用户名: 密码: 验证码:
通过Friedel-Crafts烷基化反应制备POSS基杂化材料及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
笼型聚硅氧烷(POSS)具有优异的热稳定性、化学稳定性,低介电性能,较好的生物相容性等特点,被广泛地应用于制备各种有机-无机杂化材料,是材料科学不可或缺的重要组成部分。拓宽功能化的POSS单体的制备方法,开发新型的POSS杂化材料具有重要的理论意义及应用价值。本文围绕两个方面进行研究:一、首先利用Friedel-Crafts烷基化反应制备八苯乙基POSS,然后通过物理共混的方法,制备新型的聚合物/POSS杂化材料;二、利用八乙烯基POSS和具有不同空间构型的芳香族单体为构筑单元,通过Friedel-Crafts烷基化反应制备出一系列的POSS基多孔聚合物。具体内容如下。
     1.利用八乙烯基POSS和苯为原料,通过Friedel-Crafts烷基反应,得到了八苯乙基POSS。通过物理共混得到了基于酚醛树脂和八苯乙基POSS的杂化材料。用FT-IR、POM、XRD以及DSC等手段对固化前的酚醛树脂/POSS杂化材料的氢键作用、形貌、物相形态和相容性进行研究。结果表明:POSS与酚醛树脂之间存在着氢键作用,在POSS含量低于20wt%时,POSS能够与酚醛树脂形成均一的相;随着POSS含量的持续增加,POSS开始团聚,体系出现了相分离。利用六次甲基四胺固化了酚醛树脂/POSS杂化材料,用FT-IR和SEM研究了固化后POSS与酚醛树脂之间的相容性。结果表明:固化促使POSS与酚醛树脂的相分离。用DMA和TGA考察了POSS对固化后酚醛树脂/POSS杂化材料的机械性能和热性能的影响。
     2.利用八乙烯基POSS和苯为原料,通过Friedel-Crafts烷基反应,成功地制备出新型POSS基多孔聚合物。用元素分析、FT-IR、13C CP/MAS NMR和29Si CP/MAS NMR等测试手段对多孔聚合物的组成和结构进行了确认。用N2吸附-脱附实验对其孔结构参数进行表征。结果表明:HPP-1至HPP-4的比表面积在400~900m2g-1之间,孔体积在0.24~0.99cm3g-1之间。通过调节链接单元苯的用量,成功地实现了对多孔聚合物的孔结构参数的调控;给出了多孔聚合物孔结构参数的调控机理。另外采用XRD、FE-SEM、HRTEM以及TGA等测试手段,对多孔聚合物的物相形态、形貌和热性能进行了表征。结果表明:得到的多孔聚合物是一种无定形的、介孔和微孔共存的多孔聚合物,且具有较高的热稳定性能。采用H2和CO2的等温吸附实验对多孔聚合物的气体吸附性能进行了研究。结果表明:多孔聚合物具有较好的H2和C02的吸附性能。最后通过Thiol-ene Click Reaction反应对得到的多孔聚合物进行了后功能化,并对功能化后的多孔聚合物的结构和性能进行了表征。
     3.利用八乙烯基POSS分别和非平面型小分子联苯、1,3,5-三苯基苯为原料,通过Friedel-Crafts烷基反应,成功合成出新型POSS基多孔聚合物。用元素分析、FT-IR、13C CP/MAS NMR和29Si CP/MAS NMR等测试手段对多孔聚合物的组成和结构进行了确认。用N2吸附-脱附实验对其孔结构参数进行表征。结果表明:HPP-2、HPP-3、HPP-4、HPP-6、HPP-7、HPP-8的比表面积在600-900m2g-1之间,孔体积分别在0.51~0.55cm3g-1之间和0.55~0.76cm3g-1之间。通过控制非平面型分子的用量虽然可以调节多孔聚合物的比表面积,但是对其孔体积的影响很小。采用TGA、XRD、FE-SEM和HRTEM等测试手段,对多孔聚合物的热稳定性、物相形态、形貌进行了表征。结果表明:多孔聚合物是一种无定形的,介孔与微孔共存的多孔材料。采用H2和CO2的吸等温吸附实验对多孔聚合物的气体吸附性能进行了研究。结果表明:与其他比表面积相似的其他的POSS基多孔聚合物相比,实验中所制备的多孔聚合物表现出较高的CO2吸附性能。
     4.利用八乙烯基POSS与聚苯乙烯作为构筑单元,通过Friedel-Crafts烷基化反应,成功地制备出具有网络结构的POSS基多孔聚合物。用FT-IR、13C CP/MAS NMR和29Si CP/MAS NMR等测试手段对多孔聚合物的组成和结构进行了确认。用N2吸附-脱附实验对其孔结构参数进行表征。结果表明:HPP-1至HPP-7的比表面积在12~770m2g-1之间,孔体积分别在0.36~0.90cm3g-1之间。探讨了多孔聚合物的孔结构参数的变化规律及其形成机理。采用TGA,FE-SEM和HRTEM等测试手段,对多孔聚合物的热性能和形貌进行了分析。结果表明,多孔聚合物是无定形的,介孔与微孔共存的多孔聚合物。采用H2和C02的等温吸附实验对多孔聚合物的气体吸附性能研究了研究。结果表明:多孔聚合物具有较好的H2和CO2的吸附性能。
Polyhedral oligomeric silsesquioxanes (POSS) are novel kind of nano-scale inorganic-organic hybrids and they have been widely used to prepare varieties of POSS-based polymers and POSS-containing functional materials due to their unique characteristics of thermal stability, chemical stability, low dielectric properties and excellent biocompatibility. The study of POSS is an important integral part of nanocomposites. It has great significance in theory and application to select the new method for preparing the novel POSS monomers, developing the high performance POSS-based polymers and especially developing the POSS-containing polymers with special functionalities. In the present dissertation, two aspects had been focused. One was to prepare octaphenethyl POSS via the Friedel-Crafts alkylation reaction and use it to develop the novel POSS-based polymers. The other was to synthsize a series of POSS-based functional materials and particularly preparing the porous POSS-containing polymers through the Friedel-Crafts alkylation reaction.
