用户名: 密码: 验证码:
滇池水葫芦富集砷、铅、镉形态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外对水葫芦的深入研究,水葫芦对重金属的耐受性和富集作用得到越来越多的重视。强繁殖能力是水葫芦的一大特性,利用其生物量大和漂浮的特点来去除滇池水体中的重金属能达到去除量大和不易造成二次污染的良好效果。滇池受到砷、铅、镉等重金属的污染较为严重,通过“疯长”的水葫芦进行富集去除是一个可行有效的方法,本文研究砷、铅、镉等重金属在水葫芦中的富集形态,为研究水葫芦净化富营养化水体提供了一定理论依据。
     我国有大量工矿区土地和城市土地等非耕地受重金属的污染,直接影响农产品的卫生品质和地下水、地表水、大气等环境质量,对工农业生产、居民生活和人类健康已造成巨大的危害。尤其是中国加入WTO之后,农产品的重金属超标问题对为我国农业的冲击更大。因此,重金属污染治理是我国当前急需解决的任务。
     国家近年来加大了对云南滇池的治理力度,水质也有所好转,但仍处于劣V类,各种污染还比较严重,重金属污染则是其中之一。进入湖泊水体中的重金属被悬浮物和沉积物吸附,这在一定程度上净化了上覆水,对上覆水中的重金属污染起到缓冲和稀释的作用。但沉积物对重金属的吸附能力是有限的,并决定于沉积物的最大吸附量。而沉积物的最大吸附量主要依赖于沉积物的矿物组成,沉积物的粒度及沉积物的有机质含量等各种理化性质。重金属被沉积物吸附后,在一定条件下会再次释放,造成水体的“二次污染”。因此滇池中的重金属污染急需得到一个有效的、不易产生二次污染的方法来解决。
     通过实验分析,得出了水葫芦对重金属(砷、铅、镉)的富集量及富集形态。把滇池水葫芦分别置于1.0mg/L(As3+、Pb2+、Cd2+)的溶液中进行培植后,对其根、茎、叶分别预处理后用80%乙醇,去离子水,1mol/L NaCl溶液,2%乙酸,0.6mol/L HCl溶液逐级提取,并对提取液及提取残渣的消解液进行ICP-MS分析,测定出各个部位的提取液及消解液中三种金属离子的富集量。利用液质谱联用技术(HPLC-MS)分析水葫芦富集砷、铅、镉等重金属的形态。
     采用GaussviewW3.0和Gaussian系列电子结构程序,通过实验及计算结果表明,重金属离子以不同形态存在,砷的富集形态130种以上;镉的富集形态30种以上;铅的富集形态1种。通过紫外光谱分析得出水葫芦富集重金属(砷、铅、镉)的形态以聚糖、苯醌、萘醌、烯醇、苯环及羟基等基团为主,重金属螯合物有草酸、组氨酸、苹果酸、柠檬酸及谷胱甘肽等小分子物质和金属硫蛋白、植物络合素、金属结合体及金属结合蛋白等大分子物质。
     结论为:①实验分析得出水葫芦根、茎、叶对砷、铅、镉具有富集作用,且对砷和铅的富集能力根>叶>茎,对镉的富集能力根>茎>叶;三种重金属的富集量:砷的富集量>铅的富集量>镉的富集量;②富集量不随各种提取液的逐级提取而减少,证明每一种提取液只能提取相溶形态的砷、铅、镉三种元素的化合物和螯合物,每种重金属的富集形态都存在相异性,为HPLC-MS和紫外光谱(UV)分析提供了依据;③HPLC-MS和紫外光谱分析得出水葫芦富集三种重金属的富集形态存在多样性;砷的富集形态>镉的富集形态>铅的富集形态。
     最后采用精确度高的从头计算方法、量子化学计算作为分析模拟的计算基础,选择一种HF方法计算出水解物种受亲电试剂攻击的活性顺序为:Pb(OH)42->Pb(OH)3->Pb(OH)2>PbOH+;受亲核试剂攻击的活性顺序为:PbOH+> Pb(OH)2>Pb(OH)3->Pb(OH)42-。
     而对于三价砷物种,随着氢配位数的增大,As对前线轨道(HOMO和LUMO)的贡献先显著降低而后略有升高。对于五价砷物种,随着氢配位数的增大,As对HOMO轨道的贡献逐渐增大,对LUMO轨道的贡献逐渐减小,可见随着氢配位数的升高,As接受电子的倾向逐渐减小,即体系酸度增大使As钝化。
     水合物种中Cd(Ⅱ)的活性顺序为:Cd(H2O)62+Cd(OH)3(H2O)2->Cd(OH)3(H2O)-> Cd(OH)2(H2O)4>Cd(OH)(H2O)5+。
     结合实验及分析结果,采用从头计算量子化学方法,对水葫芦中各官能团富集重金属进行的量子化学分析计算,最终从理论上证实水葫芦具有富集重金属、消除水体重金属污染、净化水体的能力。
With the in-depth study of water hyacinth at home and abroad, the enrichment and tolerance to heavy metal of water hyacinth had got more and more attention. The ability to propagate is one of characteristics to the water hyacinth. Making use of its big haracteristic floating of living beings amount could remove large of heavy metals from water body and get rid of secondary pollution. Dian had been polluted seriously by arsenic, lead, cadmium and other heavy metals.Through "soaring" of water hyacinth to enrich and remove heavy metals in water body is an effective method.So in this paper studying on the shape of enriching in arsenic, lead, cadmium and other heavy metal in the water hyacinth to provide certain theory basis for further research on purification of entropic water body.
