用户名: 密码: 验证码:
油菜生长模拟与决策支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物生长模型与决策支持系统的研究和广泛应用对于农业生产的信息化和数字化有重要的理论意义和应用价值。本研究借鉴国际上先进的建模理论和本实验室形成的作物模拟方法体系和基本框架,运用系统分析原理和动态建模技术,通过不同类型品种的播期和氮素试验对油菜生长发育的基本规律及其与环境因子之间的关系予以定量解析和综合,构建了一个基于生理生态过程的油菜生长模拟模型;采用面向对象技术、软构件技术及决策支持技术,构建了符合COM标准的油菜生长模型组件,进一步研制了基于生长模型的油菜管理决策支持系统(包括单机版、网络版),实现了在网络和单机环境下油菜生长动态模拟预测和管理决策支持功能,为数字化油作系统的构建奠定了基础。
     以油菜生理生态过程为基础,通过定量分析油菜对温度(包括春化作用)和光周期的反应,构建了以生理发育时间为尺度的油菜生育期模拟模型。每日生理发育时间由每日生理效应累积形成,每日热效应、春化效应、光周期效应与品种灌浆速率互作共同决定每日生理效应大小。模型通过引入温度敏感性、生理春化时间、光周期敏感性和基本灌浆因子4个参数反应不同油菜品种的遗传差异,从而使得每个油菜品种达到特定生育时期所需的生理发育时间恒定。
     建立油菜叶面积指数模拟模型综合基于库或源限制下的叶面积增长模式,其中库限制下叶面积指数的增长呈指数方程,且受到温度、水分和氮素因子的影响;源限制下叶面积指数增长用比叶面积法来模拟。油菜角果面积指数由比角果面积和角果干物重来决定。比叶面积和比角果面积均为生理发育时间的函数。
     针对油菜冠层生态结构的特点,构建了油菜光合作用和干物质积累的模拟模型。采用“三层模型”法,即通过对花、角果、叶三层分别计算光能截获和光合作用,利用高斯积分法计算每层的光合量而得出每日的冠层总同化量。模型充分量化了油菜生理年龄、温度、氮素、水分等因子对最大光合速率的影响,同时考虑了维持呼吸与生长呼吸的消耗,使模型具有较强的机理性和通用性。
     利用油菜器官生育进程及环境因子之间的定量关系,构建了基于分配指数的油菜地上部器官干物质分配动态模拟模型。各器官干物质分配指数随着生理发育时间而动态变化,基因型、播期、氮素及水分水平对各器官干物质分配指数的模式没有显著影响,但影响各器官干物质分配指数的大小。其中,氮素营养水平对绿色叶片干物重分配影响最大,氮素营养水平越高,绿色叶片分配指数越大;播期影响角果分配指数,晚播的角果分配指数高于早播。模型引入氮素营养指数、水分影响因子及播期影响因子来定量油菜各器官在实际生产条件下的分配强度,同时考虑了品种遗传特性的影响。
     进一步结合实验室已有的水分平衡模型和养分平衡模型,集成建立了综合性油菜生长模拟模型(RapeGrow),包括阶段发育、器官生长、光合作用与光合作用与物质生产,物质分配与产量形成,水分平衡和养分平衡等。利用不同品种的播期试验和氮肥试验的资料对建立的模型进行了初步的校正和核实,结果表明,模型能较好的预测油菜的油菜主要生育期、绿色面积指数增长和消亡动态、干物质积累和分配动态以及籽粒产量。模型总体上具有较好的机理性、预测性和适应性。
     通过定量分析冬油菜绿色面积指数动态与品种类型、生态环境和生产技术水平之间的关系,运用系统工程与动态建模的方法,以基于生理发育时间的动态生长度日为主线,建立了定量化和广适性的冬油菜适宜绿色面积指数动态设计的知识模型,包括群体叶面积指数动态和角果面积指数动态。利用不同生态点的常年逐日气象资料以及不同品种类型、产量目标资料对所建知识模型进行了实例分析,表明知识模型对不同条件下冬油菜适宜绿色面积指数的设计具有较好的可靠性和适用性。
     在气象因子、土壤条件、品种特征和栽培管理数据库的支持下,利用作物生长模拟技术、决策支持技术、计算机软构件技术,构建了基于生长模型的油菜管理决策支持系统(GMDSSRSM),包括单机版(GMDSSRSM~A)和网络版(GMDSSRSM~W)。其中单机版系统利用VB和VC++语言编程实现,网络版系统在.net平台上用C#语言开发系统,分别具有数据管理、模拟预测、方案评估、时空分析、敏感性分析、专家咨询、系统帮助等功能。本研究所建立的油菜生长模型及决策支持系统为进一步构建数字化油作系统奠定了技术基础。
The research and application of crop growth model and decision support system for rapeseed management would be important for facilitating development of informational and igital agriculture. In the present study, the relationships of growth and development to environment factors were analyzed and integrated by using the field experiments data with different genotypes, sowing dates and nitrogen application levels. By adopting studying advanced modeling technology abroad and the methodology of crop growth model developed by our lab, a physiological process-based rapeseed simulation model was developed through the system analysis and mathematical modeling. By using object-oriented framework structure and component design, a component based rapeseed growth model (RapeGrow) was developed with COM standard. Then, a growth model-based decision support system for rapeseed management (GMDSSRSM) was established by integrating decision support techniques, which realized the functions of dynamic simulation, growth prediction, decision-making in rapeseed production under the environments of stand-alone and network, respectively. The present study should be useful for prediction of growth performance under different conditions and construction of rapeseed digital management system in rapeseed crop.
