用户名: 密码: 验证码:
人脑的数字与时空运算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
事物的发展变化从量的方面来说都涉及到了增长和消亡两个最基本的过程。人对这两个过程的认知即是对加减过程的认知。数字运算是此的典型表达。本研究专注运算过程,选取与数字加工密切相联系的时间和空间加工,对人类的数字运算、时间运算和空间运算之间是否存在着相似的加工过程进行了原创性探讨。
     实验1探讨了时间运算与数字运算的运算过程之间的关系。实验分别设置了相匹配的时间运算任务、数运算任务(阿拉伯数字运算)和点运算任务(点的数量运算),记录了18名被试的脑事件相关电位。结果发现时间运算具有显著不同于数字运算的特点。实验2采用基本相同的逻辑探讨了空间运算与数字运算的运算过程之间的关系。同样设置相匹配的三种任务,分别为空间运算任务、以及同实验1相同的数运算任务和点运算任务,记录了18被试的脑事件相关电位,结果发现空间运算与点运算表现出了完全相同的加工特点,而与阿拉伯数字运算表现出了一定的差异。在实验2的基础上,实验3进一步探讨了空间运算中是否存在着与数字运算相似的距离效应。实验操纵空间运算中运算结果距离正确答案的距离,记录了20名被试的脑事件相关电位。结果发现空间运算中的距离效应具有不同于数运算中距离效应的特点,并且发现空间运算中远近距离的差异在加工的早期阶段就已经产生。在实验2和实验3的基础上实验4探讨了当把空间运算的加工扩展为对空间情境的加工时,是否能发现数字运算与空间加工之间的联系。实验采用产生式任务,为数字运算相应的附加单位,控制单位的空间意义性及前后一致性,测试了28名加拿大被试口头报告的反应时和正确率。结果发现在特定情境下空间情境无法影响产生式数字运算。
     本实验的一系列结果揭示出,以一个共同运算过程的观点来解释数字、时间和空间的运算过程虽然非常具有吸引力,但却并不是事实。当前研究指出,在辨别式任务中,时间运算、空间运算、数字运算具有各自独立的运算过程,同时空间运算和数字运算又具有一定的联系,表明人脑的运算活动是具有情境依赖性的。更倾向于支持将多重数量系统理论以及编码复杂性假设进行扩展。具体来说,当前研究发现,时间运算可能具有其特异性的运算过程,空间运算和数字运算中的点的数目运算具有共同的运算过程,这种共同的运算过程不同于简单阿拉伯数字运算过程。空间运算仍然可以表现出距离效应,但与数字运算中的距离效应在早期负波上不具有明显差异不同,空间运算的远近距离导致了早期成分的明显差异,倾向于支持人们把答案的距离特征与运算过程相整合进行加工的观点。另外,当前结果也发现在特定的任务设置下,空间情境无法影响产生式数字运算。
From the quantity point of the view, the developments and changes of all the things in this world contain two basic processes, one is increase, and the other is decrease. The cognition of these two processes is the cognition of the subtraction and addition processes. Arithmetic is the typical expression of this processing. The present study focused on operation process, choose time and space processing, which have close relationship with number processing, originally investigated that whether there is a similar operation processing or not among number operation, time operation, and space operation.
     Experiment1investigated the relation between time operation and number operation. Using paired time operation, number operation (In Arabic number form), and dot operation (In number of dots form) task,18participants'Event-related brain potentials (ERPs) were recorded. The result showed that time operation has different feathers compare to number operation. Followed the same logic, experiment2investigated the relation between space operation and number operation. Also recorded18participants'ERPs when they were performing the paired space operation, number operation, and dot operation (the last two were same as experiment1) task. The result showed the same ERPs between space operation and dot operation, different with number operation. On the basis of experiment2, experiment3further investigated that whether split effect appeared in space operation. With the manipulation of the distance between given answer and the correct answer, the20participants ERPs were recorded. The result showed that the split effect in space operation is different with number operation. And this difference was deal to the separation of the wave forms in early processing stage between small and large split. On the basis of experiment2and3, experiment4investigated the relationship between number operation and space processing, when extend the space operation to space context processing. Using the production task, units were attached to number operation with the manipulation of space meaning and congruency between two operands, the reaction time and error rates of the oral report were recorded for28Canadian participants. The results indicated that space context could not affect production number operation in certain conditions.
