用户名: 密码: 验证码:
小尾寒羊和杜泊羊臂二头肌转录组及肌球蛋白轻链基因家族结构特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绵羊是羊肉的重要来源,随着羊肉价格的逐渐盘升,如何提高羊只的产肉量、改善羊肉品质成为亟待解决的问题。研究不同生长性能绵羊骨骼肌间的全转录组和差异表达将有助于揭示肌肉生长和发育的分子机制。
     近年来,基于第二代高通量测序平台的转录组测序(RNA-Seq)可以实现快速、全面地获得特定组织于某个状态下几乎所有的转录本。本试验以生长性能显著不同的两只小尾寒羊和杜泊羊的臂二头肌为试验材料,分别构建了它们的转录组文库,并采用Illumina HiSeq2000高通量测序平台进行测序;获得的测序序列与绵羊参考基因组和参考基因比对后全面揭示两个转录组文库的特征,包括基因表达、基因注释、差异基因、可变剪接、新转录本、cSNP和SSR等;以qRT-PCR法对从中随机选取的12基因进行了相对定量分析对高通量测序数据的可靠性进行验证;采用RACE等方法克隆了小尾寒羊和杜泊羊MYL1、MYL2、MYL3和MYL4基因的全长cDNA序列,利用GENSCAN等生物软件对cDNA序列以及编码蛋白的结构特征等方面加以分析,并对这几个基因在绵羊的不同组织间mRNA表达谱进行分析。主要研究结果如下:
     (1)经RNA-Seq分析,分别在小尾寒羊和杜泊羊的两个转录组文库中得到50264608和52794216条长为90bp高质量的测序序列。这些序列中各有约三分之二以上的序列可以比对到绵羊的参考基因组中,而有42.77%和33.10%的序列被可被比对到绵羊的20236个参考基因上。在绵羊臂二头肌中,只有约1%的参考基因属于高表达基因(RPKM≥1000),而93%以上的基因为低表达基因(RPKM≤1000)。
     (2)两个转录组文库间发现有1300个差异表达基因(FDR≤0.001且│log2Ratio│≥1),其中有554个基因在小尾寒羊中表达上调而746个表达下调。对它们进行GO功能注释时发现分别有1066、1137和1067个基因可被注释到GO的生物学过程、细胞组分和分子功能条目中。而1152个差异表达基因被注释到了KEGG数据库的240条通路中,其中以新陈代谢通路(含有114个基因)和肌动蛋白细胞骨架通路(21个基因)包含基因最多。综合两方面的注释结果共发现有31个差异表达基因与肌细胞发育、分化和骨骼肌的生长相关。蛋白互作网络分析发现差异表达基因中的细胞外基质结构组分——整合蛋白ITGA8和胶原蛋白COL4A1与其他蛋白间互作最多,而肌球蛋白(myosin)、肌钙蛋白(troponin)以及一些与生长和发育密切相关的调节因子(IGFBP5、TGFBR3和VEGF)与其他基因的互作较少。
     (3)在小尾寒羊和杜泊羊文库中分别存在着40481和38851个潜在的cSNPs以及4721个SSRs,并分别以A→G和(AC)n为主要的分子标记。其中cSNPs主要分布于绵羊的1、2和3号染色体上。
     (4)小尾寒羊和杜泊羊文库中分别有37.72%和39.03%表达的基因发生了可变剪接,并以A3SS为主要的剪接方式。依照测序序列对6989个参考基因的两端或一端进行了延伸和优化。共发现了123678个平均长为343bp的新转录本单元。
     (5)克隆得到了绵羊MYL1、MYL2、MYL3和MYL4基因的全长cDNA序列。其中MYL1基因包括长度不同的两条cDNA序列,二者在5′端有所不同而3′端的序列相同。将这些序列提交至GenBank,登录号分别为KJ700419、KJ710701、KJ710702、KJ710703、KJ710704、KJ710705、KJ710706、KJ710707和KJ768855。同一个基因的cDNA序列在两个品种间的同源性均高于与NCBI中预测序列的同源性,主要表现为5′端和3′端长度和序列的不同。
     (6)绵羊MYL1、MYL2、MYL3和MYL4基因均包括5个外显子,它们的起始密码子上游5′侧翼序列中含有大量肌细胞增加因子MEF2以及生肌调节因子MyoD和MyoG的结合位点。
     (7)绵羊MYL1a、MYL1b、MYL2、MYL3和MYL4蛋白中只有1~2个氨基酸与NCBI中的预测序列不同。序列分析结果表明它们均为偏酸性蛋白、亲水性较好、无信号肽、有多个糖基化和磷酸化位点;二级结构以α-螺旋和无规卷曲为主;三级结构以人肌球蛋白轻链Ⅱ为最佳模板,两端呈对称性桶状;聚类结果显示脊椎动物中绵羊与山羊、人与大熊猫、灰鼠猴子与猕猴、小鼠与褐家鼠、牛和牦牛、猫与狗相近,而斑马鱼和爪蟾与以上脊椎动物相距最远。
     (8)绵羊MYL1基因主要在背最长肌中表达,两种可变剪接体MYL1a在杜泊羊中表达量高于小尾寒羊,而MYL1b在小尾寒羊中表达量高于杜泊羊;MYL2、MYL3和MYL4基因主要在心肌中表达;MYL4基因在杜泊羊背最长肌中表达而在小尾寒羊背最长肌中不表达;MYL1基因及其不同的可变剪接和MYL4基因与绵羊骨骼肌的生长有关。
     综上所述,本试验获得的对小尾寒羊和杜泊羊臂二头肌转录组的高通量测序分析,为进一步筛选肌肉生长和发育相关的基因提供数据。同时,对绵羊肌球蛋白轻链基因家族cDNA序列的克隆和特征分析为后期基因功能和调控机制的研究奠定了基础。
Sheep is the main source of mutton. With rising of the price, improvement of muttonproduction and quality has become an important issue.An investigation of gene expression inovine muscle among different breeds would significantly promote our understanding ofmuscle growth and development.