     Based on the eco-physiological processes of rapeseed development, a simulation model for predicting phenological stages of oilseed rape (brassica napus L.) was developed with the physiological development time (PDT) as time scale and by quantifying the effects of temperature (including vernalization) and photoperiod on oilseed rape. The interaction among daily thermal effectiveness, photoperiod effectiveness, vernalization effectiveness and filling rate determined the daily physiological effectiveness, which was accumulated to obtain physiological development time. Four specific genetic parameters as temperature sensitivity, physiological vernalization time, photoperiod sensitivity and basic filling duration factor were added to adjust the genotypic differences in rapeseed development so that all different varieties could reach the same physiological development time at a given development stage.
     Dynamic leaf area expansion in rapeseed was simulated through the relationship between LAI and source or sink limited dry matter. The daily leaf expansion rate increased exponentially under the source limitation, as influenced by the factors of temperature, water and nitrogen deficits, whereas under the sink limitation, leaf area expansion was quantified on the basis of specific leaf area (SLA). Pod area was calculated from specific pod area (SPA) and pod dry matter. The specific leaf area and specific pod area were determined from physiological development time (PDT) and genotype.
     Based on the characters of canopy structure, a simulation model for photosynthetic production and dry matter accumulation was established for rapeseed crop. The model used a "3 layer model", calculating the radiation interception and photosynthesis on the layers of flowers, pods and leaves, respectively. Gaussian integration method was used to calculate the photosynthesis of each layer, and the daily total canopy photosynthesis was the sum of the each layer's photosynthesis. The effects of physiological age, temperature, nitrogen and water deficit factors on maximum photosynthesis were quantified respectively. The model also considered maintenance and growth respiration in determining net photosynthetic production.
     Based on eco-physiological processes, a simulation model on dry matter partitioning and yield formation in rapeseed was developed through the relationships of partitioning index to development progress and environment factors. Partitioning indices of green leaf, stem and pod changed with physiological development time, as influenced by genotype, sowing date, nitrogen level and water status. Green leaf dry weight was regulated by nitrogen nutrition index (NNI), the higher nitrogen nutrition index and the higher partitioning index of green leaf. The factor of sowing date was introduced to regulate partitioning index of pod, which increased with sowing date delayed.
     By integrating the above submodels with existing wate and nutrient sub-models, a comprehensimve growth simulation model (RapeGrow) was constructed for rapeseed crop. The RapeGrow includes six sub models for simulating phasic development, organ formation, biomass production, yield and quality formation, soil-crop water relations, and nutrient (N, P, K) balance. Validation of these individual sub-models with the field experiments data of different genotypes, sowing dates, and nitrogen levels showed that the models could accurately predict main development stages, green area index, dry matter accumulation and partitioning to different organs under different conditions. The present model appears to have good explanation, reliable prediction and wide adaptation.
     Based on the analysis and extraction of research data on cultural theories and technologies in winter rapeseed, a quantitive and general knowledge model was developed for present design of suitable green area index dynamics in winter rapeseed. The model was driven by physiological development time-based growing degree days and by quantitative relationships of growth characters to variety traits, eco-environments and production levels, and can be used for designing the suitable time-course dynamics of leaf area index and pod area index under different conditions. Case studies with the data sets of normal climatic year, different variety types and yield levels at different eco-sites indicate a good performance of the model system in guidance and wide applicability.
     Driven by soil, variety, weather and management databases, a growth model-based decision system for rapeseed management (GMDSSRSM) was developed by integrating growth simulation technology and component-based software technology, including the stand-alone edition (GMDSSRSM~A) and web-based edition (GMDSSRSM~W). The GMDSSRSM~A was established on the platforms of VC++ and VB by adopting the characteristics of object-oriented and component-based software and coupling the growth prediction function and decision-making function for cultural management. Then, GMDSSRSM~W was further developed on the platform of. net with the language of C# for web users. The implemented system can be used for evaluating individual and comprehensive management strategies based on the results of rapeseed growth simulation under various environments and different genotypes. The GMDSSRSM should quantitivelay a technical foundation for construction and application of digital farming system in modern rapeseed production.
引文
[1] Monsi M and Saeki T. uber den Lichtfaktor in den Pflan-zengesellschaften und seine Bedeutung fur die Stoffproducktion [J]. Jap J Bot. 1952, 14: 22~52.
    [2] De Wit C T. Photosynthesis of leaf canopies [J]. Wageningen, Netherlands; Inst Boil Chem Res Field Crops Herb. Agricultural Research Report, 1965, 42: 663~671.
    [3] Duncan W G, Loomis R S, Williams W A, et al. A model for simulating photosynthesis in plant communities[J]. Hilgardia, 1967, 38: 181~205.