     The series of the experiments indicated that, although believe in the hypothesis that a common operation processing responsible for number, time, and space operation is very attractive, it is far away from the truth. The present research showed that, in verifications, separate operation processing responsible for number, time and space operation. Meanwhile, the space and number operation have a close relationship. The present result indicated that human operation process has context dependency, and it prefers the extension of multiple magnitude systems and the Encoding-Complex Hypothesis. Specifically, the present research showed that time operation might have different processing, the space operation have the same processing with dot operation, and this same processing different with number operation. The split effect still exist in space operation, however, different with that the split effect in number processing didn't exhibit difference in early component, the small and large split in space operation demonstrate different performances in early stage, supporting that people integrate the distance feather of the given answer and the whole equation together to solve the space verification problem. In addition, the present result also showed that space context could not affect production mental arithmetic in certain conditions.
引文
毕翠华,黄希庭,陈有国,&刘霞.(2010).计时和计数的相似与差异.心理群学进展18(03),403-411.
    蔡丹,李其维,&邓赐平.(2011a).数学学习困难初中生的记忆广度特点.心理科学(05),1085-1089.
    蔡丹,李其维,&邓赐平.(2011b).数学学习困难初中生的中央执行系统特点.心理科学(02),361-366.
    蔡丹,李其维,&邓赐平.(2013).数学学业不良初中生的工作记忆特点:领域普遍性还是特殊性?心理学报(02),193-205.
    柴俊武,赵广志,&何伟.(2011).解释水平对品牌联想和品牌延伸评估的影响.心理学报(02),175-187.
    陈海贤,&何贵兵.(2011).识解水平对跨期选择和风险选择的影响.心理学报,(04),442-452.
    陈亚林,&刘昌.(2011).数字加工中的直觉.华东师范大学学报,29(4),57-63.
    陈亚林,刘昌,&陈杜鹃.(2010).心算的策略选择.心理科学进展,18(2),193-199.
    陈亚林,刘昌,&张小将.(2012).概率与事物表征.心理科学进展,20(1),65-74.
    陈亚林,刘昌,张小将,徐晓东,&沈汪兵.(2011).心算活动中混合策略选择的ERP研究.心理学报,43(4),384-395.doi:10.3724/sp.j.1041.2011.00384
    何嘉梅,黄希庭,尹可丽,&罗扬眉.(2010).时间贴现的分段性.心理学报,42(04),474-484.
    胡林成,&熊哲宏.(2008).算术模块的行为与神经机制研究,心理科学,31(04),1002-1004.
    胡林成,&熊哲宏.(2011).刺激模拟量的空间表征:面积和亮度的类SNARC效应.心理科学,34(01),58-62.
    李艾丽莎,&张庆林.(2006).决策的选择偏好研究述评.心理科学进展,14(04),618-624.
    李雁晨,周庭锐,&周琇.(2009).解释水平理论:从时间距离到心理距离.心理科学进展,17(04),667-677.
    刘昌.(2006).心算加工的认知神经科学研究.心理科学,29(1),30-33.
    刘超,买晓琴,&傅小兰.(2004).不同注意条件下的空间-数字反应联合编码效应.心理学报,36(06),671-680.
    莫雷,周广东,&温红博.(2010).儿童数字估计中的心理长度.心理学报,42(5).doi:10.3724/spj.1041.2010.00569
    沈模卫,田瑛,&丁海杰.(2006).一位阿拉伯数字的空间表征.心理科学,29(2),5.doi:10.3969/j.issn.1671-6981.2006.02.001
    徐晓东,&刘昌.(2006).数字的空间特性.心理科学进展,14(6),8.doi:10.3969/j.issn.1671-3710.2006.06.009
    宣宾,&张达人.(2009).时间选择性注意的认知神经机制.生物化学与生物物理进展,36(06),663-667.
    晏倩,&熊哲宏.(2006).国外人类先天“数字模块”的研究现状及展望.心理发展与教育(04),115-118.
    Ashcraft, M. H. (1992). Cognitive arithmetic:A review of data and theory. Cognition,44(1-2),75-106. doi: 10.1016/0010-0277(92)90051-i
    Basso, G., Nichelli, P., Frassinetti, F., & di Pellegrino, G. (1996). Time perception in a neglected space. NeuroReport,7,2111-2114.