     1. The octaphenethyl POSS was prepared via Friedel-Crafts reaction by using octavinyl POSS and benzene as the starting materials. The POSS-based nanocomposites were prepared by solution blending of novolac resin and octaphenethyl POSS. FT-IR, POM, XRD and DSC were used to characterize the specific hydrogen bonding interaction, morphology and miscibility of phenolicresin/POSS nanocomposites before curing. The results indicated that there existed intermolecular hydrogen bonding interactions between the hydroxyl groups of the phenolic resin and Si-O-Si groups of POSS, which could promote POSS to disperse well in the polymer matrix up to20wt%POSS loading. At higher POSS loading, POSS would aggregate and lead to macrophase separation. Finally, the hexamethylene tetramine was used to cure the phenolic resin/POSS nanocomposites to form the network structure. The miscibility was also characterized by FT-IR and SEM. The results showed that the curing process prompted phase separation between the phenolic resin and POSS particles. DMA and TGA were also used to perform the thermal stability and mechanical properties of the cured phenolic resin/POSS nanocomposites.
     2. A series of hybrid porous polymers (HPPs) were prepared via Friedel-Crafts reaction by using octavinyl POSS and benzene as the starting materials. The structures of hybrid porous polymers were characterized by FT-IR,13C CP/MAS NMR and29Si CP/MAS NMR. The porosities of hybrid porous polymers were determined by the N2sorption-desorption isotherms. The results showed that hybrid porous polymers featured both micro-and mesopores with apparent Brunauer-Emmett-Teller surface areas in a range of400~904m2g-1, with total pore volumes in the range of0.24cm3g-1to0.99cm3g-1. Their porosities can be fine tuned by adjusting the mole ratios of octavinyl POSS and benzene. The XRD, FE-SEM, HRTEM and TGA were also used to perform the morphologies and thermal stabilities of the hybrid porous polymers. The results showed that these polymers were amorphous porous polymers with high thermal stabilities. H2and CO2gas sorption isotherms were used to perform the sorption properties of the porous hybrid polymers. The results showed that the hybrids had preferable sorption properties and could be potentially applied to H2and CO2gas sorption. Finally, the hybrid porous polymers were postfunctionalized via the Thiol-ene Click reaction. The structures and properties of the postfunctionalised hybrid porous polymers were also characterized.
     3. Eight kinds of the hybrid porous polymers were constructed by using octavinyl POSS and the non-planar molecules of biphenyl and1,3,5-triphenylbenzene via Friedel-Crafts alkylation, respectively. The structures of hybrid porous polymers were characterized by FT-IR,13C CP/MAS NMR and29Si CP/MAS NMR. And the porosities of hybrid porous polymers were tested by the N2sorption-desorption isotherms. The results showed that all hybrid porous polymers HPP-2, HPP-3, HPP-4, HPP-6, HPP-7and HPP-8, featured both micro-and mesopores with apparent Brunauer-Emmett-Teller surface areas in a range of600m2g-1to905m2g-1. The total pore volumes were in the range of0.51cm3g-1to0.55cm3g-1and0.55cm3g-1to0.76cm3g-1, respectively. As far as the hybrid porous polymers synthesized with the same building units, the total pore volumes of the hybrid porous polymers were similar, although the SBET of the hybrid porous polymers can be tuned by adjusting mole ratios of octavinyl POSS and non-planar molecules. The XRD, TGA, FE-SEM, HRTEM were also used to perform the thermal stabities and the morphologies of the hybrid porous polymers. The results show that hybrid porous polymers were featured micro-and mesopores, amorphous polmers with high thermal stability. Gas sorption isotherms were also used to characterize the performaces of the H2and CO2sorption properties of the hybrid porous polymers.
     4. A variety of hyper-crosslinking polystyrene hybrids were prepared by using octavinyl POSS and polystyrene as building blocks via the Friedel-Crafts alkylation reaction. The structures of polystyrene hybrids porous polymers were characterized by FT-IR,13C CP/MAS NMR and29Si CP/MAS NMR. And the porosities of polystyrene hybrids were investigated by the N2sorption-desorption isotherms. The results show that hybrid porous polymers HPP-1, HPP-2, HPP-6and HPP-7featured both micro-and mesopores with SBET in a range of473m2g-1to767m2g-1, with total pore volumes in the range of0.36cm3g-1to0.90cm3g-1. The TGA, FE-SEM, HRTEM were also used to analyze the thermal stabities and the morphologies of the hybrid porous polymers. The results showed that hybrid porous polymers were amorphous polymers featured micro-and mesopores. Gas sorption isotherms were also used to characterize the performaces of the H2and CO2sorption properties of the hybrid porous polymers.
引文
[1]山田瑛,省部博之,工业材料,1983,31:85.
    [2]山田瑛,省部博之,工业材料,1983,31:18.
    [3]吉野藤美,省部博之,工业材料,1983,31:25.
    [4]Whitesides G. M., Mathias J. P., Seto C. T., Molecular self-assembly and nanochemistry:achemical strategy for the synthesis of nanostructures. Science,1991, 254:1312-1319.
    [5]顾庆超,杂化材料,现代化工,1988,8:56-58.
    [6]刘云圻,杂化材料,大学化学,1987,2:8-11.
    [7]陈蓉,有机-无机杂化材料控制合成、结构调控与性能研究,中国科学基金,2006,297-299.
    [8]Alexandre M., Dubois P., Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Rep.,2000,28: 1-63.
    [9]Giannelis E. P., Polymer layered silicate nanocomposites, Adv. Mater.,1996,8: 29-35.
    [10]Kuo S.W., Chang F. C., POSS related polymer nanocomposites, Prog. Polym. Sci.,2011,36:1649-1696.
    [11]Cordes D. B., Lickiss P. D., Rataboul F., Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes, Chem. Rev.,2010,110:2081-2173.
    [12]Wu J., Mather P.T., POSS polymers:physical properties and biomaterials application, J. Macromol. Sci. Polymer Rev.,2009,49:25-63,
    [13]Haddad T. S., Lichtenhan J. D., Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers, Macromolecules,1996, 29:7302-7304.
    [14]Romo-Uribe A., Mather P. T., Haddad T. S., Lichtenhan J. D., Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers, J. Polym. Sci. Part B:Polym. Phys.,1998,36:1857-1872.