    [4] Thornely J H M. Mathematical models in plant physiology-A quantitative approach to problems in plant and crop physiology [M]. Academic Press, 1976.
    [5] De Wit C T. Dynamic concepts in biology. In Prediction and management of photosynthetic productivity [C]. Proceedings International Biological Program: Plant Production Technical Meeting, Trebon, ed. I. Setlik. PUDOC. Wageningen, the Netherlands. 1970, pp. 17723.
    [6] De Wit C T et al. Simulation of assimilation, respiration and transpiration of crops [M]. Simulation Monographs, PUDOC, Wageningen, the Netherlands. 1978, 148 pp.
    [7] Van Keulen H. Crop production under semi-arid conditions [M]. as determined by nitrogen and moisture availability. In Sirnulution of pplunt g,ol\,th and crop production, eds F. W. T. Penning de Vries & H. H. van Laar. Simulation Monographs, PUDOC, Wageningen. The Netherlands. 1982, pp. 234-251.
    [8] Curry R B, Chen L H. Dynamic simulation of plant growth, I. Devlopment of a model [J], ASAE Trans, 1971,14(5): 946-959.
    [9] Splinter W E. Modeling of plant growth for yield prediction [J]. Agricultural Meteorology, 1974,14: 243-253.
    [10] Jones C A, Kiniry F R. CERES-Maize: A simulation model of maize growth and development [M]. College station, US: Tesas S&M University Press, 1986.
    [11] Ritchie J T, Godwin D C et al. CERES-Wheat (unpublished) [M]. Michigan State University. US. 1988.
    [12] Carberry P S, Muchow R C, McCown R L. Testing the CERES-Maize simulation model in a semi-arid tropical environment [J]. Field Crops Research, 1989,20: 297 -302.
    [13] Hodges T , Bother D , Sakomoto C ,Haug J H. Using the CERES-Maize model to estimate production for the U.S. Cornbelt [J]. Agriculture and Forest Meteorology, 1987,40: 293-303.
    [14] Wu Y, Sakamoto C M, Bother D M. On the application of the CERES-Maize model to the North China Plain [J]. Agriculture and Forest Meteorology, 1989,49: 9-15.
    [15] Pisani ALDu. The CERES-Maize model as a potential tool for drought assessment in South Africa [J].Water South Africa, 1987,13:159-163
    [16] Liu W T H, Bother D M, Sakamoto C M. Application of CERES-Maize to yield prediction of a Brazilian maize hybrid. Agriculture and Forest Meteorology [J], 1989,45: 299-304.
    [17] Wilkerson G G, Jones J W, Boote K J, et al. Modeling soybean growth for crop management [J]. Trans ASAE, 1983, 26: 63-73.
    [18] Hijmans R J, Guiking-Lens I M, Van Diepen C A. WOFOST, user guide for the WOFOST6.0 crop growth simulation model [M] .Wageningen, Netherlands: Technical documentl2, DLOW in and Staring Centre, 1994.145pp.
    [19] Penning de Vries F W T, Jansen DM, et al. Simulation of ecophysiological processes of growth in several annual crops [M]. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1989. 27.
    [20] Spitters C J T, Schapendonk A H C M. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation [J]. Plant and Soil, 1990,123:193-203.
    [21] Monteith J L. Light interception and radiative exchange in crop stands [M]. In Physiological aspects of crop y, ie/d, eds J. D. Easton, F. A. Haskins, C. Y. Sullivan & C. H. M. van Bavel. American Society of Agronomy, Madison, 1969, 3~16.
    [22] Monteith J L. Conservative behaviour in the response of crops to water and light. In Theoretical Production Ecology: reflection and prospects [M], eds R. Rabbinge, J. Goudriaan, H. van Keulen, F. W. T. Penning de Vries & H. H. van Laar. Simulation Monographs, PUDOC, Wageningen, The Netherlands. Wisconsin. 1990, pp. 89~111.
    [23] Sinclair T R, Seligman N G. Crop modeling: fromin fancy to maturity [J].Agronomy Journal, 1996, 88: 698~704.
    [24] Kropff M J and Peng S et al. Quantitative under standing of rice yield potential [M]. In: Breaking the Yield Barrier. eds. Cassman. IRRI, Philippines. 1994, 5~20.
    [25] Kiniry J R, Bockholt A J. Maize and sorghum simulation in diverse Texas environments [J]. Agronomy Journal, 1998, 90: 682~687.
    [26] Kiniry J R, Knievel D P. Response of maize seed number to solar radiation intercepted soon after anthesis [J]. Agronomy Journal, 1995, 87: 228~234.
    [27] Maas J S. Use of remotely-sense dinformation in agricultural crop growth models [J]. Ecological Modeling, 1988, 41: 241~268.
    [28] Maas J S. Use of remotely-sensed information in agricultural crop growth models [J]. Ecological Modeling, 1988, 41: 241~268.
    [29] Lal H, Hoogenboom G, Calilxte J P, et al. Using crop simulation model sand GIS forregional productivity analysis [J], Transactions of the ASAE 1993, 36(1): 17~184.