     RNA-seq is a recently developed analytical approach for transcriptome via high-throughputsequencing.In this experiment, two cDNA libraries were constructed from biceps brachii ofDorper (DP)and Small-tailed Han sheep (SH), whose growth performance were significantlydifferent.The two libraries were sequenced using Illumina HiSeq2000sequencing platform.After mapped to the O. aries genome and reference genes, characteristics of the twotranscriptome were analyzed by bioinformatics analysis, including gene expression,annotation, differentially expressed genes (DEGs), alternative splicing (AS), novel transcriptunits (nTUs), SNP, SSR, etc.12genes were tested to verify the reliability of sequencing databy qRT-PCR. Then taken muscle of SH and DP as experimental materials, the cDNAs ofMYL1, MYL2, MYL3and MYL4were cloned using RACE methods. Additionally, structure,characteristics and mRNA expressing profile of these genes were analyzed. The main resultswere showed as follows:
     (1) For the SH and DP libraries, a total of50,264,608and52,794,216clean reads wereobtained, respectively. Approximately two-thirds of these reads could be mapped to O.ariesgenome. Among them,42.77%and33.10%reads could be aligned to20,236reference genes,respectively. Only about1%of these genes belong to high-expressed genes (RPKM≥1000),while the majority of them were low-expressed genes (RPKM≤1000).
     (2) Up to1,300significantly differential expressed genes (DEGs) with FDR≤0.001andabsolute value of log2Ratio≥1were found between the two libraries (554were up-regulatedand746down-regulated in the SH). When annotated to Gene Ontology (GO) database,1,066,1,137and1,067genes were found in biological processes, cellular components andmolecular functions items, respectively. After annotated to Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway,1,152genes were found in240pathways. Among which,metabolic and actin cytoskeleton items were the main pathways with114and21genes,respectively. Combined annotated results of GO and KEGG, a total of31DEGs wereidentifiedbe related to muscle cell development, differentiation and skeletal muscle growth.After analysis of protein interaction network, COL4A1and ITGA8had numerous interactionswith other proteins but myosin, troponin, IGFBP5, TGFBR3and VEGF on the other way.
     (3)40481and38851cSNPs were exploited in SH and DP libraries. All of these cSNPswere mainly distributed in chromosome1,2and3.4,721SSRs were observed in the twolibraries.Among them, A→G and(AC)nwas the main type.
     (4)37.72%and39.03%genes had gone alternative splicing (AS) in the SH and DPlibraries, respectively. A3SS was the main type. According to sequenced clean reads,6,989reference genes were extended and optimized. And a total of123,678novel transcript unitswith average343bp length were discovered in the two libraries.
     (5) The cDNA sequences of MYL1, MYL2, MYL3and MYL4were cloned and submittedto NCBI (GenBank accession number are KJ700419, KJ710701, KJ710702, KJ710703,KJ710704, KJ710705, KJ710706and KJ768855). MYL1had two cDNA sequences withdifferent5′ends. Homology of the five cDNA sequences were higher between SH and DPthan SH (or DP) and predicted sequences published in NCBI. The difference mainly focusedon5′and3′tail ends.
     (6) Each of MYL1, MYL2, MYL3and MYL4gene had5exons. Many binding sites ofMEF2, MyoD and MyoG were found in upstream of their start codons.Thismeans thattranscriptional expression of MYLs might be regulated by these transcription factors.
     (7) One or two different amino acids were found between MYL1a, MYL1b, MYL2, MYL3MYL4protein and predicted sequences in NCBI. All of these proteins were acidic andhydrophilic with many glycosylating and phosphorylating sites. But they had no signalpeptide. Nearly half percent of their secondary structures was α-helix. And human MYL2protein was the best tertiary structure templatewith symmetric barrelfor the five types ofpredicted proteins. According to clustering results, sheep and goat, human and chimpanzee,squirrel monkeys and macaques, mice and sewer rat, cattle and yak, cat and dog were similar,while zebrafish and xenopus laevis were far from above vertebrates.
     (8) MYL1gene mainly expressed in longissimus of sheep. It had two kinds of alternativesplicing isoforms, MYL1aand MYL1b. MYL2, MYL3and MYL4gene were expressed inheart.
     In conclusion, RNA-Seq analysis of two transcriptome libraries in this study could afford afoundmantal databases for further selecting genes related to skeletal muscle. Meanwhile,characteristic analysis of cDNAs and proteinssequences about MYLs offered a foundation forstudy of theirfunction and regulated mechanism in the future.
引文
崔宏宇,王晓燕,赵新明.河北小尾寒羊生长发育、生产性能的测定及比较分析.中国畜牧兽医文摘,2012,(4):50-52
    杜立新等.中国畜禽遗传资源志:羊志[M].中国农业出版社,2011
    范振符,陈智周,范飞舟.糖基化改变与肿瘤的基础研究.标记免疫分析与临床,2010,(2):122-126
    高崇明.生命科学导论(第二版)[M].高等教育出版社,2007
    高萍,傅伟龙,朱晓彤,刘丽,江青艳.蓝塘仔猪IGF-I水平与组织IGF-I、GHR基因的表达.畜牧兽医学报,2005,(1):38-42
    黄治国,谢庄.绵羊肌肉IGF-I基因表达的发育性变化研究.农业科学与技术,2009,(2):68-72
    黄治国,谢庄.绵羊肌肉生长激素受体基因表达的发育性变化研究.农业科学与技术,2009,(1):93-96
    蒋瑶,陈其兵.植物CBF1转录因子的生物信息学分析.林业科学,2010,(6):43-50
    李焕玲,王金文,张果平,王德芹.杜泊羊、小尾寒羊及其杂一代生产性能的测定.家畜生态学报,2006,(5):11-14
    李宁.动物遗传学(第三版)[M].中国农业出版社,2011
    梁烨,陈双燕,刘公社.新一代测序技术在植物转录组研究中的应用.遗传,2011,(12):1317-1326
    凌飞,方伟,杜红丽,陈瑶生.基因mRNA选择性剪切体的鉴定及其在不同发育时期的蓝塘与长白猪骨骼肌中的表达.广东农业科学,2010,(1):12-17
    祁云霞,刘永斌,荣威恒.转录组研究新技术: RNA-Seq及其应用.遗传,2011,(11):1191-1202
    王建刚,宋宇轩,程雪妮,郁枫,曹斌云.杜泊羊种质特性初步研究.中国畜牧杂志,2005,(11):34-36
    王亚鸣,刘龙芳.江西玉山猪肌肉组织学特征与肉质的关系.江西农业大学学报,1994,(3):284-287
    韦建福,刘丽,傅伟龙,张力,尤臻咏.肌肽、谷胱甘肽对肉鸡生长及激素水平的影响.中国生物化学与分子生物学会农业生物化学与分子生物学分会第六次学术交流会论文集,2004
    吴常信.动物遗传学[M].高等教育出版社,2009
    伍晓雄,唐中林,邓宏,李勇,储明星,马月辉,李奎.猪MYL4基因的克隆及其在猪胚胎骨骼肌中的表达分析.农业生物技术学报,2008,(4):580-585
    苑晓燕.基于候选基因的肝癌遗传关联研究及CD82启动子区SNPs的功能研究.第三军医大学博士学位论文,2007
    曾溢滔,黄淑帧,盛敏,董庆元,黄英,周霞娣, Lam H., Wilson J. B., Huisman T. H..血红蛋白Montgomery [α48(CE6) Leu→Arg]及其一级结构分析,遗传学报,1982,(5):389-394
    张素珍,解慧琪,徐永,李秀群,邓力,陈晓禾,邱琳,杨志明.肌球蛋白轻链在肌肉再生中作用的体外实验研究.中国修复重建外科杂志,2008,(6):753-758
    张文炜,徐列明.转录因子MEF2对多种信号通路的调节及其生物学作用.中国生物化学与分子生物学报,2004,(4):423-427
    张夏刚,刘晓妮,项斌伟.杜泊羊及其与小尾寒羊杂交一代生产性能比较.当代畜牧,2011,(6):34-36
    赵书红.动物分子生物学[M].高等教育出版社,2010
    赵晓,莫德林,张悦,龚雯,李安宁,陈瑶生.猪的骨骼肌生长发育研究进展.生命科学,2011,(1):37-44
    赵兴波.分子遗传学[M].中国林业出版社,2011
    朱道立,陈佩林,叶辉,程量.家兔与大鼠腓肠肌的生后发育比较.动物学报,2003,(6):646-655
    朱道立,王康乐,朱新宇.兔、猫和人的腓肠肌外侧头肌亚体与肌纤维型比较研究.动物医学进展,2002,(4):91-96
    Abe S., Soejima M., Iwanuma O., Saka H., Matsunaga S., Sakiyama K., Ide Y..Expression ofmyostatin and follistatin in Mdx mice, an animal model for muscular dystrophy.Zoolog.Sci.,2009,(26):315–320.