     In China, a large number of non-cultivated land that is polluted by the heavy metal, for example industrial and mining land and urban land.have affected directly the health of agricultural products quality and environmental quality of groundwater, surface water, atmospheric and has caused great harm agricultural production, living and human health Especially after China accessed to the WTO, the heavy metals exceeded in agricultural products, so it have impacted on China's agriculture. Therefore, the heavy metal pollution is the task of China's current need to be resolved.
     In recent years the management strength in Yunnan Dianchi have increased,the water quality has also improved, but it's still in inferior Vclass. Heavy metals that enter in the water body of the lake was suspended by SS and sediment sorption, it purificated of overlying water on some exten. But the adsorption capacity of the sediment decided in the maximum adsorption capacity of sediments,so it's limited, and the maximum adsorption capacity of sediment depended mainly on the mineral composition, particle size and organic matter content for various Organic matter of sediment. Heavy metal that was adsorpted by sediment could be released again in certain conditions,than it caused secondary pollution. Therefore the Dianchi heavy metal pollution was in urgent need of an effective solution.
     Analyzing the experiment, had obtained the enrichments quantity and the enrichments shape of water hyacinth to heavy metal (arsenic, lead, cadmium). Put in1.0mg/L separately of the Dian water hyacinth (As3+, Pb2+, Cd2+) in the solution carries on the cultivation, after its, the stem, the leaf pretreats separately with80%ethanol, the deionized water, lmol/L the NaCl(sodium chloride solution),2%Acetic Acid,0.6mol/L the HC1(Hydrochloride). The digestion solution of the extraction and residues were used for measuring the enrichment amount of arsenic in the different parts of water hyacinth by ICP-MS and analyzing the molecular formulas by HPLC-MS.
     The experimental results and calculation showed that arsenic had different enrichment conformations in water hyacinth. The conformations of arsenic are130above, cadmium are30above,and lead is only1. By using Ultraviolet Spectrum Analysis, we concluded that enrichment conformations of heavy metal (arsenic, lead, cadmium)in water hyacinth were mainly exist in the forms of polysaccharide, benzoquinone, naphthoquinone, enol, phenyl and hydroxy. Chelates of heavy metals enriched in water hyacinth contains small molecular substances such as oxalic acid, histidine, malic acid, citric acid, Glutathione and macromolecule substances such as metallothionein, foliage Complex, metallic, albumen.
