用户名: 密码: 验证码:
高比容铝电极箔制造技术及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高比容铝电极箔制造技术是实现铝电解电容器小型化的关键技术,本论文从提高铝电极箔电蚀扩面倍率及提高介质膜介电常数两个不同角度出发,对低压铝电极箔增容技术的机理及相关工艺进行了详细研究,大幅度地提高了国产铝电极箔比容水平,所取得的主要结论及创新性的结果如下:
    1、提出了高纯铝在腐蚀性介质体系中发生点蚀时,蚀核萌生机制和蚀孔生长机制:
    研究了高纯铝在不同条件下点蚀萌生时的恒电位下电化学电流噪声行为,结果表明:蚀核的萌生主要来自于高纯铝表面膜结构内部与表面的活性点;这些活性点主要与高纯铝表面膜结构与电化学条件相关,而与溶液组成并无直接关系;蚀核的萌生是高纯铝表面膜结构中活性点与侵蚀性离子的相互作用的结果。活性点能否萌生为蚀核受溶液中侵蚀性离子的攻击作用与缓蚀性离子的保护作用共同影响,因此也受溶液组成的影响;浓度的增加可提高蚀核的萌生几率,而离子的加入则大幅度降低了高纯铝在含溶液中蚀核萌生几率。
     2、对高纯铝交流腐蚀机理进行了研究,首次提出了氧空位输运侵蚀机制,以及氧空位缓蚀作用机制:
    采用三角波动电位扫描法研究了高纯铝交流腐蚀机理,提出了通过存在于侵蚀膜内微晶晶界上的氧空位输运,从而对铝基体进行侵蚀的机制。并利用上述机制对相关实验现象进行了解释。
     对在铝电极箔电蚀扩面工程中缓蚀作用机理进行了研究,指出的独特缓蚀作用为:在点蚀萌生时,通过氧空位阻断机制阻止蚀孔萌生,但一旦蚀孔生成,促进蚀孔迅速增大,同时蚀孔内发孔数量增加。因此一定量的添加有利于铝电极箔海绵层结构的生成。
     3、建立了YF基元生长模型对铝电极箔理论扩面倍率进行了计算:
    针对已有的铝电极箔理论扩面倍率计算模型不能准确反映中低压铝电极箔的海绵状蚀孔特征的缺点,提出了YF基元生长模型对铝电极箔理论扩面倍率进行了较为准确地计算。结果表明:目前实际的扩面倍率在高压部分与理论扩面
    
    倍率很接近,但在中低压部分实际扩面倍率与理论扩面倍率相差较大。因此高压铝电极箔通过电蚀扩面提高比容的前景较小,而对于中低压铝电极箔,提高单位面积静电容量的余地还很大。
     4、研究了交流发孔工艺:
    发孔工艺是铝电极箔电蚀扩面工程中的关键工艺,本文分析对比了低压铝电极箔交流发孔工艺与直流发孔工艺。对交流发孔工艺进行了工艺研究,优选出了一套较好的交流发孔工艺参数,该工艺与常规蚀孔生长工艺进行配套后,腐蚀箔比容在时可达到18.8。
     5、研究了高介电常数的介质膜生长技术:
    提高铝电极箔介质膜的介电常数可大幅度地提高铝电极箔比容。本文研究了一系列与目前工业联动腐蚀、化成线具有良好兼容性的后处理增容技术,并对相关机制进行了研究。
    其中经过磷酸—铬酸处理或胺类溶液处理,提高铝氧化膜内或的含量,在合适的工艺条件下,国产铝电极箔比容在51下分别可增容37.5%和35%。
    首次提出并研究了通过无机盐水解的技术途径在铝介质膜内复合高介电常数阀金属氧化物,在实验室工艺条件下,铝电极箔比容在51下可增容45.6%。目前该技术已申请国家发明专利。
    6、将小波及小波包信号分解及重构引入测试信号的分析处理中,取得了良好效果:
    在高纯铝点蚀机理的研究方面,首次提出了电化学噪声小波包分解子带能量谱分析技术,该分析技术具有表现电化学噪声信号“指纹”特征的能力,对腐蚀体系、腐蚀类型及腐蚀状态都具有较强的敏感性。
    对高纯铝变频腐蚀机制所进行的研究中,采用小波包时频分解,证明了高纯铝变频腐蚀动力学机制仍服从Tafel关系。首次基于小波包分解与信号重构方法,给出了在进行变频腐蚀动力学机制研究中动力学参数的实时测量方法。
Recent development of small electronic devices requires increase in capacitance of aluminum electrolytic capacitors. Higher capacitance can be obtained with enlarging surface area of aluminum foils and increasing the dielectric constant of dielectric films on aluminum foils. The main goal of this paper is to investigate the mechanism of corresponding processes for increasing capacitance of aluminum foils used for low-voltage aluminum electrolytic capacitors. The important results and innovations are as follows:
    1. The pit corrosion initiation and growth mechanism of high-purity aluminum in the corrosive media was studied.
    The galvanostat electrochemical current noises of high-purity aluminum in different corrosive media were studied. It was found that pit corrosion mostly initiates from the active spots in and on the passive film. These active spots mostly correlate with the surface structure and electrochemical environment of high-purity aluminum, not directly with the composition of solution. Pit initiation is the result of the interaction between active spots and corrosive ions such as Cl- and so on. Whether active spots become corrosion nuclei is influenced by impact from corrosive ions and protection from inhibitive ions, so, by the composition of solution. Increasing the concentration of Cl- enhances pits initiation probability, and addition of SO42- greatly decreases pits initiation probability of high-purity aluminum in the corrosive media.
    2. AC corrosion mechanism of high-purity aluminum was studied. The mechanism of Cl- penetrating through the passive film by oxygen-vacancy-chain and the inhibition mechanism of SO42- were first explained.
    AC corrosion mechanism of high-purity aluminum was studied by means of cyclic triangular wave potentiodynamic method. The mechanism was proposed that Cl- penetrates through the passive film by oxygen-vacancy-chain in the crystalline boundary, and impacts aluminum substrate. According to this mechanism, the corresponding experimental phenomena were explained.
    
    
    The inhibition mechanism of SO42- in the AC corrosion of high-purity aluminum was studied. Under the effect of local electric field, O2- that dissociated from SO42- captures the oxygen vacancy, decreases the concentration of oxygen vacancies, and modifies the network of Cl- penetrating ways in the passive film. So, a certain amount of SO42- addition is advantageous to the generation of the sponge structure on aluminum foils.
    3. The YF model was proposed, and the theoretical surface roughness factor of aluminum foils was calculated.
    A model for calculating the theoretical surface roughness factor K of aluminum foils was developed. The simulation results showed that the morphology of etched aluminum foils is similar to the actual one, and the surface roughness factor K obtained by calculating units trace is approximate to the practical one of aluminum foils for high-voltage use. However, the K value of aluminum foils for low-voltage use is larger than the practical one. This suggests that it is possible to further increase the capacitance of low-voltage aluminum capacitors.
    4. The technologies of pits initiation process were studied.
    How to control the pits initiation is a very important problem in the surface enlarging processes of aluminum foils by electrochemical etching. This paper contrasted AC pits initiation process with DC pits initiation process. The technical parameters of AC pits initiation process were optimized. As the result, the capacitance of etched aluminum foils can be obtained up to 18.8 at the rated withstanding voltage of 51V by normal pit growth processes.