    Bassok, M., Pedigo, S. F., & Oskarsson, A. T. (2008). Priming addition facts with semantic relations. Journal of Experimental Psychology:Learning, Memory, and Cognition,34(2),343-352. doi: 10.1037/0278-7393.34.2.343
    Binda, P., Morrone, M. C., Ross, J., & Burr, D. C. (2011). Underestimation of perceived number at the time of saccades. Vision Research,57(1),34-42. doi:10.1016/j.visres.2010.09.028
    Bjoertomt, O., Cowey, A., & Walsh, V. (2009). Near space functioning of the human angular and supramarginal gyri. Journal ofNeuropsychology,3,31-43.
    Boroditsky, L. (2000). Metaphoric structuring:understanding time through spatial metaphors. Cognition, 75(1),1-28. doi:10.1016/s0010-0277(99)00073-6
    Bowers, D., & Heilman, K. (1980). Pseudoneglect:effects of hemispace on a tactile line bisection task. Neuropsychologia,18,491-498.
    Breukelaar, J. W. C., & Dalrymple-Alford, J. C. (1998). Timing ability and numerical competence in rats. Journal of Experimental Psychology:Animal Behavior Process,24,84-97.
    Brown, S. W. (1997). Attentional resources in timing:Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics,59,1118-1140.
    Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1525),1831-1840.
    Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience,6(10),755-765. doi:10.1038/nrn1764
    Burr, D. C., Ross, J., Binda, P., & Morrone, M. C. (2010). Saccades compress space, time and number. Trends in Cognitive Sciences,14(12),528-533. doi:10.1016/j.tics.2010.09.005
    Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts:The role of number comparison. The Quarterly Journal of Experimental Psychology A:Human Experimental Psychology,54A(4),1005-1029. doi:10.1080/02724980143000064
    Campbell, J.1. D. (1994). Architectures for numerical cognition. Cognition,53(1),1-44. doi: http://dx.doi.org/10.1016/0010-0277(94)90075-2
    Campbell, J. I. D., & Austin, S. (2002). Effects of response time deadlines on adults'strategy choices for simple addition. Memory & Cognition,30(6),988-994.
    Campbell, J.1. D., & Epp, L. J. (2004). An Encoding-Complex Approach to Numerical Cognition in Chinese-English Bilinguals. Canadian Journal of Experimental Psychology,58(4),229-244. doi: 10.1037/0278-7393.30.1.51
    Campbell, J. I. D., & Gunter, R. (2002). Calculation, culture, and the repeated operand effect. Cognition, 86(1),71-96. doi:10.1016/s0010-0277(02)00138-5
    Campbell, J. I. D., & Sacher, S. (2012). Semantic alignment and number comparison. Psychological Research, 76(1),119-128. doi:10.1007/s00426-011-0331-x
    Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology:General,130(2),299-315. doi:10.1037/0096-3445.130.2.299
    Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences,13(2),83-91. doi:10.1016/j.tics.2008.11.007
    Cappelletti, M., Freeman, E. D., & Cipolotti, L. (2009). Dissociations and interactions between time, numerosity and space processing. Neuropsychologia,47(13),2732-2748. doi: 10.1016/j.neuropsychologia.2009.05.024
    Casasanto, D. (2009). Embodiment of abstract concepts:Good and bad in right-and left-handers. Journal of Experimental Psychology:General,138(3),351-367. doi:10.1037/a0015854
    Casasanto, D., & Boroditsky, L. (2008). Time in the mind:Using space to think about time. Cognition,106(2), 579-593.
    Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2010). Space and time in the child s mind:Evidence for a cross-dimensional asymmetry. Cognitive Science,34(3),387-405.
    Casasanto, D., & Jasmin, K. (2010). Good and Bad in the Hands of Politicians:Spontaneous Gestures during Positive and Negative Speech. PLoS ONE,5(7), e11805.
    Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe:A functional MR] study. Proceedings of the National Academy of Sciences of the United States of America,103,4693-4698.
    Chen, Y., Campbell, J. I. D., & Liu, C. (2013). The N3 is Sensitive to Odd-Even Congruency Information in Arithmetic Fact Retrieval. Experimental Brain Research,225,603-611.