     The conclusion is:The experiment analyzes obtained the water hyacinth root, the stem, the leaf have truly enriched to As, Cd, Pb. The enrichments of arsenic and lead were root>leat>stem. The enrichment of cadmium was root> stem>leat.The quantity of three kind of heavy metals enrichments:As> Pb> Cd.2The quantity of enrichments did not descend with Sequential Extraction.It demonstrated that each extract of compatibility can only be extracted one kind of compounds and chelate of arsenic, lead, cadmium, and each shape of heavy metal enrichments exist diversity.It provided the basis for the next analysis of HPLC-MS and Ultraviolet Spectrum Analysis.③HPLC-MS and UV analysis obtained three kinds of water hyacinth accumulation of heavy metals accumulation patterns exist diversity;Enrichments are As>Cd>Pb.
     Finally, using the high accuracy ab initio methods, quantum chemical alculations as the analysis simulation calculation basis and choosing a HF method calculated the order of activity that was regulated by the electrophiles attack activity:Pb(OH)42->Pb(OH)3-> Pb(OH)2>PbOH+; the order of activity that was regulated by the nucleophile attacks: PbOH+>Pb(OH)2>Pb(OH)3->Pb(OH)42-.
     And along with hydrogen coordination number of the trivalent arsenic species,increased, it's On the contribution of the frontier molecular orbital (HOMO and LUMO) was significantly reduce,and then slightly elevated., along with hydrogen coordination number of the pentavalent arsenic species increased, it's on HOMO orbital contribution increases gradually and the LUMO orbital contributions decreases gradually.visiblely, as the hydrogen coordination number increased, the As accept electronic tendency decreased gradually, namely the acidity of the system increased, As be passived.
     The order of Cd(II) in Hydrate's activity:Cd(H2O)62+Cd(OH)3(H2O)2->Cd(OH)3(H2O)3-> Cd(OH)2(H2O)4> Cd(OH)(H2O)5+.
     In order to confirm the result of experiment and analysis, Ab initio quantum chemistry methods of calculating are made use. Theoretically it confirmed water hyacinth has ability to enrich heavy metals, eliminate heavy metals pollution, and make water purification.
引文
[1]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [2]郑春荣,陈怀满.土壤一水稻体系中污染重金属的迁移及其对水稻的影响[J].环境科学学报,2000,10(2):145-151.
    [3]Sanchiz C, Garcia-Carrascosa AM, Pastor A. Relationships between sediment physico-chemical characteirstics and heavy metal bioaccumulation in mediteranean soft-botom macrophytes.Aquatic Botany,2001,69:63-73.
    [4]李伟,张竞,张晓钰等.转金属硫蛋白αα突变体基因的矮牵牛对铅的对抗性及积累的研究[J].生物化学与生物物理进展,2001,28(3):405-409.
    [5]王忠全,温琰茂,黄兆霆等.几种植物处理含重金属废水的适应性研究[J].生态环境,2005,14(4):540-544.
    [6]陈瑛,金叶飞,王秀琴等.水葫芦各部位富集能力的研究[J].环境保护科学,2004,6(30):31-37.
    [7]蔡顺香,颜明娟,黄东风等.水葫芦富集砷、汞、铅、镉、铬含量分[J].福建农业科技,2005,3:49-50.
    [8]姚朝英,杜青.原子吸收光谱法测定水生生物体内铜、锌、镍、铬、铅、镉[J].化学分析计量,2006,15(3):36-37.
    [9]史增奎,赵润潮.凤眼莲对Cd2+、Zn2+富集能力的研究[J].水利渔业,2007,27(4).
    [10]简敏菲,弓晓峰,游海等.水生植物对铜、铅、锌等重金属元素富集作用的评价研究[J].南昌大学学报(工科版),2004,26(1):85-88.
    [11]叶春和.紫花苜蓿对铅污染土壤修复能力及其机理研究[J].土壤与环境,2002,11(4):331-334.
    [12]刘秀梅,聂俊华,王庆仁.6种植物对铅的吸收与耐性研究[J].植物生态学报,2002,26(5):533-537.
    [13]何冰,杨肖娥,倪吾钟.一种新的铅富集植物—富集生态型东南景天[J].植物学报,2002,44(11):1365-137.
    [14]Raskin I,Ensley B D, Phytoremediation of toxic Metals:Using plants to clean up the environment[J].Environment science,2000,2(2):193-229.
    [15]刘玉萃,李保华,吴明作.大气—土壤—小麦生态系统中铅的分布和迁移规律研究[J].生态学报,1997,17(4):418-425.