    [30] 高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统(RCSODS)[M].北京:中国农业科技出版社,1992.
    [31] 戚昌瀚.水稻生长日历模拟模型/调控决策支持系统研究综合报告[J].江西农业大学学报,1996,18(增刊):1~4.
    [32] 潘学标.COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):11~16.
    [33] 严美春,曹卫星,罗卫红.小麦发育过程及生育期机理模型的研究[J].应用生态学报,2000,11(2):1~8.
    [34] 孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362~1367.
    [35] 张立桢,曹卫星,强思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97~103.
    [36] Kiniry J R, Majo D J, Llzaurralde R C, et al. Epic model parameters for cereal, oilseed and forage crops in the northern great plains region [J]. Canadian Journal of Plant Science, 1995, 75: 679~688.
    [37] Petersen, C T, Jurgensen U, Svendsen H, et al. Parameter assessment for simulationof biomass production and nitrogen uptake in winter rape [J]. European Journal of Agronomy, 1995, 4: 77~89.
    [38] Habekotte B. Evaluation of seed yield determining factors of winter oilseed rape (Brassica napus L) by means of crop growth modelling [J]. Field Crops Research, 1997, 54: 137~151.
    [39] Gabrielle B, Denoroy P, Gosse G, et al. Development and evaluation of a CERES-type model for winter oilseed rape [J]. Field Crops Research, 1998, 57: 95~111
    [40] Robertson M J, Holland J F, Kirkegaard J A, et al. Simulating growth and development of canola in Australia [C]. Priceedubgs 10th International Rapeseed Congress. Canberra. 1999.
    [41] Hansen S, Jensen H E, Nielsen N E et al. DAISY Soil Plant Atmosphere System Model [C]. NPO Report No A 10 Copenhagen: The National Agency for Environmental Protection. 1990, 272pp.
    [42] Jones C A, Kiniry J R. Ceres-N Maize: A Simulation model of maize growth and development [J]. Texas A&M University Press, College Station, Temple, TX, 1986, 194pp.
    [43] 李旭,曹卫星,罗卫红.小麦管理智能决策系统的设计与实现.南京农业大学学报[J],1998,22(3):9~11.
    [44] 曹卫星,李存东,李旭,等.基于作物模型的专家系统预测和决策功能的结合[J].计算机与农业,1998,(2):8~12.
    [45] Lemmon H. Comax: An expert system for cotton crop management [J]. Science, 1986, 233: 29~33.
    [46] Mckinion J M, et al. Application of the GOSSYM/COMAX system to cotton [J]. Crop Management Agriculture system, 1989, (31): 55~65.
    [47] IBSNAT. Documentation for IBSNAT crop model input and output files, Version1.1, for the Decision Support System for Agrotechnology Transfer(DSSATV2.1) [M]. Honolulu, US: IBSNAT Tech.Rep.5. Dep. Of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, 1990.
    [48] Tsuji G Y, Uehara G, Balas S(Eds.), Decision Support System for Agrotechnology Transfer (DSSAT) Version 3 [M]. University of Hawaii, Honolulu, Hawaii, 1994.
    [49] Jones J W, Hoogenboom G, Porte C H, et al. The DSSAT cropping system model [J], European Journal of Agronomy, 2003, 18:235~265.
    [50] Ritchie J T, Otter S. Description and Performance of CERES-Wheat: A User-Oriented Wheat Yield Model [J]. USDA-ARS. ARS-38. 1985, 159~175.
    [51] Wilkerson G G, Jones J W, Boote K J, et al. Modeling soybean growth for crop management. Transactions of the ASAE, 1983, 26:63~73.
    [52] Boote K J, Jones J W, Mishoe J W, et al. Modeling growth and yield of groundnut. Agrometeorology of Groundnut: Proceedings of an International Symposium [M], ICRISAT Sahelian Center, Niamey, Niger. 21_/26 Aug, 1985, ICRISAT, Patancheru, A P 502 324, India, pp. 243~254.
    [53] Boote K J, Pickering N B, Allen L H. Plant modeling: advances and gaps in our capability to project future crop growth and yield in response to global climate change [M]. In: Allen, L.H., Jr., Kirkham, M.B., Olszyk, D.M., Whitman, C.E. (Eds.), Advances in Carbon Dioxide Effects Research(Special Publication No. 61). ASA-CSSA-SSSA, Madison, WI, 1997. pp. 179~228.
    [54] McCown R L, Hammer G L, Hargreaves, et al. APSIM: a novel software system for model development, model testing, and simulation in agricultural systems research [J]. Agriculture System. 1996, 50: 255~271.
    [55] Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation [J], European Journal of Agronomy 2003, 18: 267~288.
    [56] Williams J R, Jones C A, Kiniry J R, Spanel D A. The EPIC crop growth model [J]. Trans ASAE, 1989, 32: 497~511.
    [57] Pria S, Shibasaki R. National spatial crop yield simulation using GIS-based crop production model. Ecological modeling [J], 2001, 136(2-3):113~129.
    [58] Jintrawet A. A decision support system for rapid assessment of lowland rice-based cropping alternatives in Thailand [J]. Agricultral Systems, 1995, 47: 245~248.