    Cohen Kadosh, R., Cohen Kadosh, K., Linden, D. E. J., Gevers, W., Berger, A., & Henik, A. (2007). The brain locus of interaction between number and size:A combined functional magnetic resonance imaging and event-related potential study. Journal of Cognitive Neuroscience,19(6),957-970.
    Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental, and comparative studies of magnitude representation. Progress in Neurobiology,84,132-147.
    Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes:Abstract or not abstract? Behavioral and Brain Sciences,32(3-4),313-328. doi:doi:10.1017/S0140525X09990938
    Cohen, L., & Dehaene, S. (1994). Amnesia for Arithmetic Facts:A Single Case Study. Brain and Language, 47(2),214-232. doi:10.1006/brln.1994.1050
    De Long, A. J. (1981). Phenomenological space-time:Towards an experiential relativity. Science,213, 681-683.
    Dehaene, S. (1992). Varieties of numerical abilities. Cognition,44(1-2),1-42.
    Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology:General,122,371-396.
    Dehaene, S., & Brannon, E. M. (2010). Space, time, and number:a Kantian research program. Trends in Cognitive Sciences,14(12),517-519. doi:10.1016/j.tics.2010.09.009
    Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation:Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex,33,219-250.
    Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences,21(8),355-361.
    Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology,20(3-6),487-506. doi:10.1080/02643290244000239
    Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science,284(5416),970-974.
    Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activations during number multiplication and comparison:a PET study. Neuropsychologia,34(11), 1097-1106. doi:10.1016/0028-3932(96)00027-9
    Didierjean, A. (2007). Parity effects in an implicit-learning task. British Journal of Psychology,98(4), 529-545. doi:10.1348/000712606x161947
    Doricchi, F., Guariglia, P., Gasparini, M., & Tomaiuolo, F. (2005). Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nature Neuroscience,8,1663-1665.
    Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosityduration interference:A Stroop experiment. Acta Psychologica,121,109-124.
    Duverne, S., & Lemaire, P. (2005). Arithmetic Split Effects Reflect Strategy Selection:An Adult Age Comparative Study in Addition Comparison and Verification Tasks. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie experimentale,59(4),262-278. doi:10.1037/h0087479
    Duverne, S., Lemaire, P., & Michel, B. F. (2003). Alzheimer's disease disrupts arithmetic fact retrieval processes but not arithmetic strategy selection. Brain and Cognition,52(3),302-318. doi: 10.1016/s0278-2626(03)00168-4
    Fehr, E. (2002). The Economics of Impatience. Nature,415,269-272.
    Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience,15,47-56.
    Finucane, M. L., Peters, E., & Slovic, P. (2003). Judgment and decision making:The dance of affect and reason. In S. L. Schnieider & J.Shanteau (Eds.), Emerging perspectives on judgment and decision research (pp.327-364).
    Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience,6,555-556.
    Gobel, S. M., Calabria, M., Farne, A., & Rossetti, Y. (2006). Parietal rTMS distorts the mental number line: Simulating "spatial" neglect in healthy subjects. Neuropsychologia,44,860-868.
    Gallistel, C. R. (1989). Animal Cognition:The Representation of Space, Time and Number. Annual Review of Psychology,40(1),155-189. doi:10.1146/annurev.ps.40.020189.001103
    Gordon, P. (2004). Numerical Cognition Without Words:Evidence from Amazonia. Science,306(5695), 496-499. doi:10.1126/science.1094492
    Green, L., & Myerson, J. (2004). A discounting framework for choice with delayed and probabilistic rewards. Psychological Bulletin,130,769-792.
    Hinton, S. C., Harrington, D. L., Binder, J. R., Durgerian, S., & Rao, S. M. (2004). Neural systems supporting timing and chronometric counting:an FMRI study. Cognitive Brain Research,21(2),183-192. doi: 10.1016/j.cogbrainres.2004.04.009
    Iguchi, Y., & Hashimoto, Ⅰ. (2000). Sequential information processing during a mental arithmetic is reflected in the time course of event-related brain potentials. Clinical Neurophysiology,111(2),204-213. doi: 10.1016/s 1388-2457(99)00244-8
    Imbo, I., & LeFevre, J.-A. (2009). Cultural differences in complex addition:Efficient Chinese versus adaptive Belgians and Canadians. Journal of Experimental Psychology:Learning, Memory, and Cognition,35(6), 1465-1476. doi:10.1037/a0017022
    Imbo, I., & LeFevre, J.-A. (2011). Cultural differences in strategic behavior:A study in computational estimation. Journal of Experimental Psychology:Learning, Memory, and Cognition,37(5),1294-1301. doi:10.1037/a0024070
    Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex,44(4),454-461.