    Adams M. D., Kelley J. M., Gocayne J. D., Dubnick M., Polymeropoulos M. H., Xiao H.,Merril C. R., Wu A., Olde B., Moreno R. F..Complementary DNA sequencing:expressedsequence tags and human genome project. Science,1991,(5013):1651-1656
    Allen R. E., Merkel R. A., Young R. B.. Cellular aspects of musclegrowth: myogenic cellproliferation. J. Anim. Sci.,1979,(1):115-27
    Amthor H., Otto A., Vulin A., Rochat A., Dumonceaux J., Garcia L., Mouisel E., Hourde C.,Macharia R., Friedrichs M., Relaix F., Zammit P. S., Matsakas A., Patel K., Partridge T..Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cellactivity. Proc. Natl. Acad. Sci.USA,2009,(18):7479–7484
    Andruchov O., Wang Y., Galler S..Dependence of cross-bridge kinetics on myosin lightchainisoforms in rabbit and rat skeletal muscle fibres.J Physiol.,2006,571:231-242
    Angelastro J. M., Klimaschewski L., Tang S., Vitolo O. V., Weissman T. A., Donlin L. T.,Shelanski M. L., Greene L. A.. Identification of diverse nerve growthfactor-regulatedgenes by serial analysis of gene expression (SAGE) profiling. Proc. Natl. Acad. Sci. USA,2000,(19):10424-10429
    Aravamudan B., Mantilla C. B., Zhan W. Z., Sieck G. C.. Denervation effects on myonucleardomain sizeof rat diaphragm fibers.J. Appl. Physiol.,2006,(5):1617-1622
    Audic S., Claverie J. M. The significance of digital gene expression profiles. Genome Res.,1997,(7):986-995
    B r A. and Pette D.. Three fast myosin heavy chains in adult rat skeletal muscle. FEBSLetters,1988,(1-2):153-155
    Barton P. I. and Buckingham M. E.. The myosin alkali light chain Proteins and their genes.Biochem. J.,1985,(2):249-261
    Bayol S.,Loughna P. T.,Brownson C.. Phenotypic expression of IGF binding proteintranscripts in muscle, in vitro and in vivo. Biochem. Biophys. Res. Commun.,2000,(1):282-286
    Beaupain D. and Eléou t J. F., Roméo P. H.. Initiation of transcription of the erythroidpromoter of the porphobilinogen deaminase gene is regulated by a cis-acting sequencearound the cap site. Nucleic Acids Res.,1990,(22):6509-6515
    Benjamini Y. and Yekutieli D.. The control of the false discovery rate in multiple testingunder dependency. The Annals of Statistics,2001,(4):1165-1188
    Black B. L. and Olson E. N.. Transcriptional control of muscle development by myocyteenhancer factor-2(MEF2) proteins.Annu. Rev. Cell Dev. Biol.,1998,14:167-196
    Blanca J., Ca izares J., Roig C., Ziarsolo P., Nuez F., Picó B.. Transcriptome characterizationand high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMCGenomics,2011,12:104-119
    Bonneau. M., Mourot J., Noblet J., Lefaucheur L., Bidanel J. P.. Tissue development inMeishan pigs: Muscle and fat development and metabolism and growth regulation bysomatotropic hormone [C]. Chinese pig symposium. Jouy-en-Josas in France. INRA,1990:203-213
    Brand N. J.. Myocyte enhancer factor2(MEF2). Int. J. Biochem. Cell Biol.,1997,(12):1467-1470
    Brimhall B., Jones R. T., Schneider R. G., Hosty T. S., Tomlin G., Atkins R.. Two newhemoglobins. Hemoglobin Alabama [beta39(C5)Gln leads to Lys] and hemoglobinMontgomery [alpha48(CD6) Leu leads to Arg]. Biochim. Biophys. Acta,1975,(1):28-32
    Bryson-Richardson R. J. and Currie P. D. The genetics of vertebrate myogenesis. Nat. Rev.Genet.,2008,(8):632-646
    Buckingham M. and Vincent S. D.. Distinct and dynamic myo-genic populations in thevertebrate embryo. Curr. Opin. Genet. Dev.,2009,(5):444-53
    Bünger L., Navajas E. A., Stevenson L., Lambe N. R., Maltin C. A., Simm G., Fisher A. V.,Chang K. C.. Muscle fibre characteristics of two contrasting sheep breeds: ScottishBlackface and Texel. Meat Science,2009,(2):372–381
    Burguière A. C., Nord H., von Hofsten J.. Alkali-like myosin light chain-1(MYL1) is anearly marker for differentiating fast muscle cells in zebrafish.Dev. Dyn.,2011,(7):1856-1863
    Byrne K., Vuocolo T., Gondro C., White J. D., Cockett N. E., Hadfield T., Bidwell C. A.,Waddell J. N., Tellam R. L.. A gene network switch enhances the oxidative capacity ofovine skeletal muscle during late fetal development. BMC Genomics,2010,11:378
    Cánovas A., Rincon G., Islas-Trejo A., Wickramasinghe S., Medrano J. F.. SNP discovery inthe bovine milk transcriptome using RNA-Seq technology. Mamm. Genome,2010,(11-12):592-598
    Chen C., Ai H., Ren J., Li W., Li P., Qiao R., Ouyang J., Yang M., Ma J., Huang L.. A globalview of porcine transcriptome in three tissues from a full-sib pair with extremephenotypes in growth and fat deposition by paired-end RNA sequencing. BMC Genomics,2011,12:448-464
    Chen J., Kubalak S. W., Minamisawa S., Price R. L., Becker K. D., Hickey R., Ross J. Jr.,Chien K. R.. Selective requirement of myosin light chain2v in embryonic heart function.J. Biol. Chem.,1998,(2):1252–1256
    ClemmonsD.R..UseofmutagenesistoprobeIGF-bindingproteinstructure/functionrelationships.Endocr. Rev.,2001,(6):800-817
    Cohen-kaplan V., Jrbashyan J., Yanir Y., Naroditsky I., Ben-Izhak O., Ilan N., Doweck I.,Vlodavsky I.. Heparanase induces signal transducer and activator of transcription (STAT)protein phosphorylation: preclinical and clinical significance in head and neck cancer. J.Biol. Chem.,2012,(9):6668-6678