    [59] Beinroth, F.H, Jones J W,et al. Wvaluation of Land Resources Using Crop Models and a GIS [M],G.Y. Tsuji et al.(ads):Understanding Options for Agricultural Production. 1998.
    [60] Lal H G, Hoogenboom J P, Calixte et al. Using crop simulation models and GIS for regional productivity analysis [J]. Transactions of ASAE, 1993, 36(1): 175~184.
    [61] Shim J P, Warkentin M, Courtney J F, et al.. Past, present, and future of decision support technology [J]. Decision Support Systems, 2002, 33(2): 111~126.
    [62] 潘洁.小麦生长模拟与决策支持系统的研究[D].南京:南京农业大学,2005.
    [63] 李卫国.水稻生长模拟与决策支持系统的研究[D].南京:南京农业大学,2005.
    [1] 廖桂平,官春云.湘农油571生长发育及产量形成与播种期关系的模拟分析[j].湖南农业大学学报(自然科学版),2001,27(1):17~20.
    [2] 刘后利.油菜实用栽培学[M].上海科学技术出版社,上海,1987,499~450.
    [3] Michele R, Nicola L, Zina F. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy[j]. Agriculture Systems, 2003, 78: 17~30.
    [4] 潘洁.小麦生长模拟与决策支持系统的研究[D].南京:南京农业大学,2005.
    [5] 李卫国.水稻生长模拟与决策支持系统的研究[D].南京:南京农业大学,2005.
    [1] Kiniry J R, Majo D J, Llzaurralde R C, et al. Epic model parameters for cereal, oilseed and forage crops in the northern great plains region[J]. Canadian Journal of Plant Science, 1995, 75: 679~688.
    [2] Habekotte B. A model of the phonological development of winter oilseed rape (Brassica napus.L) [J]. Field Crop Research, 1997, 54: 127~136.
    [3] 刘洪,金之庆.油菜发育动态模拟模型[J].应用气象学报,2003,14(5):634~640.
    [4] 刘铁梅,胡立勇,赵祖红,等.油菜发育过程及生育期机理模型的研究Ⅰ.模型的描述[J].中国油料作物学报,2004,26(1):27~31.
    [5] 胡立勇,刘铁梅,郑小林,等.油菜发育过程及生育期机理模型的研究Ⅱ.模型的检验和评价[J].中国油料作物学报,2004,26(2):51~55.
    [6] 严美春,曹卫星,罗卫红,等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355~359.
    [7] 严美春,曹卫星,李存东,等.小麦发育过程及生育期机理模型的检验和评价[J].中国农业科学,2000,33(2):43~50.
    [8] 刘铁梅,曹卫星,罗卫红.小麦抽穗后生理发育时间的计算与生育期的预测[J].麦类作物学报,2000,20(3):29~34.
    [9] 孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362~1367.
    [10] 张立桢,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97~103.
    [11] 廖桂平,官春云.湘农油571生长发育及产量形成与播种期关系的模拟分析[J].湖南农业大学学报(自然科学版),2001,27(1):17~20.
    [12] Michele R, Nicola L, Zina F. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy[J]. Agricultural Systems, 2003, 78: 17~30.
    [13] Gabrielle B, Denoroy P, Gosse G, et al. Development and evaluation of a CERES-type model for winter oilseed rape [J]. Field Crops Research, 1998, 57: 95~111
    [14] 刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1985,130-139;571~572.
    [15] Hodgson A S. Rapeseed adaptation in Northern New South Wales. Ⅱ.Prediction plant development of Brsssica campestris. L. and Brassica napus L. and its implications for planting time. Designed to avoid water deficit and frost[J]. Australia Journal of Agriculture Research.1978, 29: 711~726.
    [16] Yin X, Goudriaan J, Latinga E A, et al. A flexible sigmoid growth function of determinate growth[J]. Annals of botany. 2003, 91, 361~371.
    [17] Virgil M F, Anderson R L, Beard W E. Base temperature and growing-degree-hour requirements for the emergence of canola [J]. Crop Science. 1997, 37: 844~849.
    [18] Cao W and Moss D N. Modelling phasic development in wheat: a conceptual integration of physiological components [J]. Journal of Agricultural Science. 1997, 129: 163~172.
    [19] Manrique A, Hodges L A. Estimation of tuber initiation in potatoes grown in tropical environments based on different methods of computing thermal time[J]. American Potato Journal. 1989, 66(7): 425~436.
    [20] Goudriaan J, Van Laar H H. Modeling potential crop growth processes [M]. The Netherlands: Kluwer Academic Publishers, 1994: 29-31.
    [21] 曹卫星,罗卫红. 作物系统模拟及智能管理[M]. 北京: 高等教育出版社, 2003,22-33.
    [22] Andrew M, Tommey M, Evans E J. Temperature and daylength control of flowering initiation in winter oilseed rape (Brassica napus L.) [J]. Annals of Apply Biology. 1991,118: 201-208.
    [1] 凌启鸿.作物群体质量[M].上海:上海科技出版社.402~405.
    [2] Habekotte B. Evaluation of seed yield determining factors of winter oilseed rape (Brassica napus L.) by means of crop growth modeling [J]. Field Crops Research, 1997, 54: 137~151.