    Jackson, M., & Warrington, E. K. (1986). Arithmetic skills in patients with unilateral cerebral lesions. Cortex, 22,611-620.
    Jewell, G., & McCourt, M. E. (2000). Pseudoneglect:A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia,38(1),93-110.
    Jost, K., Hennighausen, E., & Rosler, F. (2004). Comparing arithmetic and semantic fact retrieval:Effects of problem size and sentence constraint on event-related brain potentials. Psychophysiology,41(1),46-59. doi:10.1111/1469-8986.00119
    Kalaman, D. A., & LeFevre, J.-A. (2007). Working memory demands of exact and approximate addition. European Journal of Cognitive Psychology,19(2),187-212. doi:10.1080/09541440600713445
    Kazui, H., Kitagaki, H., & Mori, E. (2000). Cortical activation during retrieval of arithmetical facts and actual calculation:A functional Magnetic Resonance Imaging study. Psychiatry and Clinical Neurosciences, 54(4),479-485. doi:10.1046/j.1440-1819.2000.00739.x
    Keren, G., & Roelofsma, P. (1995). Immediacy and certainty in intertemporal choice. Organizational Behavior and Human Decision Processes,63(3),287-297.
    Klein, E., Nuerk, H.-C., Wood, G., Knops, A., & Willmes, K. (2009). The exact vs. approximate distinction in numerical cognition may not be exact, but only approximate:How different processes work together in multi-digit addition. Brain and Cognition,69(2),369-381. doi:10.1016/j.bandc.2008.08.031
    Kong, J., Wang, C., Kwong, K., Vangel, M., Chua, E., & Gollub, R. (2005). The neural substrate of arithmetic operations and procedure complexity. Cognitive Brain Research,22(3),397-405.
    Krueger, L. E., & Hallford, E. W. (1984). Why 2+2= 5 looks so wrong:On the odd-even rule in sum verification. Memory & Cognition,12(2),171-180.
    Kyttala, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance:The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1),77-94. doi:10.1007/bf03173141
    LeFevre, J.-A., & Kulak, A. (1994). Individual differences in the obligatory activation of addition facts. Memory & Cognition,22(2),188-200. doi:10.3758/bf03208890
    LeFevre, J.-A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition:Reassessing the problem size effect in adults. Journal of Experimental Psychology:Learning, Memory, and Cognition, 22(1),216-230. doi:10.1037/0278-7393.22.1.216
    Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia,41(14),1942-1958. doi:10.1016/s0028-3932(03)00123-4
    Li, S., Su, Y., & Sun, Y. (2010). The effect of pseudo-immediacy on intertemporal choices. Journal of Risk Research,13(6),781-787. doi:10.1080/13669870903551704
    Liberman, N., Sagristano, M., & Trope, Y. (2002). The effect of temporal distance on level of mental construal. Journal of Experimental Social Psychology,38,523-534.
    Liberman, N., & Trope, Y. (1998). The role of feasibility and desirability considerations in near and distant future decisions:A test of temporal construal theory. Journal of Personality and Social Psychology,75(1), 5-18.
    Liberman, N., & Trope, Y. (2008). The psychology of transcending the here and now. Science,322(5905), 1201-1205. doi:10.1126/science.1161958
    Liberman, N., Trope, Y., & Stephan, E. (2007). Psychological distance. In A. W. Kruglanski & E. T. Higgins (Eds.), Social psychology:Handbook of basic principles (2nd ed.). (pp.353-381). New York, NY US: Guilford Press.
    Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and brain functions:BBF,3,1.
    Lochy, A., Seron, X., Delazer, M., & Butterworth, B. (2000). The odd-even effect in multiplication:Parity rule or familiarity with even numbers? Memory & Cognition,28(3),358-365.