    5. The fabricating technologies of high dielectric constant oxide films were studied.
    To increasing the capacitance of Aluminum foils, increase in the dielectric constant of dielectric films is as important as increase in surface area. This paper studied a series technology, which are compatible with the current etching and formation linkage line, for fabricating high dielectric constant oxide films on aluminum
引文
[1] 永田伊佐也.アルミニウム干式電解コンデンサ.东京:日本蓄電器工業,1983
    [2] 肖占文.电容器铝箔交流腐蚀扩面机理研究:[博士学位论文].成都:电子科技大学,1999
    [3] 阎康平.电容器高纯铝箔的侵蚀机理及工程化研究:[博士学位论文].成都:四川大学,1999
    [4] 陈金菊.高比容铝箔新技术研究:[硕博连读专题研究报告].成都:电子科技大学,2002
    [5] 徐友龙.铝电解电容器的现状与发展.电子元器件与应用,2002,4(6):1
    [6] Nobuhiro Honda.High Frequency Capacitors with Organic Semiconductive Electrolyte (OS-CON).JEE,1994,8:29
    [7] 冯哲圣,陈金菊,徐蓓娜,et al.铝电解电容器技术现状及发展趋势.电子元件与材料,2001,20(5):30
    [8] 季锐,徐友龙.聚吡咯固体电解电容器.电子元件与材料,1999,18(4):4
    [9] 王文生.高频低阻抗片式固体电解电容器的进展.电子元件与材料,1998,17(2):16
    [10] 工藤康夫.有机导电薄膜を用いたアルミニウム干式電解コンデンサ.表面技朮,1992,43(6):562
    [11] Yamamoto H,Fukuda K,Isa I,et al.Electrolytic Capacitor Employing Polypyrrole as Solid Electrolyte.Molecular Crystals and Liquid Crystals,1993,No.227:255
    [12] 王晓峰,孔祥华,刘庆国,et al.新型化学储能器件之电化学电容器.化学世界,2001,2:103
    [13] 王松宇,王国庆.双电层电容器及其应用.国外电子元器件,2001,6:11
    [14] 张丹丹,姚宗干.双电层电容器.高电压技术,1999,25(4):69
    [15] 杨邦朝,冯哲圣.国内外电容器市场概况分析.电子元器件应用,2001,3(1):56
    [16] 陈国光,曹婉真.电解电容器.西安:西安交通大学出版社,1993
    [17] JCC Catalogue.Japan Capacitor Industrial Co.,LTD.Tokyo,2001
    [18] 李翰如.电介质物理导论.成都:成都科技大学出版社,1990
    [19] 方俊鑫,殷之文.电介质物理学.北京:科学出版社,1989
    [20] 杨邦朝,肖占文.预处理对铝箔电蚀特性的影响.电子元件与材料,1997,16(3):1
    
    
    [21] 吴雅薇.电解电容器铝箔生产中杂质元素的控制.上海有色金属,1999,20(4):169
    [22] 侯振庆.工艺因素对电解电容器阳极箔比电容的影响.轻合金加工技术,1997,25(2):25
    [23] 阎康平,向华,陈树明.阳极铝箔交流腐蚀发孔对比容的影响.电子元件与材料,1996,15(2):49
    [24] 胡涛,王守绪,杨邦朝.用单纯形忧化法研究铝箔腐蚀工艺.电子科技大学学报,1998,27(4):449
    [25] 阎康平,罗沪蓉,涂铭旌.中高压阳极铝箔直流电扩面侵蚀研究.四川大学学报,2000,32(2):32
    [26] Broun G M,Shimizu K,Thompson G E,et al.Further Evidence for the Presence of Residual Flaws in a Thin Oxide Layer Covering High Purity Aluminum.Corrosion Scicence,1993,34(12):2099
    [27] Thompson G E,Doherty P E,Wood G C.Observations of Flaws on Preconditioned Aluminum Surfaces.Journal of the Electrochemical Society,1982,29(7):1515
    [28] 化学工业部化工机械研究院.腐蚀与防护手册(腐蚀理论.试验及监测).北京:化学工业出版社,1997
    [29] 福岗洁,大泽伸夫.直流ェツチング时の初期ピツト形成に及ぼす高纯度アルミニゥムの结晶晶面の影响.住友轻金属技报,1994,35(1,2):90
    [30] 于福洲.金属材料的耐腐蚀性.北京:科学出版社,1982
    [31] Despic A,Parkhutik V P.Electrochemistry of Aluminum in Aqueous Solutions and Physics of Its Anodic Oxide.Modern Aspects of Electrochemistry (20).New York,Plenum Press,1989