    [16]刘云惠,魏显有,王秀敏等.土壤中铅锅的作物效应研究[J].河北农业大学学报,1999,22(1):24-28.
    [17]罗春玲,沈振国.植物对重金属的吸收和分布[J].植物学通报,2003,20(1):59-66.
    [18]Liu X,Gao Y,Khan S.Accumulation of Pb,Cu and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing,Yunnan[J]. Journal of Environmental Sciences,2008,20 (12):1469-1474.
    [19]Lopez-Luna J, Gonzalez-Chavez M C, Esparza-Garcia F J.Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants [J] Journal of Hazardous Materials,2009,163:829-834.
    [20]Moreno-Jimenez E,Pe?alosa J M,Manzano R.Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora[J].Journal of Hazardous Materials,2009,162:854-859.
    [21]Jalloh M A,Chen J,Zhen F.Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress [J].Journal of Hazardous Materials, 2009,162:1081-1085.
    [22]Murakami M,Noriharu A.Potential Mohamed Alpha Jalloh, Jinghong Chen, Fanrong Zhen,for phytoextraction of copper,lead,and zinc by rice (Oryza sativa L.),soybean (Glycine max [L.] Merr.), and maize (Zea mays L.)[J] Journal of Hazardous Materials, 2009,162:1185-1192.
    [23]Estrella-G6mez N, Mendoza-Cózatl D, Moreno-Sanchez R,et al.The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity [J].Aquatic Toxicology,2009,91:320-328.
    [24]Semhi K,Chaudhuri S,Clauer N.Fractionation of rare-earth elements in plants during experimental growth in varied clay substrates[J]. Applied Geochemistry, 2009,24:447-453.
    [25]Ku..........ipper H,Andresen E,Wiegert S.Reversible coupling of individual phycobiliprotein isoforns during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements[J]Biochimica et Biophysica Acta(BBA)-Bioenergetics,2009,1787:155-167.
    [26]Saifullah, Meers E, Qadir M,et al.EDTA-assisted Pb phytoextraction[J].Chernospheie, 2009,74,:1279-1291.
    [27]Gupta M,Sharma P,Sarin N B.Differential response of arsenic stress in two varieties of Brassica juncea L[J].Chemosphere,2009,74, (9):1201-1208.
    [28]Vamerali T,Bandiera M,Coletto L.Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy).Differential response of arsenic stress in two varieties of Brassica juncea[J].Environmental Pollution,2009,157 (3):887-894.
    [29]Hassinen V,Vallnkoski V M,Issakainen S.Conelation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil[J].vironmental Pollution,2009,157 (3):922-930.
    [30]徐在宽.水葫芦对水质改良效果的研究[J].南京林业大学学报,2000,24:116-117.
    [31]李学宝,刘永定.凤眼莲组织培养的研究[J].华中师范大学学报(自然科学版),1997,31(3):332-335.
    [32]谢伟.凤眼莲养鱼及其效益研究[J].淡水渔业,2000,30(9):25-27.
    [33]王公德.一种值得商榷的引种—凤眼莲引种的得失[J].生物学通报,1997,32(7):27-28.
    [34]邵林广.水浮莲净化富营养化湖泊试验研究[J].环境与开发,2001,16(2):28-29.
    [35]Cooley T N,Martin D F.Cadmium in naturally-occurring water hyacinths[J].Chemosphere,1979,8 (2):75-78.
    [36]Chigbo F E,Smith R W,Shore F L.Uptake of arsenic,cadmium,lead and mercury from polluted waters by the water hyacinth Eichornia crassipes[J]. Environmental Pollution Series A, Ecological and Biological,1982,27 (1):31-36.
    [37]O'Keeffe D H,Hardy J K,Anjanee Rao R.Cadmium uptake by the water hyacinth: effects of solution fac tors [J]. Environmental Pollution Series A,Ecological and Biological,1984,34 (2):133-147.
    [38]Hardy J K,Raber N B.Zinc uptake by the water hyacinth:Effects of solution factors[J].Chemosphere,1985,14 (9):1155-1166.