    [15]Wu J., Haddad T. S., Kim G. M., Mather P. T., Rheological behavior of entangled polystyrene-polyhedral oligosilsesquioxane (POSS) copolymers, Macromolecules,2007,40:544-554.
    [16]Zhang W., Muller A. H. E., Synthesis of tadpole-shaped POSS-containing hybrid polymers via "click chemistry", Polymer,2010,51:2133-2139.
    [17]Guo X., Wang W., Liu L., Novel strategy to synthesize POSS/PS composite and study on its thermal properties, Polym. Bull.,2010,64:15-25.
    [18]Misra R., Alidedeoglu A. H., Jarrett W. L., Morgan S. E., Molecular miscibility and chain dynamics in POSS/polystyrene blends:Control of POSS preferential dispersion states, Polymer,2009,50:2906-2918.
    [19]Hao N., Bolhning M., Scholnhals A., Dielectric properties of nanocomposites based on polystyrene and polyhedral oligomeric phenethyl-silsesquioxanes, Macromolecules,2007,40:9672-9679.
    [20]Dintcheva N. Tz., Morici E., Arrigo R., Mantia F.P. L., Malatesta V., Schwab J. J., UV-stabilisation of polystyrene-based nanocomposites provided by polyhedral oligomeric silsesquioxanes (POSS), Polym. Degrad. Stab.,2012,97:2313-2322.
    [21]Blanco I.,Abate L., Bottino F. A., Bottino P., Polymer Thermal degradation of hepta cyclopentyl, mono phenyl-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites, Polym. Degrad. Stab.,2012,97: 849-855.
    [22]Zheng L., Farris R. J., Coughlin E. B., Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization, J. Polym. Sci. Part A:Polym. Chem., 2001,39:2920-2928.
    [23]Waddon A. J., Zheng L., Farris R. J., Coughlin E. B., Nanostructured polyethylene-POSS copolymers:control of crystallization and aggregation, Nano. Lett.,2002,2:1149-1155.
    [24]Fu B. X., Gelfer M. Y., Hsiao B. S., Phillips S., Biers B., Blanski R., Ruth P., Physical gelation in ethylene-propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules, Polymer,2003,44:1499-1506.
    [25]Joshi M., Butola B. S., Studies on nonisothermal crystallization of HDPE/POSS nanocomposites, Polymer,2004,45:4953-4968.
    [26]Capaldi F. M., Rutledge G. C., Boyce M. C., Structure and dynamics of blends of polyhedral oligomeric silsesquioxanes and polyethylene by atomistic simulation, Macromolecules,2005,38:6700-6709.
    [27]Zhang H. X., Jung M. S., Shin Y. J., Yoon K. B., Lee D. H., Preparation and properties of ethylene/POSS copolymer with rac-Et(Ind)2ZrCl2 catalyst, J. Appl. Polym.Sci.,2009,111:2697-2702.
    [28]Wang J., Ye Z., Joly H., Synthesis and characterization of hyperbranched polyethylenes tethered with polyhedral oligomeric silsesquioxane (POSS) nanoparticles by chain walking ethylene copolymerization with acryloisobutyl-POSS, Macromolecules,2007,40:6150-63.
    [29]Frone A. N., Perrin F. X., Radovici C., Panaitescu D. M., Influence of branched or un-branched alkyl substitutes of POSS on morphology, thermal and mechanical properties of polyethylene, Composites:Part B,2013,50:98-106.
    [30]Lim S. K., Hong E. P., Song Y. H., et al. Physical properties of PE/polyhedral oligomeric silsesquioxane (POSS) nanohybrids, J. Am. Chem. Soc.,2009,237.
    [31]Zhang H. X., Shin Y. J., Yoon K. B., Lee D. H., Preparation and properties of propylene/POSS copolymer with rac-Et(Ind)2ZrCl2 catalyst, Eur. Polym. J.2009,45: 40-46.
    [32]Fu B. X., Yang C., Somani R. H., Zong S. X., Hsiao B. S., Phillips S., Blanski R., Ruth D., Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions, J. Polym. Sci. Part B:Polym. Phys.,2001,39:2727-2739.
    [33]Fina A., Tabuani D., Frache A., Camino G, Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites, Polymer,2005,46:7855-7866.
    [34]Pracella M., Chionna D., Fina A., Tabuani D., Frache A., Camino G, Polypropylene-POSS nanocomposites:morphology and crystallization behavior, Macromol. Symp.,2006,234:59-67.
    [35]Baldi F., Bignotti F., Fina A., Tabuani D., Ricco T., Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends, J. Appl. Polym. Sci. 2007,105:935-943.
    [36]Fina A., Tabuani D., Peijs T., Camino G, POSS grafting on PP-g-MA by one-step reactive blending, Polymer,2009,50:218-226.
    [37]Zhou Z., Cui L., Zhang Y., Zhang Y., Yin N., Isothermal crystallization kinetics of polypropylene/POSS composites, J Polym Sci Part B:Polym. Phys.,2008,46: 1762-1772.
    [38]Zhou Z., Cui L., Zhang Y, Zhang Y, Yin N., Preparation and properties of POSS grafted polypropylene by reactive blending, Eur. Polym. J.,2008,44: 3057-3066.
    [39]Misra R., Fu B. X., Morgan S. E., Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites, J. Polym. Sci. Part B:Polym. Phys.,2007,45:2441-2455.
    [40]Lichtenhan J. D., Otonari Y A., Carr M. J., Linear hybrid polymer building blocks:methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules,1995,28:8435-8437.
    [41]Kopesky E. T., Haddad T. S., Cohen R. E., Mckinley G H., Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes, Macromolecules,2004,37:8992-9004.
    [42]Bizet S., Galy J., Gerard J. F., Structure-property relationships in organic-inorganic nanomaterials based on methacryl-POSS and dimethacrylate networks, Macromolecules,2006,39:2574-2583.
    [43]Huang C. F., Kuo S. W., Lin F. J., Huang W. J., Wang C. F., Chen W. Y., Chang F. C., Influence of PMMA-chain-end tethered polyhedral oligomeric silsesquioxanes (POSS) on the miscibility and specific interaction with phenolic blends, Macromolecules,2006,39:300-308.