    [32] Hoar T P,Mears D C ,Rothwell G P.The Relationships between Anodic Passivity, Brightening and Pitting.Corrosion Science,1965,5:279
    [33] Drazic D M,Zecevic S K,Atanasiski R T,et al.The Effect of Anions on the Electrochemical Behavior of Al.Electrochimica Acta,1991,36(1):179
    [34] Vetter H J,Strenhblow H H.Conference on Localized Corrosion.Houston,National Association of Corrosion Engineers,1974
    [35] Sato N.A Theory for Breakdown of Anodic Oxide Films on Metals.Electrochimica Acta,1971,16(10):1683
    [36] Kolotyrkin JA M.Pitting Corrosion of Metals.Corrosion,1963,19(8):261
    
    
    [37] Tompson G E,Wood G C.The Effect of Alternating Voltage on Aluminum Electrodes in HCl.Corrosion Science,1978,18(6):721
    [38] Dyer C K,Alwitt R S.Surface Changes During AC Etching of Aluminum.Journal of the Electrochemical Society,1981,128(2):300
    [39] 中国腐蚀与防护学会.金属的局部腐蚀.北京:化学工业出版社,1995
    [40] Dyer C K,Alwitt R S.Surface change during AC etching of aluminum.Journal of the Electrochemical Society,1976,123(4):464
    [41] 冯哲圣,杨邦朝,李建军.日本铝电极箔制造技术研究的新进展.电子元件与材料,2001,20(2):23
    [42] 菅沼栄一.塩酸溶液中のアルミニウムの交流ェツチングにおける硫酸添加の效果.表面技術恊会第82回講演大会要旨集,1991:52
    [43] 加藤正義,秋田佳穗. 食塩水溶液中でのアルミニウムの交流ェツチングに及ぼすクエン酸の影響.表面技術恊会第81回講演大会要旨集,1990:15
    [44] 中原武彦.アルミ電解コンデンサ用電極箔のェツチング方法.特開平10-223484,1998-8-21
    [45] 神本浩司,中村克之,加藤寿博.アルミ電解コンデンサ用電極箔のェツチング方法. 特開平10-223483,1998-8-21
    [46] 西田典生.アルミ電解コンデンサ用電極箔のェツチング方法.特開平6-272097,1994-9-27
    [47] 小池厚.電解コンデンサ用 アルミニゥム箔のェツチング方法.特開平2-211614,1990-8-22
    [48] 米山善夫.电解电容器铝箔的侵蚀方法.中国专利,1111028A,1995-11-1
    [49] 中田泰彦.電解コンデンサ用 アルミ電極箔ぉょびその製造方法.特開平10-172868,1998-6-26
    [50] 大澤伸夫.電解コンデンサ電極用アルミニゥム箔. 特開平10-199766,1998-7-31
    [51] 大澤伸夫.電解コンデンサ電極用アルミニゥム箔ぉょびその製造方法.特開平10-308329,1998-11-17
    [52] 曹楚南.腐蚀电化学中的频谱分析研究.腐蚀科学与防护技术,1993,5(1):1
    [53] 曹楚南.腐蚀电化学.北京:化学工业出版社,1994
    [54] Mansfeld F.Recording and Analysis of AC Impedance data for Corrosion Studies,Ⅰ.Background and Methods of Analysis.Corrosion,1981,36(5):301
    
    
    [55] Mansfeld F,Kendig N W,Tsai S.Recording and Analysis of AC Impedance data for Corrosion Studies,Ⅱ.Experimental Approach and Results.Corrosion,1982,38(11):570
    [56] Cottis R A.Interpretation of Electrochemical Noise Data.Corrosion,2001,57(3):265
    [57] 刘晓方,王汉功,权高峰,et al.电化学噪声分析进展.腐蚀科学与防护技术,2001,13(2):101
    [58] 董泽华,郭兴蓬,郑家燊,et al.16Mn钢局部腐蚀中的电化学噪声特征.中国腐蚀与防护学报,2002,22(5):290
    [59] Pilla A A.A Transient Impedance Technique for the Study of Electrode Kinetics.Journal of the Electrochemical Society,1970,117:467
    [60] 张贤达.现代信号处理.北京:清华大学出版社,1995
    [61] 路友荣.信号频域分析技术的发展.电信技术研究,1996,12:1
    [62] Chui C K.An Introduction to Wavelets.New York:Academic Press,1992
    [63] Grossmann A,Morlet J.Cycle-Octave and Related Transform in Seismic Signals Analysis.Geoexploration,1985,23:85
