用户名: 密码: 验证码:
寡糖合成的新策略—固相酶法合成和ManNAc立体选择性合成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寡糖是生物体内重要的生物分子,与核酸,蛋白质等生物大分子一样在信号传导,细胞间的识别与结合,细胞的生长与增殖,免疫应答和病原体的感染等过程中有着重要的作用。与蛋白质和核酸这两类生物大分子不同,寡糖的合成是非模板依赖型的合成。在这个过程中,不同糖基转移酶和多种糖基供体构建了一个结构复杂的糖世界。近些年,随着分子克隆技术的日渐成熟和对模式生物基因组的深入了解,酶促合成寡糖技术日渐成熟。因其高度的区域选择性和立体选择性的特点,这种技术愈来愈被人们重视。同时,在寡糖的酶法合成领域中,很多问题需要解决与改进。我们将这些问题归纳为“5S”。即:1.酶的特异性、2.底物的水溶性、3.制备稀有的底物与辅助因子、4.分离纯化、5.规模化。本文就是围绕这5个问题开展课题的。本文的研究内容主要有以下几方面:
     本文介绍了两种利用固相技术简化了寡糖酶法合成的分离过程。第一种方法是以pH敏感的水溶性线性高分子作为固相载体的化学酶法合成技术。这种载体有效的克服了固相载体影响酶与载体相互接触的问题。利用这种载体,本文使用一锅三酶体系原位生成稀有糖基供体CMP-Sia,成功地合成了Sia-LN三糖衍生物。这种三糖衍生物在流感病毒侵染宿主过程中起着决定性的作用,是下游分子生物学及药物开发研究中的重要研究对象。
     基于第一种方法的优点与不足,我们发展了第二代基于固相萃取技术的酶法合成策略。本策略的特点在于利用简单的“标签”技术无须任何前处理即可实现对酶法合成产物的纯化。对比前人的研究,本方法有以下几个优点:1.使用的“标签”分子简单易得,便于扩大规模;2.相较于传统的固相载体,本方法反应速率更快,反应进程更容易监控;3.本方法后处理过程中不需要传统方法中的脱盐,浓缩等操作,也不需要传统固相萃取方法中的后期纯化,缩短了分离纯化过程所需时间。为了证实方法的可行性,本文共利用了6种糖基转移酶合成了5种不同的具有重要生物学意义的寡糖分子。更重要的是,通过引入另外2种水解酶,本方法首次实现了在固定相上对目标化合物的纯化,这一思路可以帮助未来人们设计出更加高效的固相萃取策略。
     为了更加高效地合成N-乙酰氨基甘露糖ManNAc及含有唾液酸的寡糖分子,本论文通过对底物扭张力的控制,首次报道了利用叠氮自由基对葡萄糖烯糖加成制备ManNAc衍生物的方法。通过高精度的计算,证实了本课题的设计思想及对反应机理的假设。首先扭张力在动力学控制的自由基立体选择性加成过程中控制并决定了过渡态的选择性,从而决定了产物的立体选择性。其次,在热力学控制的立体选择性加成过程中,反应中心处扭转角的构型决定了中间体的选择性,最终ManNAc的产物为最有利产物。最后通过对异头碳自由基平均电离能的研究,不同取代基的电子效应决定了动力学控制和热力学控制在产物选择性中所占的比例。在有机方法学角度,本文展示了通过控制底物的扭转角和取代基,可以实现对自由基活性的调节,从而实现对自由基反应路径及立体选择性的控制。基于我们的发现与技术,本文简单高效地合成了ManNAc衍生物,并将其用于酶法合成了含有非天然唾液酸的三糖分子。此分子是重要的CD22的配体,可以用于B细胞相关疾病的机理研究和药物开发。这项工作在有机理论研究和实际合成唾液酸衍生物方面都有一定的价值。
Oligosaccharide along with DNA and protein plays the crucial roles in the signal pathway, communication between cells, proliferation, recognition of pathogen and infection. Differing from the biosynthesis of DNA and protein, the biosynthesis of oligosaccharide is a template-independent process. In this process, a series of glycotransferases and various glycosylation donors build a diversity world of oligosaccharides. Recently, incited by the achievement in molecular clone technology and research in the genome of model organisms, enzymatic synthesis of oligosaccharides is becoming more and more attractive due to its high regioselectivity and stereoselectivity. At the meantime, some defects in this technology are required prompt solution. We classify these problems into "5S":1. Specificity of enzymes;2.Solubility of substrates;3.Preparation of special cofactors and substrates;4.Separation;5. Scale up.
