜜橘品质的灰色关联度分析[J].浙江柑橘, 1993, (1): 8-9.
    [122] Marcelis LFM. 1993. Simulation of biomass allocation in greenhouse crops– a review[J]. Acta Horticulturae, 328:49-67.
    [123] Heuvelink EP and Bertin N. Dry matter partitioning in a tomato crop: comparion of two simulation models[J]. The Journal of Horticulural Science and Biotechnology, 1994, 69:885-903.
    [124]施泽平等.温室甜瓜生长模型的研究与栽培管理专家系统的建立[D].南京农业大学, 2005.
    [125]李建明,邹志荣,黄志.温光驱动甜瓜壮苗指数模型研究[J].西北农林科技大学学报, 2008, 36(1): 149-152.
    [126]李建明,邹志荣.温度、光辐射及水分对温室甜瓜幼苗干物质积累与分配的影响及其模拟模型[J].应用生态学报, 2007,18(12): 2715-2721.
    [127]袁昌梅,罗卫红,张生飞等.温室网纹甜瓜发育模拟模型研究[J].园艺学报, 2005, 32(2): 262-267.
    [128]袁昌梅,罗卫红,邰翔等.温室网纹甜瓜干物质分配、产量形成与采收期模拟研究[J].中国农业科学, 2006, 39(2): 353-360.
    [129] Bertin N, Bussires M and Génard M. Ecophysiological models of fruit quality: a challenge for peach and tomato. ISHS Acta Horticulturae 718: HortiModel, 2006.
    [130] Ho LC and Hewitt JD. Fruit development. 1986. P.201-240. In: Atherton JG. and Rudich J. (eds.) The tomato crop, Chapman and Hall, London.
    [131] Bergervoet JHW, Verhoeven HA, Gillissen LJW et al. High amounts of nuclear DNA in tomato(Lycopersicon esculentum Mill.) prticarp[J]. Plant Science, 1996, 116:141-145.
    [132] Traas J, Hülskamp M, Gendreau E et al. Endoreduplication and development: rule without dividing. Curr. Opin[J]. Plant Biology, 1998, 1:498-503.
    [133] Melaragno J E, Mehrotra B, Coleman A W. Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis[J]. The plant Cell, 1993, 5: 1661-1668.
    [134] Cheniclet C, Rong W Y, Causse M et al. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth[J]. Plant Physiology, 2005, 139:1984-1994.
    [135] Bertin N, Fishman S and Génard M. A model for early stage of tomato fruit development: cell multiplication and cessation of the cell proliferative activity[J]. Ann. Bot, 2003, 92:65-72.
    [136] Ciliberto A and Tyson JJ. Mathematical model for early development of the seaurchin embryo[J]. Bulletin of Mathematical Biology, 2000, 62: 37-59.
    [137] Bussières P. Water import rate in tomato fruit: a resistance model[J]. Ann. Bot, 1994, 73:75-82.
    [138] Fishman S and Génard M. A biophysical model of fruit growth: simulation o seasonal and diurnal dynamics of mass[J]. Plant Cell and Environment, 1998, 21: 739-752.
    [139] Génard M and Souty M. Modeling the peach sugar contents in relation to fruit growth[J]. Journal of the American Society for Horticultural Science, 1996, 121:1122-1131.
    [140] Génard M and Huguet J G. Moedlling the effect of irrigation on peach fruit quality[J]. Acta Hort, 1997, 449:161-168.
    [141] Génard M, Reich M, Habib R et al. Correlations between sugar and acid content and peach growth[J]. The Journal of horticultural Science and Biotechnology, 1999, 74:772-776.
    [142] Génard M, Lescourret F, Gomez L et al. Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica) [J]. Tree Physiology, 2003, 23: 373–385.
    [143] Tucker GA. Introduction p 1-51. In: Seymour GB, Taylor JE, Tucker GA(eds.). Biochemistry of fruit ripening, Chapman and Hall, London. 1993.
    [144] Lobit P, Génard M, Wu BH et al. Modelling citrate metabolism in fruits: responses to growth and temperature[J]. Journal of Experimental Botany, 2003, 54, 2489–2501.
    [145] Wu B H, Génard M, Lobit P et al. Analysis of citrate accumulation during peach fruit development via a model approach[J]. Journal of Experimental Botany, 2007, 58: 2583-2594.