    Loetscher, T., & Brugger, P. (2007). Exploring number space by random digit generation. Experimental Brain Research,180(4),655-665.
    Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain's internal random generator. Current Biology,18(2), R60-R62.
    Loftus, A. M., Nicholls, M. E., Mattingley, J. B., Chapman, H. L., & Bradshaw, J. L. (2009). Pseudoneglect for the bisection of mental number lines. Quarterly Journal of Experimental Psychology,62,925-945.
    Longo, M. R., & Lourenco, S. F. (2006). On the nature of near space:Effects of tool use and the transition to far space. Neuropsychologia,44,977-981.
    Longo, M. R., & Lourenco, S. F. (2007a). Space perception and body morphology:Extent of near space scales with arm length. Experimental Brain Research,177,285-290.
    Longo, M. R., & Lourenco, S. F. (2007b). Spatial attention and the mental number line:evidence for characteristic biases and compression. Neuropsychologia,45,1400-1406.
    Longo, M. R., & Lourenco, S. F. (2010). Bisecting the mental number line in near and far space. Brain and Cognition,72(3),362-367. doi:10.1016/j.bandc.2009.10.016
    Lourenco, S. F., & Longo, M. R. (2009a). Multiple spatial representations of number:Evidence for co-existing compressive and linear scales. Experimental Brain Research,193,151-156.
    Lourenco, S. F., & Longo, M. R. (2009b). The plasticity of near space:Evidence for contraction. Cognition, 112,451-456.
    Lu, A., Hodges, B., Zhang, J., & Zhang, J. X. (2009). Contextual effects on number-time interaction. Cognition,113(1),117-122. doi:10.1016/j.cognition.2009.07.001
    Luck, S. J. (2009)事件相关电位基础(范思陆,丁玉珑,曲折&傅世敏,Trans.)上海:华东师范大学出版社.
    Macar, F., Grondin, S., & Casini, L. (1994). Controlled attention sharing influences time estimation. Memory & Cognition,22,673-686.
    McCloskey, M. (1992). Cognitive mechanisms in numerical processing:Evidence from acquired dyscalculia. Cognition,44(1-2),107-157. doi:http://dx.doi.org/10.1016/0010-0277(92)90052-J
    McCloskey, M., & Macaruso, P. (1994). Architecture of cognitive numerical processing mechanisms: Contrasting perspectives on theory development and evaluation. Cahiers de Psychologie Cognitive/Current Psychology of Cognition,13(3),275-295.
    McCloskey, M., & Macaruso, P. P. (1995). Representing and using numerical information. The American psychologist,50(5),351-363.
    Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology:Animal Behavior Process,9(3),320-334.
    Merritt, D. J., Casasanto, D., & Brannon, E. M. (2010). Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition,117(2),191-202. doi: 10.1016/j.cognition.2010.08.011
    Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature,215, 1519-1520.
    Nunez-Pena, M. I., Cortinas, M., & Escera, C. (2006). Problem size effect and processing strategies in mental arithmetic. NeuroReport:For Rapid Communication of Neuroscience Research,17(4),357-360. doi: 10.1097/01.wnr.0000203622.24953.c2
    Nunez-Pena, M. I., & Escera, C. (2007). An event-related brain potential study of the arithmetic split effect. International Journal of Psychophysiology,64(2),165-173. doi:10.1016/j.ijpsycho.2007.01.007
    Nunez-Pena, M. I., & Honrubia-Serrano, M. L. (2004). P600 related to rule violation in an arithmetic task. Cognitive Brain Research,18(2),130-141. doi:10.1016/j.cogbrainres.2003.09.010
    Nunez-Pena, M. I., Honrubia-Serrano, M. L., & Escera, C. (2004). Problem size effect in additions and subtractions:an event-related potential study. Neuroscience Letters,373(1),21-25. doi:DOI: 10.1016/j.neulet.2004.09.053
    Niedeggen, M., & Rosler, F. (1999). N400 effects reflect activation spread during retrieval of arithmetic facts. Psychological Science,10(3),271-276. doi:10.1111/1467-9280.00149
    Niedeggen, M., Rosler, F., & Jost, K. (1999). Processing of incongruous mental calculation problems: Evidence for an arithmetic N400 effect. Psychophysiology,36(3),307-324.