    [44]Zhao C., Yang X., Wu X., Liu X., Wang X., Lu L., Preparation and characterization of poly(methyl methacrylate) nanocomposites containing octavinyl polyhedral oligomeric silsesquioxane, Polym. Bull.,2008,60:495-505.
    [45]Escud6 N.C., Chen E. Y X., Stereoregular methacrylate-POSS hybrid olymers: syntheses and nanostructured assemblies, Chem. Mater.,2009,21:5743-5753.
    [46]Huang C. F., Kuo S. W., Lin F. J., Wu J. H., et al. Influence of PMMA-chain-end tethered polyhedral oligomeric silsesquioxanes on the miscibility and specific interaction with phenolic blends, Macromolecules 2006,39:300-308.
    [47]Xu H., Yang B., Wang J., Guang S., Li C., Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes, J. Polym Sci Part A:Polym. Chem.,2007,45:5308-5317.
    [48]Zhang H., Kulkarni S., Wunder S. L., Polyethylene glycol functionalized polyoctahedral silsesquioxanes as electrolytes for lithium batteries, J. Electrochem. Soc.,2006,153:A239-248.
    [49]Zhang H., Kulkarni S., Wunder S. L., Blends of POSS-PEO(n)4)8 and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries, J. Phys. Chem. B,2007,111:3583-3590.
    [50]Markovic E., Ginic-Markovic M., Clarke S., Matisons J., Hussain M., Simon G. P., Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane: synthesis and thermal analysis, Macromolecules,2007,40:2694-2701.
    [51]Huang J., Li X., Lin T., He C., Mya K. Y., Xiao Y., Li J., Inclusion complex formation between a,y-cyclodextrins and organic-inorganic star-shaped poly(ethylene glycol) from an octafunctional silsesquioxane core, J. Polym. Sci. Part B:Polym. Phys.,2004,42:1173-1180.
    [52]Zeng K., Zheng S., Synthesis and characterization of organic/inorganic polyrotaxanes from polyhedral oligomeric silsesquioxane and poly(ethylene oxide)/a-cyclodextrin polypseudorotaxanes via click chemistry, Macromol. Chem. Phys.,2009,210:783-791.
    [53]Mu J., Liu Y, Zheng S., Inorganic-organic interpenetrating polymer networks involving polyhedral oligomeric silsesquioxane and poly(ethylene oxide), Polymer, 2007,48:1176-1184.
    [54]Chan S. C., Kuo S. W., Chang F. C., Synthesis of the organic-inorganic hybrid star polymers and their inclusion complexes with cyclodextrins, Macromolecules, 2005,38:3099-3107.
    [55]Xu J. W., Shi W. F., Synthesis and crystallization kinetics of silsesquioxane-based hybrid star poly(3-caprolactone), Polymer,2006,47: 5161-5173.
    [56]Liu Y. H., Yang X. T., Zhang W. A., Zheng S. X., Star-shaped poly(3-caprolactone) with polyhedral oligomeric silsesquioxane core, Polymer,2006, 47:6814-6825.
    [57]Zhao Y, Schiraldi D. A., Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites, Polymer,2005,46: 11640-11647.
    [58]Hao N., Bohning M., Coering H., Scholnhals A., Nanocomposites of polyhedral oligomeric phenethylsilsesquioxanes and poly(bisphenol A carbonate) as investigated by dielectric spectroscopy, Macromolecules,2007,40:2955-2964.
    [59]Sanchez-Soto M., Schiraldi D. A., Illescas S.. Study of the morphology and properties of melt-mixed polycarbonate-POSS nanocomposites, Eur. Polym. J.,2009, 45:341-352.
    [60]Bohning M., Hao N., Schonhals A., Correlation of activation energies of gas diffusivity and local matrix mobility in polycarbonate/POSS nanocomposites, J. Polym. Sci. Part B:Polym. Phys.,2013,51:1593-1597.
    [61]Vahabi H., Eterradossi O., Ferry L., Longuet C., Sonnier R., Lopez-Cuesta J. M., Polycarbonate nanocomposite with improved fire behavior, physical and psychophysical transparency, Eur. Polym. J.,2013,49:319-327.
    [62]Yoon K. H., Polk M. B., Park J. H., Min B. G, Schiraldi D. A., Properties of poly(ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane, Polym. Int.,2005,54:47-53.
    [63]Zhou Z., Yin N., Zhang Y, Zhang Y, Properties of poly(butylene terephthalate) chain-extended by epoxycyclohexyl polyhedral oligomeric silsesquioxane, J. Appl. Polym. Sci.,2008,107:825-830.
    [64]Ciolacu F. C. L., Choudhury N. R.,Dutta N., Kosior E., Molecular level stabilization of poly(ethylene terephthalate) with nanostructured open cage trisilanolisobutyl-POSS, Macromolecules,2007,40:265-272.
    [65]Lee Y J., Kuo S. W., Huang W. J., Lee H. Y, Chang F. C., Miscibility specific interactions and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids, J. Polym. Sc.i Part B:Polym. Phys.,2004,42:1127-1136.
    [66]Zhang Y., Lee S. H., Mitra Y., Kaiwen L., Pittman Jr. C. U., Phenolic resin-trisilanolphenyl polyhedral oligomeric silsesquioxane POSS hybrid nanocomposites:structure and properties, Polymer,2006,47:2984-2996.
    [67]Zhang Y. D., Lee S. H., Yoonessi M., Toghiani H.,Pittman Jr. C. U., phenolic resin/octa(aminophenyl)-T8-polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites:synthesis, morphology, thermal and mechanical properties, J. Inorg. Organomet. Polym. Mater.,2007,17:159-171.
    [68]Lin H. C., Kuo S.W., Huang C.F., Chang F.C., Syntheses, thermal property, and specific interaction of phenolic/octaphenol-POSS nanocomposites, Macromol Rapid Commun.,2006,27:537-541.
    [69]Liu Y. H., Zeng K., Zheng S., Organic-inorganic hybrid nanocomposites involving novolac resin and polyhedral oligomeric silsesquioxane. React. Funct. Polym.,2007,67:627-635.