    Costa V., Angelini C., De Feis I., Ciccodicola A.. Uncovering the complexity oftranscriptomes with RNA-Seq. J. Biomed Biotechnol,2010,2010:853916
    Cox L. A., Glenn J. P., Spradling K. D., Nijland M. J., Garcia R., Nathanielsz P. W., Ford S.P.. A genome resource to address mechanisms of developmental programming:determination of the fetal sheep heart transcriptome. J. Physiol.,2012,(12):2873-2884
    Crouse J. D., Calkins C. R., Seideman S. C.. The effects of rate of change in body weight ontissue development and meat quality of youthful bulls. J. Anim. Sci.,1986,(6):1824-1829
    Damon M., Wyszynska-Koko J., Vincent A., Hérault F., Lebret B.. Comparison of muscletranscriptome between pigs with divergent meat quality phenotypes identifies genesrelated to muscle metabolism and structure. PLoS One,2012,(3): e33763
    Dhorne-Pollet S., Robert-Granié C., Aurel M. R., Marie-Etancelin C.. A functional genomicapproach to the study of the milking ability in dairy sheep. Animal Genetics,2011,(2):199-209
    Dong M., How T., Kirkbride K. C., Gordon K. J., Lee J. D., Hempel N., Kelly P., Moeller B.J., Marks J. R., Blobe G. C.. The type Ⅲ TGF-βreceptor suppresses breast cancerprogression. J. Clin. Invest.,2007,(1):206-217
    Duan C., Ren H., Gao S.. Insulin-like growth factors (IGFs), IGF receptors and IGF-bindingproteins: roles in skeletal muscle growth and differentiation. Gen. Comp. Endocrinol.,2010,(3):344-351
    Duan, C.. Specifying the cellular responses to IGF signals: roles of IGF-binding proteins.J.Endocrinol.,2002,(1):41-54
    Edmondson D. G., Lyons G. E., Martin J. F., Olson E. N.. Mef2gene expression marks thecardiac and skeletal muscle lineages during mouse embryogenesis. Development,1994,(5):1251-1263
    Esteve-Codina A., Kofler R., Palmieri N., Bussotti G., Notredame C., Pérez-Enciso M..Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. BMCGenomics,2011,12:552-566
    Fabiani E., Fianchi L., Falconi G., Boncompagni R., Criscuolo M., Guidi F., La Brocca A.,Hohaus S., Leone G., Voso M. T.. The BCL2L10Leu21Arg variant and risk of therapy-related myeloid neoplasms and de novo myelodysplastic syndromes. Leuk Lymphoma,2013, doi:10.3109/10428194.2013.845885
    Fan R., Xie J., Bai J., Wang H., Tian X., Bai R., Jia X., Yang L., Song Y., Herrid M., Gao W.,He X., Yao J., Smith G. W., Dong C.. Skin transcriptome profiles associated with coatcolor in sheep. BMC Genomics,2013,14:389
    Faulconnier Y., Chilliard Y., Torbati M. B., Leroux C..The transcriptomic profiles of adiposetissues are modified by feed deprivation in lactating goats. Comp. Biochem. Physiol. PartD Genomics Proteomics,2011,(2):139-149
    Filichkin S. A., Priest H. D., Givan S. A., Shen R., Bryant D. W., Fox S. E., Wong W. K.,Mockler T. C.. Genome-wide mapping of alternative splicing in Arabidopsis thaliana.Genome Res.,2010,(1):45-58
    Fontanesi L., Davoli R., Dallólio S., Russo V.. Linkage assignment of the fast skeletal alkalimyosin light polypeptide1(MYL1) gene to porcine chromosome15. Animal Genetics,2000,(6):415-416
    Geeves M. A., Fedorov R., Manstein D. J.. Molecular mechanism of actomyosin-basedmotility. Cell. Mol. Life Sci.2005,(13):1462-1477
    Gennigens C., Menetrier-Caux C., Droz J. P.. Insulin-Like Growth Factor (IGF) familyandprostate cancer.Crit. Rev. Oncol. Hematol.,2006,(2):124-145
    Gent J., Eijnden M., Van KerkhofP.. Dimerization and signal transduction of the growthhormone receptor. Mol. Endocrinol,2003,(5):967-975
    Govoni K. E., Amaar Y. G., Kramer A., Winter E., Baylink D. J., Mohan S.. Regulation ofinsulin-like growth factor binding protein-5, four and a half lim-2, and a disintegrin andmetalloprotease-9expression in osteoblasts. Growth Horm. IGF Res.,2006,(1):49-56
    Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X.,Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., RhindN., di Palma F., Birren B. W., Nusbaum C., Lindblad-Toh K., Friedman N., RegevA..Full-length transcriptome assembly from RNA-Seq data without a referencegenome.Nat. Biotechnol,2011,(7):644-652
    Graham N. S., May S. T., Daniel Z. C., Emmerson Z. F., Brameld J. M., Parr T.. Use of theAffymetrix Human GeneChip array and genomic DNA hybridisation probe selection tostudy ovine transcriptome. Animal,2011,(6):861-866
    GreenB. N., Jones S. B.,Streck R. D.,Wood T. L., Rotwein P., Pintar J. E.. Distinct expressionpatterns of insulin-like growth factor binding proteins2and5during fetal and postnataldevelopment. Endocrinology,1994,(2):954-962
    Hacia J. G., Edgemon K., Sun B., Stern D., Fodor S. P., Collins F. S.. Two color hybridizationanalysis using high densityoligonucleotide arrays and energy transfer dyes. Nucleic AcidsRes.,1998,(12):3865-3866
    H gglund P., Bunkenborg J., Elortza F., Jensen O. N., Roepstorff P.. A new strategy foridentification of N-glycosylated proteins and unambiguous assignment of theirglycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.,2004,(3):556-566
    Halum S. L., Popper P., Cioffi J. A., Wackym P. A.. Serial analysis of gene expressioninneurofibromatosis type2-associated vestibular schwannoma. Otol. Neurotol,2004,(4):587-593
    Hamid M., Shariati G., Saberi A., Galehdari H., Kaikhaei B., Mohammadi-Anaei M.. HbAHVAZ [α83(F4)Leu→Arg, CTG>CGG (α2); HBA2: c.251T>G], a new hemoglobinvariant of the α2-globin gene. Hemoglobin,2013,(5):477-80