    [3] Spitters C J T, van Keulen H, van Kraalingen D W G. A simple and universal crop growth simulator: SUCROS87 [M]. In: Rabbinge, R., Ward, S., van Laar, H. Eds, Simulation and System Management in Crop Protection. Simulation Monograph Vol.32, Pudoc, Wageningen, Netherlands, 1989, pp.147-181.
    [4] Villalobos FJ, Hall AJ, Ritchie JT, et al. OILCROP- SUN: a development, growth, and yield model of the sunflower crop [J]. Agronomy Journal, 1996, 88:403-415.
    [5] Lizaso J I, Batchelor, Westgate M E. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves [J]. Field Crops Research, 2003, 80:1~17.
    [6] Gabrielle B, Denoroy P, Gosse G, et al. A model of leaf area development and senescence for winter oilseed rape[J]. Field Crops Research, 1998, 57: 209~22.
    [7] Petersen, C T, Jurgensen U, Svendsen H, et al. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape [J]. European Journal of Agronomy, 1995, 4: 77~89.
    [8] 刘铁梅,曹卫星,罗卫红,等.小麦叶面积指数的模拟模型研究[J].麦类作物学报,2001,21(2): 38~41.
    [9] 张立桢,曹卫星,张思平,等.棉花形态发生和叶面积指数的模拟模型[J].棉花学报,2004, 16(2):77~83.
    [10] Justes E, Denoroy P, Gabrielle B, et al. Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape [J]. European Journal of Agronomy, 2000, 13, 165~177.
    [11] Greenwood D J, Lemaire G, Gosse G. Decline in percentage N of C3 and C4 crops with increasing plant mass [J]. Annals of Botany, 1990, 425~436.
    [12] Colnenne C, Meynard J M, Reau R, et al. Determination of a ,critical nitrogen dilution curve for winter oilseed rape [J]. Annals of Botany. 1998, 81: 311~317.
    [13] 庄恒扬,曹卫星,蒋思霞,等.作物氮素吸收与分配的动态模拟[J].农业系统科学与综合研究, 2004,20(1):5~11.
    [14] 朱艳,胡继超,曹卫星等.基于作物模型的农田水分管理决策支持系统研究[J].水土保持学报,2005,19(2):160~162.
    [15] Diepenbrock D. Yield analysis of winter oilseed rape (Brassica napus L): a review [J]. Field Crop Research, 2000, 67: 35~49.
    [1] Gabrielle B, Denoroy P, Gosse G, Justes E, Andersen M N. Development and evaluation of a CERES-type model for winter oilseed rape[J]. Field Crops Research, 1998, 57, 95-111
    [2] Habekotte A B. Evaluation of seed yield determining factors of winter oilseed rape (Brassica napus L.) by means of crop growth modelling[J]. Field Crops Research, 1997, 54, 137-151
    [3] 刘铁梅,曹凑贵,黄勇,等.油菜物质生产与积累的模拟模型[J].华中农业大学学报,2003,22(6): 533-537.
    [4] Justes E, Denoroy P, Gabrielle B, Gosse G. Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape [J]. European Journal of Agronomy. 2000, 13, 165-177.
    [5] 贺俐,陈桂兴.计算方法[M].武汉:武汉大学出版社.1998,pp 89-97/
    [6] Francis Scheid.数值分析[M], 2nd edn, 科学出版社. 2002. pp 118-120.
    [7] Goudriaan J, Van L H H, Modeling Potential Crop Growth Processes[M]. The Netherlands: Kluwer Academic Publishers, 1994. pp 60-62, 177-183
    [8] Michele R, Nicola L, Zina F. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy [J]. Agricultural Systems, 2003, 78:17-30
    [9] 韩相玲,曲曼丽.作物生态学[J].北京:气象出版社,1991。
    [10] Cellier P, Richard G, Robin B. Partition of sensible heat fluxes into bare soil and the atmosphere [J]. Agricultural and Forest Meteorology, 1996,82, 245-265
    [11] Casanova D, Epema G F, Goudriaan J. Monitoring rice reflectance at field level for estimating biomass and LAI [J]. Field Crops Research. 1998,55:83-92
    [12] 刘铁梅,曹卫星,罗卫红,等.小麦物质生产与积累的模拟模型[J].麦类作物学报,2001,21(3): 26~31.
    [13] 孟亚利,曹卫星,柳新伟,等.水稻光合生产与干物质累积的动态模拟[J].生物数学学报,2004, 19(2):205-212.
    [14] 曹卫星,罗卫红.作物系统模拟及智能管理[M].高等教育出版社.2003,22-31.
    [15] Greenwood D J, Lemaire G. A model of the leaf extension rate of tall fescue in response to nitrogen and temperature[J]. Annals of Botany. 1990, 66:425-436
    [16] Colnenne C, Meynard J M, Reau R, Justes E, Merrien A, Determination of a critical nitrogen dilution curve for winter oilseed rape. Annals of Botany. 1998, 81,311-317
    [17] 朱艳,胡继超,曹卫星,等.基于作物模型的农田水分管理决策支持系统研究[J].水土保持学报,2005,19(2):160~162.