    [39]Delgado M, Bigeriego M, Guardiola E.Uptake of Zn, Cr and Cd by water hyacinths[J]. Water Research,1993,27(2):269-272.
    [40]Zaranyika M F,Felix Mutoko,Howard Murahwa.Uptake of Zn,Co,Fe and Cr by water hyacinth (Eichhornia crassipes) in Lake Chivero,Zimbabwe[J].The Science of The Total Environment,1994,153:117-121.
    [41]Kelley C, Cuetis A J, UNO J K,et al.Spectroscopic studies of the interaction of Eu(Ⅲ) with the roots of water hyacinth [J].Water, Air, and Soil Pollution,2000,119: 171-176.
    [42]Tiwari S,Dixit S,Verma N.An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes[J].Environ Monit Assess,2007,129:253-256.
    [43]Mishra K K, Rai U N,Om Prakash.Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes[J].Environ Monit Assess,2007,130:237-243.
    [44]Olivares-Rieumont S,Lima L,De la Rosa D,Graham I D W,et al.Water hyacinths (Eichhornia crassipes) as indicators of heavy metal impact of a large landfill on the Almendares River near Havana, Cuba[J]. Bull Environ Contain Toxicol,2007,79(6):347-351.
    [45]Victor J,Odjegba,Fasidi I O.Phytoremediation of heavy metals by Eichhornia crassipes[J].Environmentalist,2007,27:349-355
    [46]Hasan S H,Talat M,Rai S.Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes) [J].Bioresource Technology,2007,98:918-920.
    [47]周文兵,谭良峰,刘大会等.凤眼莲及其资源化利用研究进展[J].华中农业大学学报,2005,244(4):423-428.
    [48]杨联京.凤眼莲污水处理工艺研究[J].湖南大学学报(自然科学版),1994,21(4):109-114.
    [49]达良俊,陈鸣.凤眼莲不同部位对重金属的吸收、吸附作用研究[J].上海环境科学,2003,22(11):765-767.
    [50]蔡成翔,王华敏,张宗明.凤眼莲对铜、铅、镉、锌、铁等离子的短期净化机制研究[J].乐山师范学院学报,2004,19(5):69-72.
    [51]袁蓉,刘建武,成旦红等.凤眼莲对多环芳烃(萘)有机废水的净化[J].上海大学学报(自然科学版),2004,10(3):272-276.
    [52]史增奎,赵润潮.凤眼莲对Cd2+、Zn2+富集能力的研究[J].水利渔业,2007,27(4):66-68.
    [53]张宗明,蔡成翔,王华敏.凤眼莲对铜、铅和镉离子的耐受性及短期富集机制研究[J].宜春学院学报,2004,26(2):7-9.
    [54]郭耀基,张一波.凤眼莲根系生态系统在含银废水净化中的功能[J].无锡轻工大学学报,2002,21(5):506-510.
    [55]李仁英,杨浩,陈捷等.盘龙江口滇池沉积物中重金属的分布特征及污染评价[J].土壤,2006,38(2):186-191.
    [56]李仁英,杨浩.Cd和Zn在滇池沉积物中的吸附-解吸特征[J].土壤,2007,39(2):274-278.
    [57]陈宗团,徐立,洪华生.河E1沉积物—水界面重金属生物地球化学研究进展[J].地球科学进展,1997,12(5):434-439.
    [58]蔡成祥,王华敏,张宗明.水葫芦对五种重金属离子的去除速率与富集机制研究[J].广西右江民族师专学报,2002,6:29-32
    [59]谭沛,陈小鹏,石建荣等ICP—ES法测定松香甘油酯中金属离子含量[J].食品工业科技,2008,29(5):265-267.
    [60]林纪均,邵幼岩,蔡碧双等ICP-MS测定6种花茶中8种微量元素的含量和溶出特性[J].分析实验室,2007,26:1-4.
    [61]张会宗,王瑞敏,姜莹ICP-MS测定香芍软胶囊中砷、汞、铅、镉、铜的含量[J].中华中医药学刊,2008,26(1):154-155.
    [62]王艳,钟韶霞ICP-MS法测定党参中重金属元素含量[J].安徽农业科学,2008,36(5):1741-1772.