    [64] Meyer Y.Wavelets with Compact Support.San Francisco:W H Freeman Company,1987
    [65] Mallat S.Multiresolution and Wavelets:[dissertation].Philadelphia:University of Pennsylvania,1988
    [66] Mallat S.Multifrequency Channel Decompositions of Images and Wavelet Models.IEEE Trans on Acoustics Speech and Signal Processing,1989,37(12):2091
    [67] Daubechies I.Orthonormal Bases of Compactly Supported Wavelets.Communications on Pure and Applied Mathematics,1988,41:909
    [68] Daubechies I.Ten Lectures on Wavelets.Philadelphia:SIAM Publication,1992
    [69] 邓东皋,彭立中.小波分析.数学进展,1991,20(3):294
    [70] 刘贵忠,邸双亮.小波分析及其应用.西安:西安电子科技大学出版社,1993
    [71] 刘晓方,王汉功,权高峰,et al.利用小波变换检测电化学噪声信号波形.分析化学,2001,29(2):161
    [72] 刘东辉,陈德智,孙晓云等.一种基于小波分析的除噪方法.仪器仪表学报,2000,21(6):636
    [73] 彭玉华.小波变换与工程应用.北京:科学出版社,1999.131
    阎丽,莫金垣.一种新型实时拓展小波滤波器处理电分析信号的研究.科学通报,1995,
    
    [74] 40 (17):1567
    [75] 卢小泉,莫金垣.分析化学计量学中的新方法—一小波分析.分析化学,1996,24 (9):1100
    [76] Joseph B,Dai X D,Motard R L,et al.Improved Discrimination of Electrochemical Noise Signals Using Wavelet Analysis.Corrosion,2001,57(5):394
    [77] Darowicki K,Zielinski A.Joint Time-frequency Analysis of Electrochemical Noise.Journal of Electroanalytical Chemistry,2001,504:201
    [78] 邵学广,庞春艳,侯树泉.在线小波分析与分析化学信号的在线处理.中国科学技木大学学报,2000,30(2):195
    [79] 宋永祥.铝阳极氧化膜及其铝电解电容器(上).电子元件,1995,4:1
    [80] 宋永祥.铝阳极氧化膜及其铝电解电容器(下).电子元件,1996,3:7
    [81] 阎康平,沈行素.提高铝箔比电容的新途径——引入高介电常数金属(陶瓷)氧化物.电子元件与材料,1997,16(1):13
    [82] 望月隆.電解コンデンサ用アルミニゥム電極箔の製造方法.特開昭63-304616,1988-12-12
    [83] 横山豐,安藤進.電解コンデンサ用アルミニゥム電極箔の製造方法.特開平3-131013,1991-6-4
    [84] 赤松孝義,野中晴支.電解コンデンサ用電極箔.特開平3-196510,1991-8-28
    [85] 田村徹,望月秀晃,近藤滋. 弁金属類の陽極酸化皮膜の形成法.特開昭55-69291,1980-5-24
    [86] 伊藤泰穗,望月隆,高沢昭雄. アルミニゥム電解コンデンサ.特開昭60-115215,1985-6-21
    [87] Stevens,Levon J.A Method of Improving the Capacitance of Anodized Aluminum Foil.European Patent,1989-6-29
    [88] 南努,峠登,目秦将志,et al. アルミニゥム電解コンデンサの電極ぉょびその製造方法.特開平4-42519,1992-2-13
    [89] Sethi R S.Improvements in or Relating to Aluminum Oxide Films for Capacitors.United Kingdom Patent,1980-9-10
    [90] 佐賀誠.金属間化合物を均一に分散した合金材料の活性表面積拡大法.特開平5-36576,1993-2-12
    [91] 栗原直美.アルミ電解コンデンサ用陽極箔の化成方法.特開平9-246110,1997-9-19
    
    
    [92] 别所毅一.アルミニゥム電解コンデンサ用電極箔の製造方法.特開平10-32146,1998-2-3
    [93] 栗原直美.アルミ電解コンデンサ用陽極箔の化成方法.特開平10-112423,1998-4-28
    [94] 徐友龙.高压电解电容器阳极铝箔扩面腐蚀机理、腐蚀工艺及其工程化研究:[博士学位论文] .西安:西安交通大学,1996
    [95] 杨邦朝,冯哲圣,徐永兴.全球电极箔产业现状及发展趋势.电子元件与材料,2001,20(5):32
    [96] 朱日彰.金属腐蚀学.北京:冶金工业出版社,1989
    [97] 刘永辉,张佩芳.金属腐蚀学原理.北京:航空工业出版社,1993
    [98] 曹楚南.腐蚀电化学原理.北京:化学工业出版社,1985
    [99] Carroll W M,Breslin C B.Activation of Aluminum in Halide Solutions Containing "Activator Ions".Corrosion Science,1992,33(7):1161