     In this dissertation, two improved methods based on solid phase technique were introduced. Firstly we utilized a pH-responsive water-soluble polymer as support in chemo-enzyme synthesis. This method facilitates the interaction between substrates and enzyme. Based on this strategy, we utilized a "one-pot three enzymes system" to generate precious CMP-Sia in situ and synthesized sia-LN successfully. This trisaccharide which is very usefulresearch tool in the molecular biology and pharmaetical research plays a significant role in the infection of flu.
     To improve the above method, second generation strategy was developed. The advantage of this strategy is that using easily available tag and solid phase exactraction, pure target compounds can be obtained without any pre-treatment. The advantage pf this method including:1."tag" molecule is cheap and easily available, which is suitable for scale up;2. the reaction rate is fast compared to traditional method, the conversion is easy to monitor;3. there is no need to "de-salt" inpretreatment or addional purification step used in traditional solid phase extraction method. In this project,6enzymes were introduced to afford5different oligosaccharides with great biological importance. Furthermore, this is the first time thatthe target products can be purified with tags on the solid phase by introducingtwo special hydrolases, this stratedgy can help people develop more efficient solid phase extraction stratedgy.
     By control the torsional strain of substrates, to the best of our knowledge, this is the first report that2-N-acetamido-2-deoxy-mannose derivatives were obtained from glucals with satisfactory selectivity.Experimental results and high-accuracy computational methods have proven that our proposal is reliable. Firstly, torsional strain plays a decisive role in the kinetic control process. It determines which transition state is preferred by the process. Secondly, in the thermodynamic control process, the ManNac conformation adopted staggered conformation in reaction center is the more stable intermediate, and is also the favored product. Finally, average local ionization energy of intermediate suggests that the substrates follow the thermodynamic process is deficient in electron and hard to undergo further oxidation. Based on this result a trisaccharide which is an important ligand to CD22was synthesized. It shows the potential usage of our research both in academic area and synthetic application.
引文
[1]Frecget, J. M., Schuerch, C., Solid-phase synthesis of oligosaccharides:Ⅲ. Preparation of some derivatives of di- and tri-saccharides via a simple alcoholysis reaction Carbohydr. Res. 1972,22 (2),399-412
    [2]G. Excoffier, D. Gagnaire, Vignon, J.-P. U. a. M., Synthese d'oligosaccharides sur polymere support-Ⅳ:Reactions sur polymere "popcorn". Tetrahedron 1975,31 (6),549-553
    [3]Galonic, D.P.; Gin, D.Y., Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccinesNature.2007,446 (7139),1000-1007.
    [4]Danishefsky, S. J., McClure, K. F., Randolph, J. T., et al., A strategy for the solid-phase synthesis of oligosaccharides. Science 1993,260 (5112),1307-1309.
    [5]Varki, A.; Cummings, R.; Esko,J, et al., Essentials of glycobiology. Cold Spring Harbor Laboratory Press,1999.
    [6]Su, D.M.; Eguchi, H; Yi, W., et al.,Enzymaticsynthesis of tumor-associated carbohydrate antigen globo-H hexasaccharideOrg. Lett.,2008,10 (5),1009-1012.
    [7]Yu, H.;Huang, S.; Chokhawala, H., et al., Highly efficient chemoenzymatic synthesis of naturallyoccurring and non-natural a-2,6-linked sialosides:A P. damsela a-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew. Chem. Int. Ed.2006,45(24), 3938-3944.
    [8]Winfried Koscha; Marza,J.; Kunz, H., Synthesis of glycopeptide derivatives of Peptide T on a solid phase using an allylic linkageReact.Poly.1994,22 (3),181-194
    [9]Meldal, M., Properties of solid supports. Solid-Phase Peptide Synthesis 1997,289,83-104.