    [18] 庄恒扬,曹卫星,蒋思霞,等.作物氮素吸收与分配的动态模拟[J].农业系统科学与综合研究,2004,20(1):5~11.
    [1] Hunt H W, Morgan J A, Read J J. Simulating growth and root: shoot partitioning in prairie grasses under elevated atmospheric CO_2 and water stress [J]. Annals of Botany, 1998, 81: 489~501.
    [2] Marcelis L F M. Simulation of biomass allocation in greenhouse-a review [J]. Acta Horticulture, 1993, 328: 49~65.
    [3] Heuvelink E. Effect of fruit load on dry matter partitioning in tomato [J]. Scientia Horticulture, 1997, 69:51~59.
    [4] Thornley JHM. A model to describe the partitioning of photosynthate during vegetative plant growth [J]. Annals of Botany. 1972, 36: 419~430.
    [5] Petersen, C T, Jurgensen U, Svendsen H, et al. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape [J]. European Journal of Agronomy, 1995, 4: 77~89
    [6] Gabrielle B, Denoroy P, Gosse G, et al. Andersen M N. Development and evaluation of a CERES-type model for winter oilseed rape [J]. Field Crops Research, 1998, 57:95~111
    [7] 廖桂平.官春云.甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究[J].作物学报,2002,28(1):52~58.
    [8] 刘铁梅,曹卫星,罗卫红,等.小麦器官间干物质分配动态的定量模拟[J].麦类作物学报,2001, 21(1):25~31.
    [9] 孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004, 30(4):376~381.
    [10] Greenwood DJ, Lemaire G, Gosse G, et al. Decline in percentage N of C3 and C4 crops with increasing plant mass [J]. Annals of Botany, 1990, 66:425~436
    [11] Colnenne C, Meynard JM, Reau R, et al. Determination of a critical nitrogen dilution curve for winter oilseed rape [J]. Annals of Botany, 1998, 81:311~317
    [12] 庄恒扬,曹卫星,蒋思霞,等.作物氮素吸收与分配的动态模拟[J].农业系统科学与综合研究, 2004,20(1):5~11.
    [13] 朱艳,胡继超,曹卫星,等.基于作物模型的农田水分管理决策支持系统研究[J].水土保持学报,2005,19(2):160~162.
    [14] Habekotte B. Evaluation of seed yield determining factors of winter oilseed rape (Brassica napus L.) by means of crop growth modelling [J]. Field Crops Research, 1997, 54: 137~151.
    [15] Diepenbrock D. Yield analysis of winter oilseed rape (Brassica napus L): a review [J]. Field Crop Research, 2000, 67: 35~49.
    [16] 刘后利.实用油菜栽培学[M].上海科学与技术出版社.1987,228~232.
    [1] 凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000.60~62,402~415.
    [2] 廖桂平.油菜高产优质高效栽培管理专家系统研究[D].长沙:湖南农业大学,1999.20~26.
    [3] 朱艳,曹卫星,周治国,等.冬小麦生长适宜动态指标的知识模型[J].中国农业科学,2004, 37(1):43~50.
    [4] 曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.70~89.
    [5] 陈俊才,范正辉,黄秀芳,等.油菜宁杂3号获得高产的适宜密度和施肥量探讨[J].江苏农业科学,2000,6:25~31.
    [6] 普惠明,傅寿仲,戚存扣,等.甘蓝型双低杂交油菜新品种——宁杂3号[J].江苏农业科学, 1999,6:32~33.
    [7] 刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1987.212~220,330~333.
    [8] Diepenbrock W. Yield analysis of winter oilseed rap (Brassica napus L.): a review[J]. Field Crops Res, 2000, 67: 35~49.
    [9] 李卫芳, 张明农.油菜叶的结构及其光合特性[J].安徽农业科学,1997,25(3):213~215.
    [10] 朱艳,曹卫星,姜东,等.冬小麦适宜播期和播种量设计的动态知识模型研究.中国农业科学,2003,36(2):147~154.
    [11] F.W.T.彭宁德弗里斯,等.几种一年生作物生长的生态生理过程模拟[M].北京:中国农业科技出版社,1991,53~61.
    [12] Andersen M N, Heidman T, Plauborg, F, The effects of drought and N on light interception, growth and yield of winter oilseed rape[J]. Agric. Scand, Sect B Soil Plant Sci. 1996, 46, 55~67.
    [13] Gabrielle B, Denoroy P, Gosse G, Justes E, et al. Development and evaluation of a CERES-type model for winter oilseed rape[J]. Field Crops Res, 1998, 57: 95~111.
    [14] 朱艳,曹卫星,沈维祥,等.油菜产量目标设计与品种选择的知识模型[J].南京农业大学学报,2004,37(1):43~50.
    [15] 冷锁虎.油菜角果表面积的计算方法[J].中国油料,1991:3,76~77.
    [16] 冷锁虎.油菜高产群体质量指标及其调控[D].南京:南京农业大学,2001.28~31.
    [17] Gabrielle B, Denoroy P, Gosse G., et al. A model of leaf area development and senescence for winter oilseed rape[J]. Field Crops Res, 1998, 57:209~22.