    [100] Iverson W P.Transient Voltage Changes Produced in Corroding Metals.Journal of the Electrochemical Society,1968,115(6):617
    [101] 张鉴清,张昭,王建明,et al.电化学噪声的分析与应用1.电化学噪声的分析原理.中国腐蚀与防护学报,2001,21(5):310
    [102] Chen J F,Bognerts W F.Electrochemical Emission Spectroscopy for Monitoring Uniform and Localized corrosion.Corrosion,1996,52(10):753
    [103] Cottis R A,Al-ansari M A,Bagley G,et al.Electrochemical Noise Measurements for Corrosion Studies.Materials Science Forum,1998,289-292:741
    [104] Isaacs H U,Ishikawa Y.Current and Potential Transients During Localized Corrosion of Stainless Steel.Journal of the Electrochemical Society,1985,132(6):1288
    [105] Cheng Y F,Luo J L,Wilmott M.Spectral Analysis of Electrochemical Noise with Different Transient Shapes.Electrochimica Acta,2000,45(11):1763
    [106] 曹楚南,石青荣,林海潮.孔蚀过程中电流噪声特征研究.中国腐蚀与防护学报,1990,10(1):22
    [107] 林海潮,曹楚南.孔蚀过程的电化学噪声研究.中国腐蚀与防护学报,1986,6(2):141
    [108] Hladky K,Dawson J L.The Measurement of Corrosion Using Electrochemical 1/f Noise.Corrosion Science,1982,22(3):231
    Hladky K,Dawson J L.The Measurement of Localized Corrosion Using Electrochemical
    
    [109] Noise.Corrosion Science,1981,21(4):317
    [110] Uruchurtu J C,Dawson J L.Noise Analysis of Pure Aluminum Under Different Pitting Conditions.Corrosion,1987,43(1):19
    [111] Uruchurtu J C.Electrochemical Investigations of the Activation Mechanism of Aluminum.Corrosion,1991,47(6):472
    [112] Magaino S I,Kawaguchi A,Hirata A,et al.Spectrum Analysis of Corrosion Potential Fluctuation for Localized Corrosion of Type 304 Stainless Steel.Journal of the Electrochemical Society,1987,134:2993
    [113] 张鉴清,张昭,王建明,et al.电化学噪声的分析与应用2.电化学噪声的应用.中国腐蚀与防护学报,2002,22(4):241
    [114] Cheng Y F,Wilmott M,Luo J L.Analysis of the role of Electrode Capacitance on the Initiation of Pits for A516 Carbon Steel by Electrochemical Noise Measurement.Corrosion Science,1999,41(7):1245
    [115] Hashimoto M,Miyajima S,Murata T.An Experimental Study of Potential Fluctuation During Passive Film Breakdown and Repair on Iron.Corrosion Science,1992,33:905
    [116] Hashimoto M,Miyajima S,Murata T.A Spectrum Analysis of Potential Fluctuation During Passive Film Breakdown and Repair on Iron.Corrosion Science,1992,33:917
    [117] Fils J,Dawson J L,Gill J,et al.Impedance and Electrochemical Noise Measurement on Iron-Carbon Alloys in Hot Caustic Soda.Corrosion Science,1991,32(8):877
    [118] 崔锦泰著,程正兴译.小波分析导论.西安:西安交通大学出版社,1994
    [119] 刘贵忠,邸双亮.小波分析及其应用.西安:西安电子科技大学出版社,1992
    [120] Joseph W I,Kurt R H.Electrochemical Current Noise on Aluminum Microelectrodes.