    [10]Vagner,J.; Barany, G.; Lam, K. S., et al., Enzyme-mediated spatial segregation on individual polymeric support beads:Application to generation and screening of encoded combinatorial libraries. Proc. Nad. Acad. Sci. U. S. A.1996,93 (16),8194-8199.
    [11]Uri Zehavi; Sadeh, S.; Herchman, M., Enzymic synthesis of oligosaccharides on a polymer support. Light-sensitive, substituted polyacrylamide beads.Carbohydr. Res.1983,124(1), 23-34
    [12]Zehavi, U.; Herchman, M., Probing acceptor specificity in the glycogen-synthase reaction with polymer-bound oligosaccharides. Carbohydr. Res.1986,151,371-378.
    [13]Zehavi, U.; Herchman, M.; Kopper, S., Polymers having (1-4)-linked and (1-6)-linked alpha-d-glucopyranosyl groups as acceptors in the glycogen-synthase reaction. Carbohydr. Res.1992,228(1),255-263.
    [14]Sabine Kopper; Zehavi, U., Improved acceptor polymers for enzymic glycosylation. React.Polym.1994,22 (3),171-180.
    [15]Kopper, S., Polymer-supported enzymatic-synthesis on a preparative-scale. Carbohydr.Res 1994,265 (1),161-166.
    [16]Nunez, H. A.; Barker, R., Enzymatic-synthesis and C-13 nuclear magnetic-resonance conformational studies of disaccharides containing beta-D-galactopyranosyl and beta-D-1-C-13 galactopyranosyl residues. Biochemistry 1980,19 (3),489-495.
    [17]David, S.; Auge, C.; Gautheron, C., Enzymatic methods in preparative carbohydrate-chemistry. Adv. Carbohydr. Chem. Biochem.1991,49,175-237.
    [18]Blixt, O.; Norberg, T., Solid-phase enzymatic synthesis of a Lewis a trisaccharide using an acceptor reversibly bound to sepharose J.Carbohydr. Chem.1997,16 (2),143-154.
    [19]Blixt, O.; Norberg, T., Solid-phase enzymatic synthesis of a sialyl Lewis x tetrasaccharide on a sepharose matrix. J. Org. Chem.1998,63 (8),2705-2710.
    [20]Halcomb, R. L.; Huang, H. M.; Wong, C. H., Solution-phase and solid-phase synthesis of inhibitors of helicobacter-pylori attachment and e-selectin-mediated leukocyte adhesion. J. Am. Chem. Soc.1994,116(25),11315-11322.
    [21]Schuster, M.; Wang, P.; Paulson, J. C., et al., Solid-phase chemical-enzymatic synthesis of glycopeptides and oligosaccharides. J. Am. Chem.Soc.1994,116 (3),1135-1136.
    [22]Seitz, O.; Wong, C. H., Chemoenzymatic solution- and solid-phase synthesis of O-glycopeptides of the mucin domain of MAdCAM-1. A general route to O-LacNAc, O-sialyl-LacNAc, and O-sialyl-Lewis-X peptides.J. Am. Chem. Soc.1997,119 (38), 8766-8776.
    [23]Seitz, O.; Kunz, H., HYCRON, an allylic anchor for high-efficiency solid phase synthesis of protected peptides and glycopeptides. J.Org. Chem.1997,62 (4),813-826.
    [24]Slomczynska, U.; Albericio, F.; Cardenas, R, et al., Studies on the enzymatic coupling of peptide segments on the solid support. Biomedica Biochimica Acta 1991,50 (10-11), S67-S73.
    [25]Meldal, M., PEGA-a flow stable polyethylene-glycol dimethyl acrylamide copolymer for solid-phase synthesis.Tetrahed.Lett.1992,33 (21),3077-3080.
    [26]Meldal, M.; Auzanneau, F. I.; Hindsgaul, O., et al., A PEGA resin for use in the solid-phase chemical-enzymatic synthesis of glycopeptides. J. Chem. Soc. Chem. Commun.1994,(16), 1849-1850.