    Hasty P., Bradley A., Morris J. H., Edmondson D. G., Venuti J. M., Olson E. N., Klein W. H..Muscle deficiency and neonatal death in mice with a targeted mutation in the myogeningene. Nature,1993,(6437):501-506
    Hatahet F., Ruddock L. W.. Protein disulfide isomerase: a critical evaluation of its function indisulfide bond formation. Antioxid Redox Signal,2009,(11):2807-2850
    Heidegger I., Pircher A., Klocker H., Massoner P.. Targeting the insulin-like growth factornetwork in cancer therapy. Cancer Biol. Ther.,2011,(8):701-707
    Hu J. R., Liu M., Wang D. H., Hu Y. J., Tan F. Q., Yang W. X..Molecular characterizationand expression analysis of a KIFC1-like kinesin gene in the testis of Eumeceschinensis.Mol. Biol. Rep.,2013,40:6645-6655
    Huang W. and Khatib H.. Comparison of transcriptomic landscapes of bovine embryos usingRNA-Seq. BMC Genomics,2010,11:711-720
    Huttlin E. L., Jedrychowski M. P., Elias j. e., Goswami T., Rad R., Beausoleil S. A., Villén J.,Haas W., Sowa M. E., Gygi S. P.. A tissue-specific atlas of mouse ptotein phosphorylationand expression. Cell,2010,(7):1174-1189
    Ilnrnonen K., Ruusunen M., Hissa K., Puolanne E.. Bovine muscle glycogen concentration inrelation to finishing diet, slaughter and ultimate pH. Meat Sci.,2000,(1):25-31
    Ingles J., Doolan A., Chiu C., Seidman J., Seidman C., Semsarian C.. Compound and doublemutationsin patients with hypertrophic cardiomyopathy: implications forgenetic testingand counselling. J. Med. Genet.,2005,(10): e59
    Jackson J. R., Mula J., Kirby T. J., Fry C. S., Lee J. D., Ubele M. F., Campbell K. S.,McCarthy J. J., Peterson C. A., Dupont-Versteegden E. E.. Satellite cell depletion does notinhibit adult skeletal muscle regrowth following unloading-induced atrophy. Am. J.Physiol Cell Physiol,2012,(8): C854-861
    J ger M., Ott C. E., Grünhagen J., Hecht J., Schell H., Mundlos S., Duda G. N., Robinson P.N., Lienau J.. Composite transcriptome assembly of RNA-Seq data in a sheep model fordelayed bone healing.BMC Genomics,2011,12:158
    Jensen B., Boukens B. J., Postma A. V., Gunst Q. D., van den Hoff M. J., Moorman A. F.,Wang T., Christoffels V. M..Identifying the evolutionary building blocks of the cardiacconduction system.PLoS One,2012,(9):e44231
    Jiang P., Song J., Gu G., Slonimsk E., Li E., Rosenthal N.. Targeted Deletion of theMLC1f/3f Downstream Enhancer Results in Precocious MLC Expression and MesodermAblation. Dev. Biol.,2002,(2):281-293
    Kalista S., Schakman O., Gilson H., Lause P.,Demeulder B., Bertrand L., Pende M., Thissen J.P..The type1insulin-like growth factor receptor(IGF-IR) pathway is mandatory for thefollistatin-induced skeletal muscle hypertrophy. Endocrinology,2012,(1):241-253
    Kamanga-Sollo E., Pampusch M. S., White M. E., Hathaway M. R., Dayton W. R. Insulin-like growth factor binding protein (IGFBP)-3and IGFBP-5mediate TGF-beta andmyostatin-induced suppression of proliferation in porcine embryonic myogenic cellcultures. Exp. Cell Res.,2005,(1):167-176
    Kambadur R., Sharma M., Smith T. P., Bass J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle, GenomeRes.,1997,(7):910-916
    Khuon S., Liang L., Dettman R. W., Sporn P. H., Wysolmerski R. B., Chew T. L.. Myosinlight chain kinase mediates transcellular intravasation of breast cancer cells through theunderlying endothelial cells: a three-dimensional FRET study. J. Cell Sci.,2010,(Pt3):431-440
    Kim H. S., Liang L., Dean R. G., Hausman D. B., Hartzell D. L., Baile C. A.. Inhibition ofpreadipocyte differentiation by myostatin treatment in3T3-L1cultures. Bioch. Biophy.Res. Commu.,2001,(4):902-906
    Kim J., Zhao K., Jiang P., Lu Z. X., Wang J., Murray J. C., Xing Y.. Transcriptome landscapeof the human placenta. BMC Genomics,2012,13:115
    Kocabas A. M., Crosby J., Ross P. J., Otu H. H., Beyhan Z., Can H., Tam W. L., Rosa G. J.,Halgren R. G., Lim B., Fernandez E., Cibelli J. B.. The transcriptome of human oocytes.Proc. Natl. Acad. Sci.USA,2006,(38):14027-14032
    Komurcu-Bayrak E., Ozsait B., Erginel-Unaltuna N.. Isolation and analysis of genes mainlyexpressed in adult mouse heart using subtractive hybridization cDNA library. Mol. Biol.Rep.,2012,(8):8065-8074
    Koning M., Werker P. M., van Luyn M. J., Harmsen M. C.. Hypoxia promotes proliferationof human myogenic satellite cells: a potential benefactor in tissue engineering of skeletalmuscle. Tissue Eng. Part A,2011,(13-14)):1747-1758
    KopchickJ. J and Andry J. M.. Growth hormone(GH),GH receptor,and signaltransduction.Mol.Genet. MeTable,2000,(1-2):293-341
    Langley B., Thomas M., Bishop A., Sharma M., Gilmour S., Kambadur R.. Myostatin inhibitsmyoblast differeniiation by downregulating MyoD expression. J. Biol. Chem,2002,(51):49831-49840
    Lee E. C., Lotz M. M., Jr Steele G. D., Mercurio A. M.. The integrin alpha6beta4is alaminin receptor. J. Cell Biol.,1992,(3):671-678
    Lefaucheur L., Lebret B., Ecolan P., Louveau I., Damon M., Prunier A., Billon Y., Sellier P.,Gilbert H.. Muscle characteristics and meat quality traits are affected by divergentselection on residual feed intake in pigs.J. Anim. Sci.,2011,(4):996-1010