    [70]Liu H., Zheng S., Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane, Macromol. Rapid Commun.,2005,26:196-200.
    [71]Kannana R. Y, Salacinskia H. J., Odlyhab M., Butlerc P. E., Seifaliana A. M., The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes:An in vitro study, Biomaterials,2006,27:1971-1979.
    [72]Nanda A. K., Wicks D. A., Madbouly S. A., Otaigbe J. U., Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization, Macromolecules,2006,39:7037-7043.
    [73]Madbouly S. A., Otaigbe J. U., Nanda A. K., Wicks D. A., Rheological behavior of POSS/polyurethane-urea nanocomposite films prepared by homogeneous solution polymerization in aqueous dispersions, Macromolecules, 2007,40:4982-4991.
    [74]Turri S., Levi M., Structure dynamic properties and surface behavior of nanostructured ionomeric polyurethanes from reactive polyhedral oligomeric silsesquioxanes, Macromolecules,2005,38:5569-5574.
    [75]Hu J., Li L., Zhang S., Novel phenyl-POSS/polyurethane aqueous dispersions and their hybrid coatings, J. Appl. Polym. Sci.,2013,130:1611-1620.
    [76]Madbouly S. A., Otaigbe J. U., Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films,Prog. Polym. Sci.,2009,34:1283-1332.
    [77]Liu Y. H., Ni Y., Zheng S., Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane, Macromol. Chem. Phys.,2006,207:1842-1851.
    [78]Tamaki R., Choi J., Laine R. M., A polyimide nanocomposite from octa(aminophenyl)silsesquioxane, Chem. Mater.,2003,15:793-797.
    [79]Lee Y. J., Huang J. M., Kuo S. W., Lu J. S., Chang F. C., Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications, Polymer,2005,46:173-181.
    [80]Ye Y. S., Yen Y. C., Chen W. Y, Cheng C. C., Chang F. C., A simple approach toward low-dielectric polyimide nanocomposites:blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane. J. Polym. Sci. Part A: Polym. Chem.,2008,46:6296-6304.
    [81]Gao Z, Nahrup JS, Mark JE, Sakr A, Poly(dimethylsiloxane) coatings for controlled drug release. Ⅰ:preparation and characterization of pharmaceutically acceptable materials, J. Appl. Polym. Sci.,2003,90:658-666.
    [82]Kessler D., Teutsch C., Theato P., Synthesis of processable inorganic-organic hybrid polymers based on poly(silsesquioxanes):grafting from polymerization using ATRP, Macromol. Chem. Phys.,2008,209:1437-1446.
    [83]Kessler D., Lechmann M. C., Noh S., Berger R., Lee C., Gutmann J. S., et al., Surface coatings based on polysilsesquioxanes:solution-processible smooth hole-injection layers for optoelectronic applications, Macromol. Rapid Commun., 2009,30:1238-1242.
    [84]Ryu H. S., Kim D. G., Lee J. C., Polysiloxanes containing polyhedral oligomeric silsesquioxane groups in the side chains; synthesis and properties, Polymer,2010,51: 2296-2304.
    [85]Meng Y, Wei Z., Liu L., Liu L., Zhang L., Nishi T., Ito K., Significantly improving the thermal stability and dispersion morphology of polyhedral oligomeric silsesquioxane/polysiloxane composites by in-situ grafting reaction, Polymer,2013, 54:3055-3064.
    [86]Chen D. Z., Yi S. P., Wu W. B., Zhong Y. L., Liao J., Huang C., Shi W. J., Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using vinyl-POSS derivatives as cross linking agents, Polymer,2010,51: 3867-3878.
    [87]Choi J., Harcup J., Yee A. F., Zhu Q., Laine R. M., Organic/inorganic hybrid composites from cubic silsesquioxanes, J. Am. Chem. Soc.,2001,123:11420-11430.
    [88]Lee Y. J., Kuo S. W., Huang C. F., Chang F. C., Synthesis and characterization of polybenzoxazine networks containing multifunctional polyhedral oligomeric silsesquioxane (POSS), Polymer,2006,47:4378-4386.
    [89]Wan C., Zhao F., Bao X., Kandasubramanian B., Duggan M., Effect of POSS on crystalline transitions and physical properties of polyamide 12, J. Polym. Sci. Part B:Polym. Phys.,2009,47:121-129.
    [90]Xiao S., Nguyen M., Gong X., Cao Y, Wu H., Moses D., Heeger A. J., Stabilization of semiconducting polymers with silsesquioxane. Adv.Funct. Mater., 2003,13:25-29.
    [91]Gong X., Soci C., Yang C. Y, Heeger A. J., Xiao S., Enhanced electron injection in polymer light-emitting diodes:polyhedral oligomeric silsesquioxanes as dilute additives, J. Phys. D,2006,39:2048-2052.
    [92]Lee J., Cho H., Jung B., Cho N., Shim H., Stabilized blue luminescent polyfluorenes:introducing polyhedral oligomeric silsesquioxane, Macromolecules, 2004,37:8523-8529.
    [93]Lee J., Cho H. J., Cho N. S., Hwang D. H., Kang J. M., Lim E., Lee J. I., Shim K. H., Enhanced efficiency of polyfluorene derivatives:organic-inorganic hybrid polymer light-emitting diodes, J. Polym. Sci. Part A:Polym. Chem.,2006,44: 2943-2954.
    [94]Zhang C. X., Bunning T. J., Laine R. M., Synthesis and characterization of liquid crystalline silsesquioxanes, Chem. Mater.,2001,13:3653-3662.
    [95]Song X., Geng H., Li Q., Synthesis and charaeterization of ferroeenyl Substituted styryl octasilsesquioxane, Chin. Chem. Lett.,2006,17:427-430.
    [96]Song X., Geng H., Li Q., The synthesis and characterization of polystyrene/magnetic polyhedral oligomeric silsesquioxane (POSS) nanocomposites, Polymer,2006,47:3049-3056.
    [97]Ruben Y. Kannana, Salacinskia H. J., Odlyhab M., Butlerc P. E., Seifalian A. M., The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes:An in vitro study, Biomaterials,2006:27:1971-1979.