    Journal of the Electrochemical Society,1999,146(2):502
    [121] Bertocci U, Frydman J, Gabrielli C, et al.Analysis of Electrochemical Noise by Power Spectral Density Applied to Corrosion Studies.Journal of the Electrochemical Society,1999,146(2):502
    [122] Nachstedt K,Heusler K E.Electrochemical Noise at Passive Iron.Electrochimica Acta.1988,33(3):311
    [123] 石青荣,林海潮,曹楚南.孔蚀过程中电化学噪声的“白噪声”水平与截止频率的研究.中国腐蚀与防护学报,1990,10(1):29
    Johnson W K.Recent Developments in Pitting Corrosion of Aluminum.British Corrosion
    
    [124] Journal.1971,6:200
    [125] Vijh A K.The Pitting of Metal.Corrosion Science.1973,13:805
    [126] Foley R,Nguyen N.The Chemical Nature of Aluminum Corrosion.Journal of the Electrochemical Society,1982,129(3):464
    [127] Hunkeler F,B?hni H.Determination of Pit Growth Rules on Aluminum Using a Metal Foil Technique.Corrosion,1981,37(11):645
    [128] Buzza D W,Alkire R C.Growth of Corrosion Pits on Pure Aluminum in 1M NaCl.Journal of the Electrochemical Society,1995,142(4):1104
    [129] Tan T C,Chin D-T.Effect of Alternating Voltage on the Pitting of Aluminum in Nitrate, Sulfate,and Chloride Solutions.Corrosion,1989,45(12):984
    [130] Kruger,Bird C E.Corrosion of Metals by Applied Alternating Currents.British Corrosion Journal,1978,13(4):163
    [131] Pookote S R,Chin D-T.Effect of Alternating Current on the Underground Corrosion of Steels.Materials Performance,1978,7(3):9
    [132] Teyrny H,Vereecken J,Thompson G E.Electrograining of Aluminum in Hydrochloric Acid.Ⅰ.Morphological Appearance.Corrosion Science.1991,32(11):1159
    [133] 锺晖,市野良一,兴户正纯,冲猛雄.电位制御にょるァルミニゥム箔の交流ェツチングに及ぼす周波数の影响.表面技術,1995,46(8):739
    [134] 肖占文,杨邦朝.铝箔交流腐蚀的阴极半周期间表面酸度变化与腐蚀产物膜的形成.中国腐蚀与防护学报,1999,19(4):200
    [135] Moore W M,Chen C-T,Shirn G A.A Voltammetric Investigation of AC Corrosion Phenomena at an Aluminum Electrode in Hydrochloric Acid.Corrosion,1984,40(12):646
    [136] 菅沼栄一,丹野裕司.塩酸溶液中の三角波パルス電流エツチングで生ずるアルミニウムのピツト形態と表面皮膜.表面技術,1999,50(2):215
    [137] McCafferty E.A Surface Charge Model of Corrosion Pit Initiation and of Protection by Surface Alloying.Journal of the Electrochemical Society,1999,146(8):286
    [138] Patermarakis G,Papandreadis N.Study on the Kinetics of Growth of Porous Anodic Al2O3 Films on Al Metal.Electrochimica Acta,1993,38(15):2351
    [139] 肖占文,杨邦朝.交流负半周对高纯铝在盐酸溶液中点蚀行为的影响.中国腐蚀与防护学报,1999,19(4):193
    
    
    [140] 冯哲圣,陈金菊,杨邦朝.交流腐蚀研究中Tafel斜率的小波包变换测量.仪器仪表学报,2002,23(3)(Supplement):64
    [141] 冯哲圣,陈金菊,伍隽,杨邦朝.基于小波包分解的交流腐蚀信号时频表征方法.仪器仪表学报,2002,23(3)(Supplement): 62
    [142] Bangchao Yang,Zhesheng Feng,Jinju Chen,et al.Electro-dissolution Kinetics of Swept-frequency Voltage Modulation on the Polarization of High-purity Aluminum.Jounral of Materials Science Letters,2003,22(5): 383
    [143] 日比野淳,玉置充宏,渡辺吉章,et al.アルミニウム箔のトンネルエツチングに及ぼす硫酸の影響.軽金属,1992,42(8):440
    [144] Wu T I,Wu J K.Effect of sulfate ions on corrosion inhibition of AA7075 aluminum alloy in sodium chloride solutions.Corrosion,1995,51(3):185
    [145] Flis J,Kowalczyk L.Effect of sulphate anions on tunnel etching of aluminum.Journal of Applied Electrochemistry,1995,25(5):501
    [146] Patermarakis G,Moussoutzanis K.Electrochemical Kinetic Study on the Growth of Porous Anodic Oxide Films on Aluminum.Electrochimica Acta,1995,40(6):699
    [147] Lee W-J,Pyun S I.Effects of Sulphate Ion Additibes on the Pitting Corrosion of Pure Aluminum in 0.01M NaCl Solution.Electrochimica Acta,2000,45(12):1901
    [148] Dunn C G,Bolon R B.A Scanning Electron Microscope Study of Etched Aluminum Foil for Electrolytic Capacitors.Journal of the Electrochemical Society,1971,118(2):381
    [149] Shibata T,Takeyama T. Stochastic Theory of Pitting Corrosion.Corrosion,1977,33(7):243
    [150] deWit H J,Boots H M J.A Geometric Model of Alternating Current Etching of Aluminum.Journal of Applied Physics,1983,54(5):2727
    [151] Zhesheng Feng,Bangchao Yang.Simulation for AC Etched Al-foil.Third Joint China/USA Chemical Engineering Conference,2000,Beijing,China.