    [27]Auzanneau, F. I.; Meldal, M.; Bock, K., Synthesis, characterization and biocompatibility of PEGA resins. J Pept Sci 1995,1 (1),31-44.
    [28]Zehavi, U.; Herchman, M., Enzymic synthesis of oligosaccharides on a polymer support, light-sensitive, water-soluble substituted poly(vinyl alcohol). Carbohydr. Res.1984,128 (1), 160-164
    [29]Shinichiro Nishimura; KoJi Matsuoka; Kurita, K., Synthetic glycocoaJugates:simple and potential glycoprotein models containing pendant N-acetyl-D-glucosamine and N,N'-diacetylchitobiose. Macromolecules 1990,23(18),4182-4184.
    [30]KoJi Matsuoka; Nishimura, S.-I., Synthetic GlycoconJugates.5. Polymeric Sugar Ligands Available for Determining the Binding Specificity of Lectins. Macromolecules 1995,28 (8), 2961-2968.
    [31]Nishimura, S. I.; Matsuoka, K.; Lee, Y. C., Chemoenzymatic oligosaccharide synthesis on a soluble polymeric carrier. Tetrahed.Lett.1994,35 (31),5657-5660.
    [32]Nishimura, S. I.; Lee, K.. B.; Matsuoka, K., et al., Chemoenzymic preparation of a glycoconJugate polymer having a sialyloligosaccharide-Neu5Ac-alpha(2-3)Gal-beta(1-4)GlcNAc. Biochem.Biophys. Res. Commun.1994,199 (1),249-254.
    [33]Yamada, K.; FuJita, E.; Nishimura, S. I., High performance polymer supports for enzyme-assisted synthesis of glycoconJugates.Carbohydr. Res.1997,305 (3-4),443-461.
    [34]Yamada, K.; Nishimura, S. I., An efficient synthesis of sialoglycoconJugates on a peptidase-sensitive polymer support. Tetrahed.Lett.1995,36 (52),9493-9496.
    [35]Yamada, K.; FuJita, E.; Nishimura, S.-I., Enzyme immobilization by condensation copolymerization into crosslinked polyacrylamide gels. Carbohydr. Res.1997,304 (3-4), 443-461
    [36]Zehavi, U.; Tuchinsky, A., Enzymic glycosphingolipid synthesis on polymer supports. Ⅲ. Synthesis of G(M3), its analog NeuNAc alpha a(2-3)Gal beta(1-4)Glc beta(1-3)Cer and their lyso-derivatives. GlycoconJugate J.1998,15 (7),657-662.
    [37]Albericio, F. a. T.-P.J. the power of functional resins in organic synthesis; John Wiley & Sons:Weinheim,2008.
    [38]Schuster, M.; Wang, P.; Paulson,J. C.; Wong, C.-H. solid-phasechemical-enzymic synthesis of glycopeptides and oligosaccharidesJ. Am. Chem. Soc.1994,116,1135.
    [39]Seitz, O.; Wong, C.-H. chemoenzymatic solution- and solid-phase synthesis of o-glycopeptides of the mucin domain of madcam-1. a general route to o-lacnac, o-sialyl-lacnac, and o-sialyl-lewis-x peptidesJ. Am. Chem. Soc.1997,119,8766.
    [40]Blixt, O.; Norberg, T. solid-phase enzymatic synthesis of a Lewis a trisaccharide using an acceptor reversibly bound to sepharoseJ. Carbohydr.Chem.1997,16,143.
    [41]Blixt, O.; Norberg, T. solid-phase enzymatic synthesis of a sialyl lewis x tetrasaccharide on a sepharose matrixJ. Org. Chem.1998,63,2705
    [42]Kopper, S.; Zehavi, U. React. Polym.1994,22,171.
    [43]Kopper, S. polymer-supported enzymic synthesis on a preparative scaleCarbohydr. Res. 1994,265,161.
    [44]Huang, X.; Witte, K. L.; Bergbreiter, D. E.et alhomogenous enzymatic synthesis using a thermo-responsive water-soluble polymer supportAdv. Synth. Catal.2001,343,675.