    [98]Normatov J., M. S. Silverrstein, Highly porous elastomer-silsesquioxane nanocomposites synthesized within high internal phase emulsions, J. Polym. Sci.Part A:Polym. Chem.,2008,46:2357-2366.
    [99]Zhang C. X., Babonneau,F., Bonhomme C., Laine R. M., Soles C. L., Hristov H. A., Yee A. F., Highly porous polyhedral silsesquioxane polymers. synthesis and characterization, J. Am. Chem. Soc.1998,120:8380-8391.
    [100]Morrison J. J., Love C. J., Manson B. W., Shannon I. J., Morris R. E., Synthesis of functionalised porous network silsesquioxane polymers, J. Mater. Chem.,2002,12: 3208-3212.
    [101]Nischang I., Brggemann O., Teasdale I., Facile single-step preparation of versatile high-surface-area hierarchically structured hybrid materials, Angew. Chem. Int. Ed.,2011,50:4592-4596.
    [102]Chaikittisilp W., Sugawara A., Shimojima A., Okubo T., Microporous Hybrid polymer with a certain crystallinity built from functionalized cubic siloxane cages as a Singular Building Unit, Chem. Mater.,2010,22:4841-4843.
    [103]Jiang B., Tao W., Lu X., Liu Y., Jin H., Pang Y., Sun X., Yan D., Zhou Y., A POSS-based supramolecular amphiphile and its hierarchical self-assembly behaviors, Macromol. Rapid Commun.,2012,33:767-772.
    [104]Wang, D. X., Xue L., Li L., Feng S., Liu H., Zhao X., Rational design and synthesis of hybrid porous polymers derived from polyhedral oligomeric silsesquioxanes via heck coupling reactions, Macromol. Rapid Commun.,2013,34: 861-866.
    [105]Chaikittisilp W., Kubo M., Sugawara-Narutaki A., Shimojima A., Okubo T., Porous siloxane-organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubic siloxane cages, J. Am. Chem. Soc.,2011,133:13832-13835.
    [106]Peng Y., Ben T., Xu J., Xue M.,Jing X., Deng F., Qiu S., Zhu G., A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties, Dalton Trans.,2011,40:2720-2724.
    [107]Chaikittisilp W., Sugawara A., Shimojima A., Okubo T., Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units, Chem. Eur. J.,2010,16:6006-6014.
    [108]Wang D. X., Yang W., Li L., Feng S., Liu H., Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction:porosity, gas sorption, and luminescence, J. Mater. Chem. A,2013, 1:13549-13558.
    [109]Qin Y., Ren H., Zhu F., Zhang L., Shang C., Wei Z., Luo M., Preparation of POSS-based organic-inorganic hybrid mesoporous materials networks through Schiff base chemistry, Eur. Polym. J.,2011,47:853-860.
    [110]Kim Y, Koh K., Roll M. F., Laine R. M., Matzger A. J., Porous networks assembled from octaphenylsilsesquioxane building blocks, Macromolecules,2010, 43:6995-7000.
    [111]Sigh R. P., Kamble R. M., Chandra K. L., Saravanan P., Singh V. K., An efficient method for aromatic Friedel-Crafts alkylation, acylation, benzoylation, and sulfonylation reactions, Tetrahedron,2001,57:241-247.
    [112]Zhou Y, Li X., Hou S., Xu J., Facile synthesis of dihydrochalcones via the AlCl3-promoted tandem Friedel-Crafts acylation and alkylation of arenes with 2-alkenoyl chlorides, J. Mole. Catal. A:Chem.,2012,365:203-211.
    [113]Yoo B. R., Kim J. H., Cho B. G., Jung I. N., Friedel-Crafts alkylation of benzene with (polychloromethyl)silanes, J. Organomet. Chem.,2001,631:36-40.
    [114]Ishikawa S., Ito M., Okamoto M., Nakamori T., Study on whole-conjugated polymer gel. Synthesis of polybenzal gel with benzal chloride and toluene, Polymer, 1996,37:3763-3765.
    [115]Tsyurupa M. P., Davankov V. A., Porous structure of hypercrosslinked polystyrene:state-of-the-art mini-review, React. Funct. Polym.,2006,66:768-779.
    [116]Li B., Gong R. Wang W., Huang X., Zhang W., Li H., Hu C., Tan B., A new strategy to microporous polymers:knitting rigid aromatic building blocks by external cross-linker, Macromolecules,2011,44:2410-2414.
    [117]Dare E. O., Olatunji G. A., Ogunniyi D. S., Lasisi A. A., New routes to functionalized polyhedral oligomeric silsesquioxanes via Friedel-Crafts alkylation and dichlorocarbene addition to octavinylsilsesquioxane. Polish J. Chem.,2005,79: 109-114.
    [1]Cordes D. B., Lickiss P. D., Rataboul F., Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes, Chem. Rev.,2010,110:2081-2173.
    [2]Li G, Wang L., Ni H., Pittman C. U., Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers:a review, J. Inorg. Organomet. Polym.,2001,11: 123-154.
    [3]Pielichowski K., Njuguna J., Janowski B., Pielichowski J., Polyhedral oligomeric silsesquioxanes (POSS) containing nanohybrid polymers, Adv. Polym. Sci.2006, 201:225-296.
    [4]Tanaka K., Chujo Y., Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS), J. Mater. Chem.,2012,22:1733-1746.
    [5]Kuo S. W., Chang F. C., POSS related polymer nanocomposites, Prog. Polym. Sci.,2011,12:1649-1696.
    [6]Liu H., Zheng S., Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane, Macromol. Rapid Commun.,2005,26:196-200.
    [7]Lee Y. J., Kuo S. W., Huang C. F., Chang F. C., Synthesis and characterization of polybenzoxazine networks containing multifunctional polyhedral oligomeric silsesquioxane (POSS), Polymer,2006,47:4378-4386.
    [8]Joshi M., Butola B. S., Simon G, Kukaleva N., Rheological and viscoelastic behavior of HDPE/octamethyl-POSS nanocomposites, Macromolecules,2006,39: 1839-1849.
    [9]Zhao Y, Schiraldi D. A., Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites, Polymer,2005,46: 11640-11647.