    Legant W. R., Choi C. K., Miller J. S., Shao L., Gao L., Betzig E., Chen C. S..Multidimensional traction force microscopy reveals out-of-plane rotational momentsabout focal adhesions. Proc. Natl. Acad. Sci.,2013,(3):881-886
    Li J. B. and Goldberg A. L.. Effects of fooddeprivation on protein synthesis and degradationin ratskeletal muscles. Am. J. Physiol.,1976,(2):441-448
    Li L., Wang X., Sasidharan R., Stolc V., Deng W., He H., Korbel J., Chen X.,Tongprasit W.,Ronald P., Chen R., Gerstein M., Deng X. W.. Global identification andcharacterizationof transcriptionally active regions in the rice genome.PLoS ONE,2007: e294
    Li R., Li Y., Fang X., Yang H., Wang J., Kristiansen K., Wang J.. SNP detection formassivelyparallel whole-genome re-sequencing.Genome Res.,2009,(6):1124-1132
    Li R., Yu C., Li Y., Lam T. W., Yiu S. M., Kristiansen K., Wang J.. SOAP2: animprovedultrafast tool for short read alignment. Bioinformatics,2009,(15):1966-1967
    Li Y., Wu G., Tang Q., Huang C., Jiang H., Shi L., Tu X., Huang J., Zhu X., Wang H.. SlowCardiac Myosin Regulatory Light Chain2(MYL2) was Down-Expressed in ChronicHeart Failure Patients. Clin. Cardiol.,2011,(1):30-34
    Lin J., Arnold H. B., Della-Fera M. A., Azain M. J., Hartzell D. L., Baile C. A.. Myostatinknockout in mice increases myogenesis and decreases adipogenesis. Bioch. Biophy. Res.Commu.,2002,(3):701-706
    Ling F., Fang W., Chen Y., Li J., Liu X., Wang L., Zhang H., Chen S., Mei Y., Du H., WangC..Identification of novel transcripts from the porcine MYL1gene and initialcharacterization of its promoters. Mol. Cell Biochem.,2010,(1-2):239-247
    Lipshutz R. J., Fodor S. P., Gingeras T. R., Lockhart D. J.. High density syntheticoligonucleotide arrays.Nat. Genet.,1999,21:20-24
    Livak K. J. and Schmittgen T. D..(2001) Analysis of relative gene expression data using real-time quantitative PCR and the2-△△CTmethod. Method,2001,(4):402-408
    Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M.,Wang C., Kobayashi M., Horton H., Brown E. L.. Expression monitoring by hybridizationtohigh-density oligonucleotide arrays. Nat. Biotechnol,1996,(13):1675-1680
    Maher C. A., Kumar-Sinha C., Cao X., Kalyana-Sundaram S., Han B., Jing X., Sam L.,Barrette T., Palanisamy N., Chinnaiyan A. M.. Transcriptome Sequencing to detect genefusions in cancer. Nature,2009,(7234):97-101
    Maltin C. A., Warkup C. C., Matthews K. R., Grant C. M., Porter A. D., Delday M. I.. Pigmusele fibre characteristics as a source of variation in eating quality. Meat Sci.,1997,(3-4):237-248
    Marcell T. J., Harman S. M., Urban R. J., Metz D. D., Rodgers B. D., Blackman M.R..Comparison of GH,IGF-I,and testosterone with mRNA of receptors and myostatininskeletal muscle in older men.Am. J. Physiol Endocrinol MeTable,2001,(6):1159-1164
    Massague J.. How cells read TGF-beta signals. Nat. Rev. Mol. Cell. Bio.,2000,(3):169-178
    Mavalli M. D., DiGirolamo D. J., Fan Y., Riddle R. C.,Campbell K. S., van Groen T., Frank S.J., Sperling M. A.,Esser K. A., Bamman M. M., Clemens T. L..Distinct growthhormonereceptor signaling modes regulate skeletalmuscle development and insulin sensitivity inmice.J. Clin. Invest.,2010,(11):4007-4020
    McPherron A. C., Lawler A. M., Lee S. J.. Regulation of skeletal muscle mass in mice by anew TGF-beta superfamily member. Nature,1997,(6628):83-90
    Meshki J., Caino M. C., von Burstin V. A., Griner E., Kazanietz M. G.. Regulation of prostatecancer cell survival by protein kinase Cepsilon involves bad phosphorylation andmodulation of the TNFalpha/JNK pathway. J. Bion. Chem.,2010,(34):26033-26040
    Miao X. and Luo Q.. Genome-wide transcriptome analysis between Small-tail Han sheep andthe Surabaya fur sheep using high-throughput RNA sequencing. Reproduction,2013,(6):587-96
    Montgomery S. B., Sammeth M., Gutierrez-Arcelus M., Lach R. P., Ingle C., Nisbett J.,Guigo R., Dermitzakis E. T.. Transcriptome genetics using second generation Sequencingin a Caucasian population. Nature,2010,(7289):773-777
    Mortazavi A., Williams B. A., McCue K., Schaeffer L., Wold B.. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nat. Methods,2008,(7):621-628
    Musaro A., McCullagh K., Paul A., Houghton L.,Dobrowolny G., Molinaro M., Barton E. R.,SweeneyH. L., Rosenthal N.. Localized Igf-1transgeneexpression sustains hypertrophyand regeneration insenescent skeletal muscle. Nat. Genet.,2001,(2):195-200
    Nabeshima Y., Hanaoka K., Hayasaka M., Esumi E., Li S., Nonaka I.. Myogenin genedisruption results in perinatal lethality because of severe muscle defect. Nature,1993,(6437):532-535
    Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M.. Thetranscriptional landscape of the yeast genome defined by RNA sequencing. Science,2008,(5881):1344-1349
    Nie Q., Fang M., Jia X., Zhang W., Zhou X., He X., Zhang X.. Analysis of muscle and ovarytranscriptome of Sus scrofa: assembly, annotation and marker discovery. DNA Research,2011,(5):343-351
    Park I., Han C., Jin S., Lee B., Choi H., Kwon J. T., Kim D., Kim J., Lifirsu E., Park W. J.,Park Z. Y., Kim do H., Cho C.. Myosin regulatory light chains are required to maintainthe stability of myosin II and cellular integrity. Biochem. J.,2011,434,(1):171-180
    Picard B., Lefaucheur L., Berri C., Duclos M. J.. Muscle fibre ontoge-nesis in farm animalspecies. Reprod. Nutr. Dev.,2002,(5):415-431