    [45]Hermanson, G. T. BioconJugate Techniques (Second Edition); Academic Press:London, 2008.
    [46]Rozema, D. B.; Ekena, K.; Lewis, D. L. et al,endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromoleculesBioconJugateChem.2003,14,51.
    [47]Naganawa, A.; Ichikawa, Y.; Isobe, M. synthetic studies on tautomycin:synthesis of 2,3-disubstituted maleic anhydride segmentTetrahedron 1994,50,8969.
    [48]Yang, Z.-Q.; Puffer, E. B.; Pontrello,J. K. et al synthesis of a multivalent display of a cd22-binding trisaccharide Carbohydr. Res.2002,337,1605.
    [49]O. J. Plante, E. R. Palmacci and P. H. Seeberger.automated solid-phase synthesis of oligosaccharidesScience,2001,291,1523-1527
    [50]G Park, K-S. Ko, A. Zakharova and N. L. Pohl, mono-vs. di-fluorous-tagged glucosamines for iterative oligosaccharide synthesisJ. FluorineChem.,2008,129,978-982;
    [51]N. L. Pohl, toward solution-phase automated iterative synthesis:fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomersOrg.Biomol. Chem., 2008,6,2686-2691;
    [52]F. A.Jaipuri, B. Y. M. Collet, N. L. Pohl, synthesis and quantitative evaluation of glycero-d-manno-heptose binding to concanavalin a by fluorous-tag assistanceAngew. Chem., Int. Ed.,2008,47,1707-1710.
    [53]J. Shao, J. Zhang, P. Kowal, Y. Lu et al, P1 trisaccharide (gal{alpha}1,4gal{beta}1,4glcnac) synthesis by enzyme glycosylation reactions using recombinant E.coliChem.Commun., 2003,1422-1423.
    [54]M. Li, X.-W. Liu, J. Shao, et al, characterization of a novel b-1,2-fucosyltransferase of escherichia coli o128:b12 and functional investigation of its common motifBiochemistry, Biochemistry2007,47,378-387.
    [55]O. Blixt, J. Brown, M. J. Schur, W. Wakarchuk et al efficient preparation of natural and synthetic galactosides with a recombinant b-1,4-galactosyltransferase-/udp-a-gal epimerase fusion proteinJ. Org. Chem.,2001,66,2442-2448
    [56]W. S. Trahanovsky and M. D. Robbins,oxidation of organic compounds with cerium(Ⅳ).ⅩⅣ. formation of a-azido-p-nitratoalkanes from olefins, sodium azide, and ceric ammonium nitrateJ. Am. Chem. Soc.,1971,93,5256.
    [57]D.J. Lee, P. W. R. Harris, R. Kowalczyk,et al, microwave-assisted synthesis of fluorescein-labelled galnacalphal-o-ser/ thr (tn) glycopeptides as immunological probessynthesis,2010,55,763
    [58]N. Shao and Z. Guo, solution-phase synthesis with solid-state workup of an o-glycopeptide with a cluster of cancer-related t antigensOrg.Lett.,2005,7,3589
    [59]J. B. Schwarz, S. D. Kuduk, X.-T.Chen, et al, a broadly applicable method for the efficient synthesis of alpha-o-linked glycopeptides and clustered sialic acid residuesJ. Am. Chem. Soc.,1999,121,2662.
    [60]S. Wagner, C. Mersch and A. Hoffmann-Roeder, fluorinated glycosyl amino acids for mucin-like glycopeptide antigen analoguesChem.Eur.J.,2010,16,7319.
    [61]A. Marra, F. Gauffeny and P. Sinay, a novel class of glycosyl donors:anomeric s-xanthates of 2-azido-2-deoxy-d-galactopyranosyl derivativesTetrahedron,1991,47,5149.
    [62]P. H. Seeberger, S. Roehrig, P. Schell, Y. Wang et al, selective formation of c-2 azidodeoxy-d-glucose derivatives from d-glucal precursors using the azidonitration reactionCarbohydr.Res.,2000,328,61.