    [146] Lescourret F and Génard M. A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth[J]. Tree Physiology, 2005, 25: 1-13.
    [147] Struik P C, Yin X, de Visser P. Complex quality traits: now time to modes[J]. Trends Plant Science, 2005, 8:9-14.
    [148] Kropff MJ, Haverkort AJ, Aggarwa PK et al. Using systems approaches to design and evaluate ideotypes for specific environments. P: 417-435. In: J Bouma, B A M. Bouman Luyten JC, Zandstra H G (eds.), Eco-regional approaches for sustainable land use and food production, Dordrecht, Netherlands: Kluwer Acaemic Publ. 1995.
    [149] Reymond M, Muller B, Leonardi A et al. Combining quantitative trait loci analysis and an ecophysiological model to temperature and water deficit[J]. Plant Physiology, 2003, 131: 664-675.
    [150] Tardieu F. Virtual plants: modeling as a tool for the genomics of tolerance to water deficit[J]. Trends Plant Science, 2005, 8: 9-14.
    [151] Yin X, Stam P, Dourleijn C J et al. AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley[J]. Theoretical and Applied Genetics, 1999, 99: 244-253.
    [152] Quilot B, Kervella J, Génard M et al. Analysing the geneticf control of peach fruit quality through an ecophysiological model combined with a QTL approach[J]. Journal of Experimental Biology, 2005, 56:3083-3092.
    [153] Yin X, Struik P C, Kropff M J et al. Role of crop physiology in predicting gene-to-phenotype relationships[J]. Trends Plant Science, 2004, 9:426-432.
    [154] Gonzalez-Ibeas D, Blanca J, Roig C et al. MELOGEN: an EST database for melon functional genomics[J]. Genomics, 2007, 8: 306.
    [155] Kirkbride JH. Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, Boone, NC, USA. 1993, 159pp.
    [156] Liu L, Kakihara F, Kato M. Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit[J]. Euphytica, 2004, 135: 305-313.
    [157]吴明珠.当前西甜瓜育种主要动态及今后育种目标研讨.中国西瓜甜瓜[J]. 2003 (3): 1-3.
    [158]吴明珠,伊鸿平,冯炯鑫等. 2005.新疆厚皮甜瓜辐射诱变育种效果的探讨.中国西瓜甜瓜, 1: 1-3.
    [159] Http://www.xaas.ac.cn/byxw/2006/2006-43.htm.
    [160] Sweeney JP, Chapman VJ. Hepner PA. Sugar, acid and flavour in flesh fruits[J]. Journal of the American Dietetic Association, 1970, 57, 432–435.
    [161] Luo AC, Yang XH, Deng YY et al. Organic acid concentrations and the relative enzymatic changes during the development of citrus fruits[J]. Scientia Agricultura Sinica, 2003, 36: 941–944.
    [162] Périn C, Dogimont C, Giovinazzo N et al. Genetic control and linkages of some fruit characters in melon[J]. Cucurbit Genet Coop Rep, 1999, 22: 16-18.
    [163] Alba R, Fei ZJ, Payton P et al. ESTs, cDNA microarray, and gene expression profiling: tools for dissecting plant physiology and development[J]. Plant Journal, 2004, 39, 697-714.
    [164] Flanzy C. Etude du métabolisme anaérobie de la baie deraisin[D]. Universitéde Marseille-Luminy, 1978, 107pp.
    [165] Saradhuldhat P, Paull RE. Pineapple organic acid metabolism and accumulation during fruit development[J]. Scientia Horticultrrae. 2007, 112: 297-303.
    [166] Yang YH, Dudoit S, Luu P et al. Normalisation for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation[J]. Nucleic Acids Research, 2002, 30, e15.
    [167] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society, Series B, 1995, 57: 289–300.
    [168] Ouyang B, Yany T, Li H et al. (2007). Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. Journal of Experimental Botany,58, 507-520.
    [169] Tucker GA. Introduction. In: Seymour GB, Taylor JE, Tucker GA. eds. Biochemistry of fruit ripening. London: Chapman & Hall, 1993, 1–51.