    Punkt K., Naupert A., Asmussen G.. Differentiation of rat skeletal muscle fibres duringdevelopment and ageing. J. Acta Histochem,2004,(2):145-154
    Punkt K., Naupert A., Asmussen G.. Differentiation of rat skeletal muscle fibres duringdevelopment and ageing. J. Acta Histochem.,2004,(2):145-154
    Ramskold D., Wang E. T., Burge C. B., Sandberg R.. An abundance of ubiquitouslyexpressed genes revealed by tissue transcriptome sequence data. PLoS Comput. Biol.,2009,(12): e1000598
    Ren H., Li L., Su H., Xu L., Wei C., Zhang L., Li H., Liu W., Du L.. Histological andtranscriptome-wide level characteristics of fetal myofiber hyperplasia during the secondhalf of gestation in Texel and Ujumqin sheep. BMC Genomics,2011,12:411
    Ren H., Yin P., Duan C.. IGFBP-5regulates muscle cell differentiation by binding to IGF-Ⅱand switching on the IGF-Ⅱ auto-regulation loop. J. Cell Biol.,2008,(5):979-991
    Ren S., Peng Z., Mao J. H., Yu Y., Yin C., Gao X., Cui Z., Zhang J., Yi K., Xu W., Chen C.,Wang F., Guo X., Lu J., Yang J., Wei M., Tian Z., Guan Y., Tang L., Xu C., Wang L.,Gao X., Tian W., Wang J., Yang H., Wang J., Sun Y.. RNA-Seq analysis of prostatecancer in the Chinese population identifies recurrent gene fusions, cancer-associated longnoncoding RNAs and aberrant alternative splicings. Cell Res.,2012,(5):806-821
    Ríos R., Carneiro I.,Arce V. M., Devesa J.. Myostatin regulates cells survival during C2C12myogenesis. Biochem. Biophys. Res. Commun.,2001,(2):561-566
    RudnickiM. A., Braun T., Hinuma S., Jaenisch R.. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5and results in apparently normal muscledevelopment. Cell,1992,(3):383-390
    RudnickiM. A., Schnegelsberg P. N., Stead R. H., Stead R. H., Braun T., Arnold H. H.,Jaenisch R.. MyoD or Myf-5is required for the formation of skeletal muscle. Cell,1993,(7):1351-1359
    Ruusunen M. and Puolanne E.. Histochemical properties of fibre types in muscles of wild anddomestic pigs and the effect of growth rate on muscle fibre properties. Meat Science,2004,(3):533-539
    Schena M., Shalon D., Davis R. W., Brown P. O.. Quantitative monitoring of geneexpressionpatterns with a complementary DNA microarray. Science,1995,(5235):467-470
    Schiaffino S. and Reggiani C.. Molecular diversity of myofibrillar proteins: Gene regulationand functional significance. Physiological Reviews,1996,(2):371-423
    Schiaffino S., Dyar K. A., Ciciliot S., Blaauw B., Sandri M..Mechanisms regulating skeletalmuscle growth and atrophy. FEBS J.,2013,(17):4294-4314
    Schuster S. C.. Next-generation sequencing transforms today′s biology. Nat. Methods.,2008,(1):16-18
    Sharples A. P., Al-Shanti N., Lewis M. P., Stewart C. E.. Reduction of myoblastdifferentiation following multiple population doublings in mouse C2C12cells: a model toinvestigate ageing? J. Cell Biol.,2011,(12):3773-3785
    Singh M., Thomson P. C., Sheehy P. A., Raadsma H. W.. Comparative transcriptomeanalyses reveal conserved and distinct mechanisms in ovine and bovine lactation. Funct.Integr. Genomics,2013,(1):115-131
    Sultan M., Schulz M. H., Richard H., Magen A., Klingenhoff A., Scherf M., Seifert M.,Borodina T., Soldatov A., Parkhomchuk D., Schmidt D., O′Keeffe S., Haas S., VingronM., Lehrach H., Yaspo M. L.. A global view of gene activity and alternative splicing bydeep sequencing of the human transcriptome. Science,2008,(5891):956-960
    Sutherland C. J., Esser K. A., Elsom V. L., Gordon M. L., Hardeman E. C.. Identification of aprogram of contractile protein gene expression initiated upon skeletal muscledifferentiation. Dev. Dyn.,1993,(1):25-36
    Szameit S., Weber E., Noehammer C.. DNA microarrays provide new options forallergentesting. Expert Rev. Mol. Diagn.,2009(8):843-850
    Szczesna D., Ghosh D., Li Q., Gomes A. V., Guzman G., Arana C., Zhi G., Stull J. T., PotterJ. D.. Familial hyper trophiccardiomyopathy mutations in the regulatory light chains ofmyosinaffect their structure, Ca2+binding, and phosphorylation.J. Biol. Chem.,2001,(10):7086-7092
    Tang Z., Li Y., Wan P., Li X., Zhao S., Liu B., Fan B., Zhou M., Yu M., Li K.. LongSAGEanalysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs.Genome Biology,2007,(6): R115
    Timson D. J.. Fine tuning the myosin motor: the role of the essential light chain in striatedmuscle myosin. Biochimie,2003,(7):639-645
    Trapnell C., Pachter L., Salzberg S. L.. TopHat: discovering splice junctions with RNA-seq.Bioinformatics,2009,(9):1105-1111
    Trendelenburg A. U., Meyer A., Rohner D., Boyle J.,Hatakeyama S., Glass D. J..MyostatinreducesAkt/TORC1/p70S6K signaling, inhibiting myoblastdifferentiation and myotubesize. Am. J. Physiol. CellPhysio.,2009,(6): C1258-1270
    Tripathi A. K., Koringa P. G., Jakhesara S. J., Ahir V. B., Ramani U. V., Bhatt V. D., SajnaniM. R., Patel D. A., Joshi A. J., Shanmuga S. J., Rank D. N., Joshi C. G.. A preliminarysketch of horn cancer transcriptome in Indian zebu cattle. Gene,2012,(1):124-131
    Tu N., Chen H., Winnikes U., Reinert I., Marmann G., Pirke K., M., Lentes K. U.. Molecularcloning and functional characterization of the promoter region of the human uncouplingprotein-2gene. Biochem. Biophys. Res. Commun.,1999,(2):326-334