    Nussbaum, S., Trope, Y., & Liberman, N. (2003). Creeping dispositionism:The temporal dynamics of behavioral prediction. Journal of Personality and Social Psychology,84,485-497.
    Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R.,... Caltagirone, C. (2008). Perceiving numbers alters time perception. Neuroscience Letters,438(3),308-311.
    Pacini, R., & Epstein, S. (1999). The relation of rational and experiential information processing styles to personality, basic believes, and the ratio-bias phenomenon. Journal of Personality and Social Psychology, 76(6),972-987.
    Pauli, P., Lutzenberger, W., Birbaumer, N., Rickard, T. C., & Bourne, L. E., Jr. (1996). Neurophysiological correlates of mental arithmetic. Psychophysiology,33(5),522-529.
    Pauli, P., Lutzenberger, W., Rau, H., & Birbaumer, N. (1994). Brain potentials during mental arithmetic: Effects of extensive practice and problem difficulty. Cognitive Brain Research,2(1),21-29. doi: 10.1016/0926-6410(94)90017-5
    Peters, E., Vastfjall, D., Slovic, P., Mertz, C. K., Mozzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological Science,17,406-413.
    Pia, L., Corazzini, L. L., Folegatti, A., Gindri, P., & Cauda, F. (2009). Mental number line disruption in a right-neglect patient after a left-hemisphere stroke. Brain and Cognition,69(1),81-88. doi: 10.1016/j.bandc.2008.05.007
    Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and Approximate Arithmetic in an Amazonian Indigene Group. Science,306(5695),499-503. doi:10.1126/science.1102085
    Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron,41,983-993.
    Prelec, D., & Loewenstein, G. (1991). Decision-making over time and under uncertainty — a common approach. Manag. Sci.,37,770-786.
    Rachlin, H., Raineri, A., & Cross, D. (1991). Subjective probability and delay. Journal of the Experimental Analysis of Behavior,55,233-244.
    Reyna, V. F. (2004). How people make decisions that involve risk. A dual-processes approach. Curr Dir Psychol Sci.,13(2),60-66.
    Robert, N. D., & Campbell, J.1. D. (2008). Simple addition and multiplication:No comparison. European Journal of Cognitive Psychology,20(1),1-16. doi:10.1080/09541440701275823
    Roberts, S., & Church, R. M. (1978). Control of an internal clock. Journal of Experimental Psychology: Animal Behavior Process,4,318-337.
    Roitman, J. D., Brannon, E. M., & Platt, M. L. (2012). Representation of numerosity in posterior parietal cortex. Frontiers in Integrative Neuroscience(M AY 2012),1-9.
    Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary Subtraction. Journal of Experimental Psychology:Learning, Memory, and Cognition,29(6),1339-1352. doi:10.1037/0278-7393.29.6.1339
    Shepard, R. N. (2001). Perceptual-cognitive universals as reflections of the world. Behavioral and Brain Sciences,24(4),581-601. doi:10.1017/s0140525x01000012
    Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2004). Risk as analysis and risk as feelings:some thoughts about affect, reason, risk, and rationality. Risk Anal.,24,1-12.
    Slovic, P., Monahan, J., & MacGregor, D. G. (2000). Violence risk assessment and risk communication:The effects of using actual cases, providing instruction, and employing probability versus frequency formats. Law and Human Behavior,24,271-296.
    Srinivasan, M., & Carey, S. (2010). The long and the short of it:On the nature and origin of functional overlap between representations of space and time. Cognition,116(2),217-241.
    Sziics, D., & Csepe, V. (2005). The effect of numerical distance and stimulus probability on ERP components elicited by numerical incongruencies in mental addition. Cognitive Brain Research,22(2),289-300. doi: 10.1016/j.cogbrainres.2004.04.010
    Szucs, D., & Soltesz, F. (2010). Event-related brain potentials to violations of arithmetic syntax represented by place value structure. Biological Psychology,84(2),354-367.
    Thomas, H. B. G. (1963). Communication theory and the constellation hypothesis of calculation. The Quarterly Journal of Experimental Psychology,15(3),173-191. doi:10.1080/17470216308416323
    Trope, Y., & Liberman, N. (2000). Temporal construal and time-dependent changes in preference. Journal of Personality and Social Psychology,79(6),876-889.