    [170] Reymond. DNA microarray and plant defence[J]. Plant Physiology and Biochemistry, 2001, (39):313-321
    [171] Hadfield KA, Rose JK, Yaver DS et al. Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly[J]. Plant Physiology, 1998, 117(2):363-373.
    [172] Nishiyama K, Guis M, Rose JK et al. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon[J]. Journal of Experimental Botany, 2007, 58(6):1281-1290.
    [173] Zhao M, Wu YJ, Jiang GH et al. Advances in research on the metabolism of organic acids in citrus fruits[J]. Journal of Fruit Science, 2008, 25:225-230.
    [174] Maeshima M, Nakanishi Y, Matsuura-Endo et al. Proton pumps of the vacuolar membrane in growing plant cells[J]. Journal of Plant Research, 1996, 109: 119–125.
    [175] Mao GH, Song LX, Sun DY. Progress of Study on Calmodulin-binding Proteins in Plants[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30: 481-488.
    [176]苏芳,郭绍贵,宫国义等.甜瓜基因组学研究进展[J].分子植物育种, 2007, (5): 540-547.
    [177]王健康,盖钧镒.利用杂种F2世代鉴定数量性状主基因—多基因混合遗传模型并估计其遗传效应[J].遗传学报, 1997, 24(5): 432-440.
    [178]章元明,盖钧镒,张孟臣.利用P1 P2 F1和F2或F2:3世代联合的数量性状分离分析[J].西南农业大学学报, 2000, 22: (1):6-9.
    [179]李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因-多基因混合遗传分析[J].遗传,2006, 28(4): 458-462.
    [180]严慧玲,方智远,刘玉梅等.甘蓝显性雄性不育材料DGM S79-399-3不育性的遗传效应分析[J].园艺学报, 2007, 34(1):93-98.
    [181]韩建明,候喜林,史公军等.不结球白菜叶子重量性状遗传模型分析[J].遗传, 2007, 29(9):1149-1153.
    [182]庞文龙,刘富中,陈钰辉等.茄子果色性状的遗传研究[J].园艺学报,35(7): 979-986.
    [183] Danin-Poleg Y, Tadmor Y, Tzuri G et al. Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance[J]. Euphytica, 2002, 125: 373-384.
    [184]张文英,程君奇,朱军等.上位性及其在遗传育种研究中的应用[J].生物信息学, 2004, 2(2):39-41, 50.
    [185]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社, 1990
    [186]樊景胜.灰色系统理论在玉米育种经济性状选择上的应用[J].农业系统科学与综合研究, 1994, 10 (2): 125-129.
    [187]胡延吉,赵檀方.小麦品种产量性状演变与预测的灰色系统分析[J].农业系统科学与综合研究, 1995, 11(1): 1-3.
    [188]罗元新.灰色系统理论在水稻育种农艺性状选择上的应用[J].农业系统科学与综合研究, 1995, 11(3): 214-216.
    [189]王淑荣.灰色关联分析应用于大豆主要数量性状选择上的研究[J].农业系统科学与综合研究,1995, 11(1): 75-77.
    [190]林碧英,高山,林峰等.甜瓜产量相关性状的灰色关联综合分析研究[J].福建农业学报, 2008, 23(2): 178-181.
    [191] Génard M, Reich M, Habib R et al. Correlations between sugar and acid content and peach growth[J]. Journal of horticulture Science and Biotechnology, 1999, 74:772-776.
    [192] Génard M, Lescourret F, Gomez L et al. Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica) [J]. Tree Physiology, 2003, 23: 373–385.
    [193] He CX, Zhang ZB. Modeling the relationship between tomato fruit growth and the effective accumulated temperature in solar greenhouse. Acta Horticulturae 718: 581-588
    [194]施泽平,郭世荣,康云艳.基于生长度日的温室甜瓜发育模拟模型的研究[J].南京农业大学学报, 2005, 28(2):129-132.
    [195]施泽平,郭世荣,康云艳.温室甜瓜光合生产与干物质积累模拟模型研究[J].果树学报, 2006, 23(3):420-426.
    [196] Stenzel NMC, Neves CSVJ, Marur C J et al. Maturation curves and degree-days accumulation for fruits of‘FOLHA MURCHA’orange trees[J]. Sci Agric (Piracicaba, Braz.), 2006, 63:219-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700