    [152] 冯哲圣,杨邦朝,肖占文.电容器用铝箔交流理论扩面倍率K的计算机模拟计算.功能材料,2001,32(1):50
    [153] 宋永祥.铝电解电容器基本性能与阳极氧化膜关系.电子元件与材料,1996,15(1):7
    [154] 曾华梁,杨家昌.电解和化学转化膜.北京:中国轻工业出版社,1987
    Alwitt R S (工藤忠人译).结晶性アルミニウム阳极酸化皮膜.金属表面技術,1981,
    
    [155] 32(5):226
    [156] Crevecoeur C,deWit H J.The Anodization of Heated Aluminum.Journal of the Electrochemical Society,1987,134(4):808
    [157] 清水健一,小林賢三,西部晴仁.バ リヤ ー 型Alアノー ド 酸 化 皮 膜 の 成 長 お よ び 構 造及 ば す 熱 酸 化 皮 膜 の 影 響.軽金属,1985,35(10):553
    [158] 汪礼敏,马杰,李惠媛.硫酸钛液热水解机理及动力学研究.稀有金属,1991,15(2):95
    [159] 于兴文,曹楚南,林海潮,et al.铝合金表面稀土转化膜研究进展.中国腐蚀与防护学报,2000,20(5):298
    [160] 马信清,彭晓,李铁藩.稀土氧化物改进高温涂层的氧化行为研究.中国腐蚀与防护学报,1997,17(Supplement):436
    [161] Perry S J.Hard Anodizing Deserves Wider Use.Product Finishing,1983,36(7):12
    [162] 于芝兰.金属防护工艺原理.北京:国防工业出版社,1990
    [163] Wood G C,O'Sullivan J P.Electron-Optical Examination of Sealed Anodic Alumina Films: Surface and Interior Effects.Journal of the Electrochemical Society,1987,134(4):808
    [164] Wada K,Shimohira T,Yamada M,et al.Microstructure of Porous Anodic Oxide Films on Aluminium.Journal of Materials Science,1986,21(11):3810
    [165] 陈声培.铝阳极氧化膜成长的现场椭圆法研究.大学化学,1996,11(5):42
    [166] 韦春才,王启新.铝电解电容器阳极氧化膜的生长及其结构的研究.沈阳工业大学学报,1994,16(4):17
    [167] 宋晔,曹婉真.Al-Ti合金阳极氧化膜的化学组成及微观结构.西安交通大学学报,1995,29(12):45
    [168] Achour M E,EL Malhi M,Miane J L.Microwave Properties of Carbon Black-Epoxy Resin Composites and Their Simulation by Means of Mixture Laws.Journal of Applied Polymer Science,1999,73(6):969
    [169] Jayasundere N,Smith B V.Dielectric Constant for Binary Piezoelectric 0-3 Composites.Journal of Applied Physics,1993,73(5):2462
    [170] Tonkin B A,Hosking M W.The Dielectric Constant and Thermal Expansion of the Ceramic-filled Plastic RT Duroid at Low Temperatures.Journal of Materials Science Letters,1996,15(23):2030
    顾学民,龚毅生,臧希文,et al.无机化学丛书第二卷:铍硼铝镓分族碱土金属.北
    
    [171] 京:科学出版社,1990
    [172] П.Д.丹柯夫.金属上氧化膜及氢氧化膜的电子衍射图相法研究.北京:科学出版社,1984
    [173] 申泮文,车云霞,罗裕基,et al.无机化学丛书第八卷:钛分族钒分族铬分族.北京:科学出版社,1998
    [174] 曲喜新主编.电子元件材料手册.北京:电子工业出版社,1989
    [175] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [176] 张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社,1994
    [177] Takagahara T.Effects of Dielectric Confinement and Electron-Hole Exchange Interaction on Excitonic States in Semiconductor Quantum Dots.Physical Review B,1993,47(8):4596
    [178] 杨迈之,张雯,蔡生民.包覆硬脂酸膜超微粒子的光谱及光电化学研究.高等学校化学学报,1996,17(2):274
    [179] 余保龙,吴晓春,邹炳锁,et al.介电限域效应对纳米微粒光学特性的影响.物理化学学报,1994,10(2):103
    [180] 关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992
    [181] 李翰如.电介质物理导论.成都:成都科技大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700