    [63]谢建滨,张慧敏,姜杰ICP—S法碰撞/反应池技术测定螺旋藻中砷、铅、镉含量的方法研究[J].实用预防医学,2008,15(4):1231-1232.
    [64]徐以亮,刘秀琴ICP-OES法测定菊花药材及配方颗粒中重金属和有害元素的含量[J].中国现代中药,2008,10(7):30-34.
    [65]李安,郝丽,李海燕等.微波消解ICP—S法对食品中铝含量的测定分析[J].辽宁化工,2008,37(1):68-72.
    [66]芮玉奎,申建波,张福锁等.应用ICP—S测定KCl肥料中重金属元素含量[J].光谱学与光谱分析,2008,28(10):2428-2430.
    [67]芮玉奎,申建波,张福锁.应用ICP-MS测定两种氮肥中重金属含量[J].光谱学与光谱分析,2008,28(10):2425-2427.
    [68]陈国友.应用ICP-MS测定水稻及植株中硅含量的方法研究[J].黑龙江农业科学,2008,4:105-107.
    [69]魏振林,申琳,芮玉奎.应用ICP-MS检测转基因大豆油中22种元素含量[J].光谱学与光谱分析,2008,28(6)1398-1399.
    [70]刘冬莲,客绍英,叶荣等.微波消解-CTAB增敏-HG-ICP-AES法测定中药黄芪中的痕量铅[J].光谱学与光谱分析,2007,27(11):2337-2340
    [71]Silveira M L, Comerford N B, Reddy K R.Soil properties as indicators of disturbance in forest ecosystems of Georgia, USA[J].Ecological Indicators,2009,9 (4):740-747.
    [72]Giannenas I,Nisianakis P,Gavriil A,et al.Trace mineral content of conventional, organic and courtyard eggs analysed by inductively coupled plasma mass spectrometry (ICP-MS)[J].Food Chemistry,2009,114 (2):706-711.
    [73]Matsui H, Nagano S, Karuppuchamy S,et al.Synthesis and characterization of TiO2/MoO3/carbon clusters composite material[J].Current Applied Physics,2009,9(3): 561-566.
    [74]Kara D.Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis[J].Food Chemistry,2009,114(1):347-354
    [75]Celebi M S,Ozyoriik H,Yildiz A,et al.Determination of Hg2+ on poly(vinylferrocenium) (PVF+)-modified platinum electrode [J].Talanta,200978, (2):405-409.
    [76]Xu J L,Liu F,Wang F P,et al.Formation of A12O3 coatings on NiTi alloy by micro-arc oxidation method[J].Current Applied Physics,2009,9(3):663-666.
    [77]刘祥东,梁琼麟,罗国安等.液质联用技术在医药领域中的应用[J].药物分析杂志,2005,25(1):110-116.
    [78]Gong Y,Yao H. Analysis of y-Oryzanol by LC / MS[J].Chemical World,2001,3:123-125.
    [79]张正竹,宛晓春,陶冠军.茶鲜叶中糖苷类香气前体的液质联用分析[J].茶叶科学,2005,25(4):275-281.
    [80]曾里,连春霞,夏之宁.超声提取虎杖自藜芦醇及其液质联用分析[J].重庆大学学报,2002,25(7):53-56
    [81]Kong L,Wang Y,Cao Y.Analysis of components and structures of black rice pigment[J].Journal of Food Science and Biotechnology,2008,27 (2):25-29.
    [82]高晴晴,江和源,张建勇等.红茶中黄酮甙物质的分离纯化及结构鉴定[J].茶叶科学,2008,28(4):277-281.
    [83]彭岚,谈明光,李玉兰等.微波辅助萃取.液质联用技术测底泥砷、硒的化学形态[J].分析实验室,2006,25(5):10-14.
    [84]章飞芳,梁鑫淼,张青等.液质联用法研究活性黑5的水解产物[J].分析化学,2004,32(8):1019-1022.
    [85]郭红辉,王庆,秦玉等.液质联用分析黑米皮提取物中花色苷化合物[J].韶关学院学报.自然科学,2007,28(9):77-80.