    [63]C. Tabeur, F. Machetto,J.-M.Mallet, P.et al, L-iduronic acid derivatives as glycosyl donorsCarbohydr.Res.,1996,281,253.
    [64]E. Saxon, S. J. Luchansky, H. C. Hang, et al, investigating cellular metabolism of synthetic azidosugars with the staudinger ligationJ. Am. Chem. Soc.,2002,124,14893.
    [65]B. K. S. Yeung, D. C. Hill, M. Janicka et al, synthesis of two hyaluronan trisaccharidesOg.Lett.,2000,2,1279
    [66]T. Desmet, M. Claeyssens, W. Nerinckx and K. Piens, synthesis and evaluation of 2-deoxy-2-amino-beta-cellobiosides as cellulase inhibitorsJ.Carbohydr.Chem.,2010,29, 164.
    [67]S.I Lee and J. P. N. Rosazza, first total synthesis of mycothiol and mycothiol disulfideOrg.Lett.,2004,6,365.
    [68]K.N. Houk, M. N. Paddon-Row, N. G Rondan,et al, modeling of stereoselective organic reactionsJ. Science,1986,231,1108.
    [69]Y. D. Wu, K. N. Houk and B. M. Trost, origin of enhanced axial attack by sterically undemanding nucleophiles on cyclohexenonesJ. Am. Chem. Soc.,1987,109,5560.
    [70]K.N. Houk, J. A. Tucker and A. E. Dorigo, quantitative modeling of proximity effects on organic reactivity Acc. Chem. Res.,1990,23,107.
    [71]K. N. Houk, J. Liu, N. C. DeMello and K. R. Condroski, transition states of epoxidations: diradical character, spiro geometries, transition state flexibility, and the origins of stereoselectivityJ. Am. Chem. Soc.,1997,119,10147.
    [72]K. Ando, N. S. Green, Y. Li and K. N. Houk, torsional and steric effects control the sfereoselectivities of alkylations of pyrrolidinone enolatesJ. Am. Chem. Soc.,1999,121, 5334.
    [73]I. Washington and K. N. Houk, transition states and origins of stereoselectivity of epoxidations by oxaziridinium saltsJ. Am. Chem. Soc.,2000,122,2948.
    [74]P. H.-Y. Cheong, H. Yun, S. J. Danishefsky and K. N. Houk, torsional steering controls the stereoselectivity of epoxidation in the guanacastepene a synthesisOrg.Lett.,2006,8,1513.
    [75]M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallingford, CT,2009.
    [76]D. M. Tagore, K. I. Sprinz, S. Fletcher, et al, protein recognition and denaturation by self-assembling fragments on a dna quadruplex scaffold Angew. Chem. Int. Ed.,2007,46, 223.
    [77]H. Yu and X. Chen, aldolase-catalyzed synthesis of novel acceptor for sialyltransferases Org. Lett.,2006,8,2393.
    [78]H. Yu, S. Huang, H. Chokhawala, et al, highly efficient chemoenzymatic synthesis of naturally occurring and non-natural a-2,6-linked sialosides:a p. damsela α-2,6-sialyltransferase with extremely flexible donor-substrate specificity Angew. Chem. Int. Ed.,2006,45,3938.
    [79]P. V. Chang, D. H. Dube, E. M. Sletten et al, a strategy for the selective imaging of glycans using caged metabolic precursorsJ. Am. Chem. Soc,2010,132,9516.
    [80]P. V. Chang, J. A. Prescher, E. M. Sletten, et al,2010copper-free click chemistry in living animals Proc. Natl. Acad. Sci. U. S.A.,107,1821.
    [81]K. W. Dehnert, J. M. Baskin, S. T. Laughlin, et al, imaging the sialome during zebrafish development with copper-free click Chemistry ChemBioChem,2010,13,353-357.
    [82]U. Aich, C. T. Campbell, N. Elmouelhi, et alregioisomeric scfa attachment to hexosamines separates metabolic flux from cytotoxicity and mucl suppression ACS Chem Bio,2008,3, 230.
    [83]黄剑锋编.溶胶-凝胶原理与技术.第一版北京:化学工业出版社,2005.