    [10]Laine R. M., Roll M. F., Polyhedral phenylsilsesquioxanes, Macromolecules, 2011,44:1073-1109.
    [11]Roll M. F., Asuncion M. Z., Kampf J., Laine R. M., para-octaiodophenylsilsesquioxane, [p-IC6H4SiO1.5]8, a nearly perfect nano-building block, ACS Nano,2008,2:320-326.
    [12]Zhang Y., Lee S., Yoonessi M., Liang K., Pittman C. U., Phenolic resin-trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites:structure and properties, Polymer,2006,47:2984-2996.
    [13]Hao N., Bohning M., Schonhals A., Dielectric properties of nanocomposites based on polystyrene and polyhedral oligomeric phenethyl silsesquioxanes, Macromolecules,2007,40:9672-9679.
    [14]Hao N., Bohning M., Goering H., Scho"nhals A., Nanocomposites of polyhedral oligomeric phenethylsilsesquioxanes and poly (bisphenol A carbonate) as investigated by dielectric spectroscopy, Macromolecules,2007,40:2955-2964.
    [15]Sanchez-Soto M., Schiraldi D. A., Illescas S., Study of the morphology and properties of meltmixed polycarbonate-POSS nanocomposites, Eur. Polym. J.,2009 45:341-352.
    [16]Iwamura T., Adachi K., Sakaguchi M., Chujo Y., Synthesis of organic-inorganic polymer hybrids from poly(vinyl chloride) and polyhedral oligomeric silsesquioxane via CH/p interaction, Prog. Org. Coat.,2009,64:124-127.
    [17]Dare E. O., Olatunji G. A., Ogunniyi D. S., Lasisi A. A., New routes to functionalized polyhedral oligomeric silsesquioxanes via friedel-crafts alkylation and dichlorocarbene addition to octavinylsilsesquioxane. Polish J. Chem.,2005,79: 109-114.
    [18]Liu Y., Zeng K., Zheng S., Organic-inorganic hybrid nanocomposites involving novolac resin and polyhedral oligomeric silsesquioxane, React. Funct. Polym.,2007, 67:627-635.
    [19]Lin H. C., Kuo S. W., Huang C. F., Chang F. C., Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane, Macromol. Rapid Comm.,2006,27:537-541.
    [20]Lee Y. J., Kuo S. W., Huang W. J., Lee H. Y, Chang F. C., Miscibility, specific interactions, and selfassembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids, J. Polym. Sci. Part B Polym. Phys.,2004,42:1127-1136.
    [21]Kuo S. W., Lin H. C., Huang W. J., Chang F. C., Hydrogen bonding interactions and miscibility between phenolic resin and octa(acetoxystyryl) polyhedral oligomeric silsesquioxane (AS-POSS) nanocomposites, J. Polym. Sci. Part B Polym. Phys.,2006,44:673-686.
    [22]Yen Y. C., Kuo S. W., Huang C. F., Chang F. C., Miscibility and hydrogen-bonding behavior in organic/inorganic polymer hybrids containing octaphenol polyhedral oligomeric silsesquioxane, J. Phys. Chem. B,2008,112: 10821-10829.
    [23]Chen D., Yi S. P., Wu W. B., Zhong Y. L., Liao J., Huang C., Shi W, Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using vinyl-POSS derivatives as cross linking agents, Polymer,2010,51:3867-3878.
    [24]Huang C. F., Kuo S. W., Lin F. J., Huang W. J., Wang C. F., Chen W. Y, Chang F. C., Influence of PMMA-chain-end tethered polyhedral oligomeric silsesquioxanes on the miscibility and specific interaction with phenolic blends, Macromolecules, 2006,39:300-308.
    [25]Xu H., Kuo S. W., Lee J. S., Chang F. C., Glass transition temperatures of poly (hydroxystyrene-covinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes), Polymer,2002,43:5117-5124.
    [26]Xu H., Kuo S. W., Chang F. C., Significant glass transition temperature increase based on polyhedral oligomeric silsesquioxanes (POSS) copolymer through hydrogen bonding, Polym. Bull.,2002,48:469-474.
    [27]Liu Y, Huang Y, Liu L., Thermal stability of POSS/methylsilicone nanocomposites, Compos. Sci. Technol.,2007,67:2864-2876.
    [28]Liu H., Kondo S., Tanaka R., Oku H., Unno M., A spectroscopic investigation of incompletely condensed polyhedral oligomeric silsesquioxanes (POSS-mono-ol, POSS-diol and POSS-triol):hydrogen-bonded interaction and host-guest complex, J. Organomet. Chem.,2008,693:1301-1308.
    [29]Hirashima Y, Sato H., Suzuki A., ATR-FTIR spectroscopic study on hydrogen bonding of poly (N-isopropylacrylamide-co-sodium acrylate) gel, Macromolecules, 2005,38:9280-9286.
    [30]Ni Y., Zheng S., Nie K., Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer,2004,45:5557-5568.
    [31]Roy S., Feng J., Scionti V., Jana S. C., Wesdemiotis C., Self-assembled structure formation from interactions between polyhedral oligomeric silsesquioxane and sorbitol in preparation of polymer compound, Polymer,2012,53:1711-1724.
    [32]Lu C. H., Tsai C. H., Chang F. C., Jeong K. U., Kuo S. W., Self-assembly behavior and photoluminescence property of bispyrenyl-POSS nanoparticle hybrid, J. Colloid. Interface Sci.,2011,358:93-101.
    [33]Clarke D., Mathew S., Matisons J., Simon G, Skelton B. W., Synthesis and characterization of a range of POSS imides, Dyes Pigm.,2011,92:659-667.
    [34]Zhang X., Solomon D. H., Phase Structures of hexamine crosslinked novolac blends. I. Blends with poly(methylacrylate), Macromolecules,1994,27:4919-4926.
    [35]Hu D., Xu Z., Zeng K., Zheng S., From self-organized novolac resins to ordered nanoporous carbons, Macromolecules,2010,43:2960-2969.
    [36]Liu H., Zheng S., Nie K., Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane, Macromolecules,2005,38: 5088-5097.
    [37]Chen Q., Xu R., Zhang J., Yu D., Polyhedraloligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline, Macromol. Rapid Comm.,2005,26:1878-1882.