    Trope, Y., & Liberman, N. (2003). Temporal construal. Psychological Review,110,403-421.
    Trope, Y., & Liberman, N. (2010). Construal-Level Theory of Psychological Distance. Psychological Review, 117(2),440-463,463a. doi:DOI:10.1037/a0018963
    Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial-temporal association of response codes: Understanding the cognitive representations of time. Cognition,107,501-527.
    van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication:Implications for the organisation of arithmetical facts. Cortex:A Journal Devoted to the Study of the Nervous System and Behavior,37(3),363-388. doi:10.1016/s0010-9452(08)70579-3
    Vandorpe, S., De Rammelaere, S., & Vandierendonck, A. (2005). The Odd-Even Effect in Addition:An Analysis per Problem Type. Experimental Psychology,52(1),47-54. doi:10.1027/1618-3169.52.1.47
    Verguts, T., & Fias, W. (2005). Interacting neighbors:A connectionist model of retrieval in single-digit multiplication. Memory & Cognition,53(1),1-16.
    Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic Compression and Expansion of Experiential Time in the Left and Right Space. PLoS ONE,3(3), e1716.
    von Sydow, M. (2011). The Bayesian logic of frequency-based conjunction fallacies. Journal of Mathematical Psychology,55(2),119-139. doi:DOI:10.1016/j.jmp.2010.12.001
    Wakslak, C. J., Trope, Y., Liberman, N., & Alony, R. (2006). Seeing the forest when entry is unlikely: Probability and the mental representation of events. Journal of Experimental Psychology:General, 135(4),641-653. doi:10.1037/0096-3445.135.4.641
    Walsh, V. (2003). A theory of magnitude:Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences,7,483-488.
    Wang, Y., Kong, J., Tang, X., Zhuang, D., & Li, S. (2000). Event-related potential N270 is elicited by mental conflict processing in human brain. Neuroscience Letters,293(1),17-20.
    Windschitl, P. D. (2002). Judging the accuracy of a likelihood judgement:The case of smoking risk. Journal of Behavioral Decision Making,15,19-35.
    Xuan, B., Chen, X.-C., He, S., & Zhang, D.-R. (2009). Numerical magnitude modulates temporal comparison: An ERP study. Brain Research,1269,135-142. doi:10.1016/j.brainres.2009.03.016
    Yagoubi, R. E., Lemaire, P., & Besson, M. (2003). Different brain mechanisms mediate two strategies in arithmetic:Evidence from event-related brain potentials. Neuropsychologia,41(1),855-862.
    Yagoubi, R. E., Lemaire, P., & Besson, M. (2005). Effects of Aging on Arithmetic Problem-Solving:An Event-related Brain Potential Study. Journal of Cognitive Neuroscience,17(1),37-50.
    Yi, R., & Bickel, W. K. (2005). Representation of odds in terms of frequencies reduces probability discounting. The Psychological Record,55(4),577-593.
    Zach, P., & Brugger, P. (2008). Subjective time in near and far representational space. Cognitive and Behavioral Neurology,21,8-13.
    Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural Correlates of Simple and Complex Mental Calculation. Neurolmage,13(2),314-327. doi:10.1006/nimg.2000.0697
    Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes:A case study of arithmetic. Journal of Experimental Psychology:General,115(2),118-130. doi:10.1037/0096-3445.115.2.118
    Zbrodoff, N. J., & Logan, G. D. (1990). On the relation between production and verification tasks in the psychology of simple arithmetic. Journal of Experimental Psychology:Learning, Memory, and Cognition,16(1),83-97. doi:10.1037/0278-7393.16.1.83
    Zhou, X., Chen, C., Dong, Q., Zhang, H., Zhou, R., Zhao, H.,... Guo, Y. (2006). Event-related potentials of single-digit addition, subtraction, and multiplication. Neuropsychologia,44(12),2500-2507.
    Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H., & Dong, Q. (2007). Chinese kindergartners'automatic processing of numerical magnitude in Stroop-like tasks. Memory & Cognition,35(3),464-470.
    Zorzi, M., Priftis, K., & Umilta, C. (2002). Neglect disrupts the mental number line. Nature,417,138-139. doi:10.1038/417138a. Document Type:journal.Citation. DOI:10.1038/417138a.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700