    [1] Mckinion J M. Application of the GOSSYM/COMAX system to cotton Crop Management[J]. Agricultural Systems, 1989, 31: 55-65.
    [2] Jones J W, Hoogenboom G, Porte C H, et al. The DSSAT cropping system model [J]. European Journal of Agronomy, 2003, 18:235-265.
    [3] Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation [J]. European Journal of Agronomy, 2003, 18: 267-288.
    [4] Waldman S E, Rickman R W. MODCROP: A Crop Simulation Framework [J]. Agronomy Journal, 1996, 88(3-4): 170-175.
    [5] 高亮之,金之庆等.水稻栽培计算机模拟优化决策系统[M].北京:中国农业出版社,1992.
    [6] 严美春.基于过程的小麦生育期和器官形成的机理模型:[博士学位论文][D].曹卫星.南京农业大学,1999.
    [7] 刘铁梅.小麦光合生产与物质分配的模拟模型:[博士学位论文][D].曹卫星.南京农业大学, 2000.
    [8] 孟亚利.基于过程的水稻生长模拟模型研究:[博士学位论文][D].曹卫星.南京农业大学,2002.
    [9] Ritchie J T, Otter S. Description and performance of CERES-wheat: a user-oriented wheat yield model[J]. USDA-ARS, 1985, 38:159-170.
    [10] 胡继超.作物水分关系模拟及水分管理系统的研究:[博士学位论文][D].曹卫星.南京农业大学,2002.
    [11] 庄恒扬.作物—土壤系统氮磷钾养分的动态模拟与管理决策.[博士学位论文][D].曹卫星.南京农业大学,2001.
    [12] Habekotte B. A model of the phonological development of winter oilseed rape (Brassica napus.L) [J]. Field Crops Research, 1997, 54: 127-136.
    [13] 曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000,145-146.
    [14] 孙秋冬.软件系统分层设计.计算机工程与应用[J],2001,7:110—112.
    [1] Kiniry J R, Majo D J, Llzaurralde R C, et al. Epic model parameters for cereal, oilseed and forage crops in the northern great plains region [J]. Canadian Journal of Plant Science, 1995, 75: 679-688.
    [2] Habekotte B. A model of the phonological development of winter oilseed rape (Brassica napus.L) [J]. Field Crop Research, 1997, 54: 127-136.
    [3] 刘洪,金之庆.油菜发育动态模拟模型[J].应用气象学报,2003,14(5):634-640.
    [4] 刘铁梅,胡立勇,赵祖红,等.油菜发育过程及生育期机理模型的研究Ⅰ.模型的描述[J].中国油料作物学报,2004,26(1):27-31.
    [5] 胡立勇,刘铁梅,郑小林,等.油菜发育过程及生育期机理模型的研究Ⅱ.模型的检验和评价[J].中国油料作物学报,2004,26(2):51-55.
    [6] 刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1985,130-139;571-572.
    [7] Andrew M, Tommey M, Evans E J. Temperature and daylength control of flowering initiation in winter oilseed rape (Brassica napus L)[J]. Annals of Apply Biology. 1991, 118: 201-208.
    [8] Habekotte B. Evaluation of seed yield determining factors of winter oilseed rape (Brassica napus L.) by means of crop growth modeling [J]. Field Crops Research, 1997, 54: 137-151.
    [9] Gabrielle B, Denoroy P, Gosse G, et al. A model of leaf area development and senescence for winter oilseed rape[J]. Field Crops Research, 1998, 57: 209~22.
    [10] 刘铁梅,曹凑贵,黄勇,等.油菜物质生产与积累的模拟模型[J].华中农业大学学报,2003,22(6):533-537.
    [11] Gabrielle B, Denoroy P, Gosse G, et al. Andersen M N. Development and evaluation of a CERES-type model for winter oilseed rape [J]. Field Crops Research, 1998, 57:95-111.
    [12] Petersen, C T, Jurgensen U, Svendsen H, et al. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape [J]. European Journal of Agronomy, 1995, 4: 77~89
    [13] Justes E, Denoroy P, Gabrielle B, et al. Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape [J]. European Journal of Agronomy. 2000, 13, 165-177.
    [14] Hunt H W, Morgan J A, Read J J. Simulating growth and root: shoot partitioning in prairie grasses under elevated atmospheric CO_2 and water stress [J]. Annals of Botany, 1998, 81: 489~501.
    [15] Marcelis L F M. Simulation of biomass allocation in greenhouse-a review [J]. Acta Horticulture, 1993, 328: 49~65.
    [16] Heuvelink E. Effect of fruit load on dry matter partitioning in tomato [J]. Scientia Horticulture, 1997, 69:51~59.
    [17] Diepenbrock D. Yield analysis of winter oilseed rape (Brassica napus L): a review [J]. Field Crop Research, 2000, 67: 35~49.
    [18] 廖桂平,官春云.甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究[J].作物学报,2002,28(1):52~58.
    [19] 廖桂平.油菜高产优质高效栽培管理专家系统研究[D].长沙:湖南农业大学,1999.20~26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700