    Turley R. S., Finger E. C., Hempel N., How T., Fields T. A., Blobe G. C.. The type IIItransforming growth factor-beta receptor as a novel tumor suppressor gene in prostatecancer. Cancer Res.,2007,(3):1090-1098
    Velculescu V. E., Zhang L., Vogelstein B., Kinzler K.W..Serial analysis of geneexpression.Science,1995,(5235):484-487
    Verheul A. J., Mantilla C. B., Zhan W. Z., Bernal M.,Dekhuijzen P. N., Sieck G. C.. Influenceofcorticosteroids on myonuclear domain size in the ratdiaphragm muscle.J. Appl. Physiol.,2004,(5):1715-1722
    Vicente-Manzanares M., Ma X., Adelstein R. S., Horwitz A. R.. Non-muscle myosin II takescentre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol.,2009,(11):778-790
    Wang E. T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S. F.,Schroth G. P., Burge C. B.. Alternative isoform regulation in human tissue transcriptomes.Nature,2008,(7221):470-476
    Wang Y., Szczesna-Cordary D., Craig R., Diaz-Perez Z., Guzman G., Miller T., Potter J. D..Fast skeletal muscle regulatory light chain is required for fast and slow skeletal muscledevelopment. FASEB J.,2007,(9):2205-2214
    Wendt T., Taylor D., Trybus K. M., et al.. Three-dimensional image reconstruction ofdephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interactionbetween myosin heads and placement of subfragment2. Proc. Natl. Acad. Sci. USA,2001,(8):4361-4366
    Weterman M. A., Barth P. G., van Spaendonck-Zwarts K. Y., Aronica E., Poll-The B. T.,Brouwer O. F., van Tintelen J. P., Qahar Z., Bradley E. J., de Wissel M., Salviati L.,Angelini C., van den Heuvel L., Thomasse Y. E., Backx A. P., Nürnberg G., Nürnberg P.,Baas F.. RecessiveMYL2mutations cause infantile type I muscle fibre disease andcardiomyopathy. Brain,2013,(Pt1):282-293
    Wickramasinghe S., Rincon G., Islas-Trejo A., Medrano J. F.. Transcriptional profiling ofbovine milk using RNA sequencing. BMC Genomics,2012,13:45-59
    Wilhelm B. T.and Landry J. R.. RNA-Seq quantitative measurement of expression throughmassively parallel RNA-sequencing. Methods,2009,(3):249-257
    Wilhelm B. T., Marguerat S., Watt S., Schubert F., Wood V., Goodhead I., Penkett C. J.,Rogers J., B hler J.. Dynamic repertoire of a eukaryotic transcriptome surveyed at singlenucleotide resolution. Nature,2008,(7199):1239-1243
    Wilkinson S., Paterson H. F., Marshall C. J.. Cdc42–MRCK and Rho–ROCK signallingcooperate in myosin phosphorylation and cell invasion. Nature cell biology,2005,(7):225-261
    Wimmers K., Ngu N. T., Jennen D. G., Tesfaye D., Murani E., Schellander K., Ponsuksili S..Relationship between myosin heavy chain isoform expression and muscling in severaldiverse pig breeds. Journal of Animal Science,2008,(4):795-803
    Winbanks C. E., Weeks K. L., Thomson R. E., SepulvedaP. V., Beyer C., Qian H., Chen J. L.,Allen J. M., LancasterG. I., Febbraio M. A., Harrison C. A., McMullen J. R., ChamberlainJ. S., Gregorevic P.. Follistatin-mediatedskeletal muscle hypertrophy is regulated bySmad3andmTOR independently of myostatin.J. Cell Biol.,2012,(7):997-1008
    WoodA. W., Duan C.,Bern H. A.. Insulin-like growth factor signaling in fish. Int. Rev. Cytol.,2005,243:215-285
    Wu G., Feng X., Stein L.. A human functional protein interaction network and its applicationto cancer data analysis. Genome Biol.,2010,(5): R53
    Yakar S., Rosen C. J., Beamer W. G., Ackert-Bicknell C. L., Wu Y., Liu J. L., Ooi G. T.,Setser J., Frystyk J., Boisclair Y. R., LeRoith D..Circulating levels of IGF-I directlyregulate bone growthand density. J. Clin. Invest.,2002,(6):771-781
    Yamada M., Hashida T., Shibusawa N., Iwasaki T., Murakami M., Monden T., Satoh T., MoriM.. Genomic organization and promoter function of the mouse uncoupling protein2(UCP2) gene. FEBS Lett.,1998,(1-2):65-69
    Zhang G., Guo G., Hu X., Zhang Y., Li Q., Li R., Zhuang R., Lu Z., He Z., Fang X., Chen L.,Tian W., Tao Y., Kristiansen K., Zhang X., Li S., Yang H., Wang J., Wang J.. Deep RNAsequencing at single base-pair resolution reveals high complexity of the rice transcriptome.Genome Res.,2010,(5):646-654
    Zhang J., Liang S., Duan J., Wang J., Chen S., Cheng Z., Zhang Q., Liang X., Li Y.. De novoAssembly and Characterisation of the Transcriptome during seed development, andgeneration of gentic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genomics,2012,13:90
    Zhang S. Z., Xie H. Q., Xu Y., Li X. Q., Wei R. Q., Zhi W., Deng L., Qiu L., Yang Z.M..Regulation of cell proliferation by fast Myosin light chain1in myoblasts derived fromextraocular muscle, diaphragm and gastrocnemius. Exp. Biol. Med. Maywood,2008,(11):1374-84
    Zhang S. Z., Xu Y., Xie H. Q., Li X. Q., Wei Y. Q., Yang Z. M.. The possible role of Myosinlight chain in myoblast proliferation. Biol. Res.,2009,(1):121-132
    Zhang S., Xie H., Xu Y., Li X., Deng L., Chen X., Qiu L., Yang Z..An experimental study ofthe role of myosin light chain in myogenesis in vitro. Zhongguo Xiu Fu Chong Jian WaiKe Za Zhi,2008,(6):753-758
    Zhou X., Liu Y., You J., Zhang H., Zhang X., Ye L.. Myosin light-chain kinase contributes tothe proliferation and migration of breast cancer cells through cross-talk with activatedERK1/2. Cancer Lett.,2008,(2):312-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700