    [84]Blake A. Simmons.Chad E. Taylor.Forrest A. Landis et al Microstructure Determination of AOT+Phenol Organogels Utilizing Small-Angle X-ray Scattering and Atomic Force MicroscopyJ.Am. Chem. Soc.,2001,123 (10),2414-2421
    [85]Toyoki Kunitake, Yoshio Okahata, Masatsugu Shimomuraet alFormation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology.J. Am. Chem. Soc.,1981,103 (18),5401-5413
    [86]Zhimou Yang and Bing Xu, using enzymes to control molecular hydrogelatioaAdv. Mater.2006,18,3043-3046
    [87]Yang, Z. M.; Gu, H. W.; Fu, D. Get al. Enzymatic formation ofsupramolecular hydrogels. Adv. Mater.2004,16,1440-1444.
    [88]Yang, Z. M.; Liang, G L.; Wang, L.; et al. Using a kinase/phosphatase switch toregulate a supramolecular hydrogel and forming the supramolecular hydrogel invivo. J. Am. Chem. Soc.2006,128,3038-3043.
    [89]Yang, Z. M.; Xu, K. M.; Guo, Z. F.; et al. Intracellular enzymaticformation of nanofibers results in hydrogelation and regulated cell death. Adv Mater.2007,17,3152-3156.
    [90]Ghosh, A.; Dey, J. pH-responsive and thermoreversible hydrogels of n-(2-hydroxyalkyl)-1-valine amphiphilesLangmuir 2009,25,8466-8472
    [91]Kobayashi, H.; Friggeri, A.; Koumoto, K.;et almolecular design of "super" hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in waterOrg. Lett.2002,4,1423-1426.
    [92]Yang, Z. M.; Liang, G. L.; Ma, M. L.et alin vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a β-amino acid derivative Small 2007,3,558-562
    [93]Yang, Z. M.; Gu, H. W.; Du, J.;et al self-assembled hybrid nanofibers confer a magnetorheological supramolecular hydrogelTetrahedron 2007,63,7349-7357.
    [94]Sethuraman, N. and T.A. Stadheim, Challenges in therapeutic glycoprotein production.Curr.Opin.Biotechnol.,2006.17(4)341
    [95]Evers, D. L.; Hung, R. L.; Thomas, V. H.; et al Preparative purification of a high-mannose type N-glycan from soy bean agglutinin by hydrazinolysis and tyrosinamide derivatization. Analy. Biochem.1998,265(2),313-316.
    [96]Seko, A.;Koketsu, M.;Nishizono, M.;Enoki, Y. et alcell proliferation-promoting activities in unfertilized eggsBiochim.Biophys.Acta 1997,1335,23.
    [97]Langenhan JM, Peters NR, Guzei IA, et alenhancing the anticancer properties of cardiac glycosides by neoglycorandomizationProc. Natl.Acad. Sci. USA 2005,102,12305
    [98]Dirksen, A.; Tilman M. Hackeng, andPhilip E. Dawsonnucleophilic catalysis of oxime ligationAngew. Chem. Int. Ed.2006,45,7581
    [99]Peri, R, Dentman, A., LaFerla, B.and Nicotra, F. solution and solid-phase chemoselective synthesis of (1-6)-amino(methoxy) di- and trisaccharide analogues Chem. Commun.20021504-1505.
    [100]Mutter, M.; Dumy, P.; Garrouste, P.;template assembled synthetic proteins (tasp) as functional mimetics of proteinsAngew. Chem. Int. Ed.1996,35,1482-1485.
    [101]Peluso, S.; Dumy, P.; Nkubana, C.; et alsolid-phase strategies for the assembly of template-based protein mimeticsJ. Org. Chem.1999,64,7114-7120.
    [102]Goff RD, Thorson JS.enhancing the divergent activities of betulinic acid via neoglycosylationOrg.Lett.2009,11,461-464.
    [103]GuoSong Chen, and Nicola L. Pohl synthesis of fluorous tags for incorporation of reducing sugars into a quantitative microarray platformog. Lett.,2008,10 (5),785-788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700