    [86]符迈进,徐霞,艾秀珍等.液质联用分析甲锭前体甲基化产物[J].化学世界,2007,5,272-274.
    [87]侯鹏飞,宿树兰,段金廒等.液质联用技术分析延胡索中的生物碱类成分[J].药物研究,2008,5(11):48-49.
    [88]Yang J,Tiang W,Zhu Y. The structure identification of rLTB by HPLC-MS[J]. Pharmaceutical Journal of Chinese People's Liberation Army,2004,20(3):174-177.
    [89]Cao D, Liu Z, Zhang G. The synthesis, photophysical properties and fluoride anion recognition of a novel branched organoboron compound [J]. Dyes and Pigments,2009,81:193-196.
    [90]刘本国,战宇已,许克勇等.液质联用鉴定亮叶杨桐叶中的类黄酮化合物[J].食品研究与开发,2007,28(3):118-120.
    [91]蒋宏健,袁汉成.痕量四环素药物残余物液质联用分析及鉴定[J].研究报告,2002,1:35-36.
    [92]陈畅,罗珊珊,史艳秋等.液质联用法对两种虫草中核苷类成分的研究[J]中国生化药物杂志,2005,26(5):260-263.
    [93]林艳萍,司端运,刘昌孝.液质联用分析中药降糖制剂中掺入的西药成分[J].天津大学学报,2008,41(6):720-724.
    [94]李彬,赵阳,田瑛等.液质联用快速测定中药样品中的化学药物[J].药学实践杂志2008,26(1):17-19.
    [95]方东升.液质联用同时分析几种大环内酯类抗生素[J].药品检验,2005,27(3):35-40.
    [96]Liang Q. Verification method for sildenafil in Chinese traditional patented medical preparations and dietary supplements by LC—MS/MS[J].Journal of Chinese Mass Spectrometry Society,2008,29 (5):295-320.
    [97]曹阳,梁琼麟,章弘扬等.中药复方六神丸中多类成分的多维液质系统筛查和鉴定[J].分析化学(医学期刊),2008,8(1):39-46.
    [98]方军,舒永红,滕久委等HPLC-ICP-MS测定中药中砷的形态[J].分析实验室,2006,12,25(12):95-98.
    [99]Huang Z, Wang B, Williams P.Identification of anthocyanins in muscadine grapes with HPLC-ESI-MS[J].LWT-Food Science and Technology,2009,42(4):819-824.
    [100]Heimler D,solani L, Vignolini P.Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming [J]. Food Chemistry, 2009,114(3):765-770.
    [101]Ferreres F, Gomes D, Valentao P.Improved loquat (Eriobotrya japonica Lindl.) cultivars:Variation of phenolics and antioxidative potential[J].Food Chemistry,2009, 114(3):1019-1027.
    [102]刘荣霞,果德安,叶敏等.液质联用技术(LC-MS)在中药现代研究的应用[J].世界科学技术,2005,7(5):33-40.
    [103]刘忠义,王璋,许时婴等.草鱼肠道胰蛋白酶同工酶GT-B的结构信息[J].浙江大学学报(农业与生命科学版),2008,34(3):266-272.
    [104]铁锋,王英彦.测定植物组织中金属硫肽含量的线性扫描极谱法[J].自然科学/化学,1994,22(4):328-331.
    [105]孙琴,倪吾钟,杨肖娥.超积累植物体内的小分子螯合物质及其生理作用[J].广东微量元素科学,2001,8(5):1-8.
    [106]周莲贞,尼贝日.极谱法在镉诱导单胞藻和禾草类植物螯合物研究的应用[J].台湾海峡,1995,14(1):15-21.
    [107]王英彦,铁峰,李令媛等.用凤眼莲根内金属硫肽检测水体的重金属污染的初步研究[J].环境科学学报,1994,14(4):431-438.
    [108]林毅雄,闫海,刘秀芬.滇池铜绿微囊藻对重金属的富集和氨基酸含量的变化[J].环境污染治理技术与设备,2003,4(3):39-41.
    [109]陈云增,杨浩,张振克等.相平衡分配法在滇池沉积物环境质量评价中的应用研究[J].环境科学学报,2006,26(9):1545-1552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700