    [1]Zhang Q., Zhang S., Li S., Novel functional organic network containing quaternary phosphonium and tertiary phosphorus, Macromolecules,2012,45: 2981-2988.
    [2]Zhao X. S., Novel porous materials for emerging applications, J. Mater. Chem., 2006,16:623-625.
    [3]Liang X., George S. M., Weimer A. W., Li N., Blackson J. H., Harris J. D., Li P., Synthesis of a novel porous polymer/ceramic composite material by low-temperature atomic layer deposition, Chem. Mater.,2007,19:5388-5394.
    [4]Masika E., Mokaya R., Hydrogen storage in high surface area carbons with identical surface areas but different pore sizes:Direct demonstration of the effects of pore size, J. Phys.Chem. C,2012,116:25734-25740.
    [5]Zhao Y., Zhao L., Yao K., Yang Y, Zhang Q., Han Y, Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture, J. Mater. Chem., 2012,22:19726-19731.
    [6]Ding S., Wang W., Covalent organic frameworks (COFs):from design to applications, Chem. Soc. Rev.,2013,42:548-568.
    [7]Xiang Z., Zhou X., Zhou C., Zhong S., He X., Qin C., Cao D., Covalent-organic polymers for carbon dioxide capture, J. Mater. Chem.,2012,22:22663-22669.
    [8]Vilela F., Zhang K., Antonietti M., Conjugated porous polymers for energy applications, Energy Environ. Sci.,2012,5:7819-7832.
    [9]Chang Z., Zhang D., Chen Q., Bu X., Microporous organic polymers for gas storage and separation applications, Phys. Chem. Chem. Phys.,2013,15:5430-5442.
    [10]Wilmer C. E., Farha O. K., Bae Y. S., Hupp J. T., Snurr R. Q., Structure-property relationships of porous materials for carbon dioxide separation and capture, Energy Environ. Sci.,2012,5:9849-9856.
    [11]Eguchi R., Uchida S. Mizuno N., Inverse and high CO2/C2H2 sorption selectivity in flexible organic-inorganic ionic crystals, Angew. Chem., Int. Ed.,2012, 51:1635-1639.
    [12]Davis M. E., Ordered porous materials for emerging applications, Nature,2002, 417:813-821.
    [13]McKeown N. B., Budd P. M., Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev.,2006,35:675-683
    [14]Wan Y., Wang H., Zhao Q., Klingstedt M., Terasaki O., Zhao D., Ordered mesoporous Pd/Silica-Carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media, J. Am. Chem. Soc.,2009,131: 4541-4550.
    [15]Marchesan S., Prato M., Nanomaterials for (nano)medicine, Med. Chem. Lett., 2013,4:147-149.
    [16]Cassette E., Helle M., Bezdetnaya L., Marchal F., Dubertret B., Pons T., Design of new quantum dot materials for deep tissue infrared imaging, Adv. Drug Deliv. Rev.,2013,65:719-731.
    [17]Wu D., Xu F., Sun B., Fu R., He H., Matyjaszewski K., Design and preparation of porous polymers, Chem. Rev.,2012,112:3959-4015.
    [18]Kuo S. W., Chang F. C., POSS related polymer nanocomposites, Prog. Polym. Sci.,2011,36:1649-1696.
    [19]Ni Y., Zheng S. X., Nie K. M., Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer,2004,45:5557-5568.
    [20]Tanaka K., Chujo Y, Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS), J. Mater. Chem.,2012,22:1733-1746.
    [21]Laine R. M., and Roll M. F., Polyhedral phenylsilsesquioxanes, macromolecules, 2011,44:1073-1109.
    [22]Cordes D. B., Lickiss P. D., Rataboul F., Recent Developments in the chemistry of cubic polyhedral oligosilsesquioxanes, Chem. Rev.,2010,110:2081-2173.
    [23]Morrison J. J., Love C. J., Manson B. W., Shannon I. J. and Morris R. E., Synthesis of functionalised porous network silsesquioxane polymers, J. Mater. Chem.,2002,12:3208-3212.
    [24]Chaikittisilp W., Kubo M., Moteki T., Sugawara-Narutaki A., Shimojima A., Okubo T., Porous siloxaneorganic hybrid with ultrahigh surface area through simultaneous polymerizationdestruction of functionalized cubic siloxane cages, J. Am. Chem. Soc.,2011,133:13832-13835.
    [25]Nischang I., Bruggemann O., Teasdale I., Facile, single-step preparation of versatile, high-surface-area, hierarchically htructured hybrid materials, Angew. Chem. Int. Ed.,2011,50:4592-4596.
    [26]Peng Y., Ben T., Xu J., Xue M., Qiu S., A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties, Dalton Trans.,2011,40:2720-2724.
    [27]Chaikittisilp W., Sugawara A., Shimojima A., Okubo T., Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units, Chem. Eur. J.,2010,16:6006-6014.
    [28]Zhang C., Babonneau F., Bonhomme C., Laine R. M., Soles C. L., Hristov H. A., Yee A. F., Highly porous polyhedral silsesquioxane polymers. Synthesis and Characterization, J. Am. Chem. Soc.,1998,120:8380-8391.
    [29]Wada Y., Iyoki K., Sugawara-Narutaki A., Okubo T., Shimojima A., Diol-Linked Microporous Networks of Cubic Siloxane Cages, Chem. Eur. J.,2013, 19:1700-1705.
    [30]Alves F., Scholder P., Nischang I., Conceptual design of large surface area porous polymeric hybrid media based on polyhedral oligomeric silsesquioxane precursors:preparation, tailoring of porous properties, and internal surface functionalization, ACS Appl. Mater. Interfaces,2013,5:2517-2526.
    [31]Wu M., Wu R., Li R., Qin H., Dong J., Zhang Z., Zou H., Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns, Anal. Chem.,2010,82:5447-5454.
    [32]Chaikittisilp W., Sugawara A., Shimojima A., Okubo T., Microporous hybrid polymer with a certain crystallinity built from functionalized cubic siloxane cages as a singular building unit, Chem. Mater.,2010,22:4841-4843.
    [33]Wang, D. X., Xue L., Li L., Feng S., Liu H., Zhao X., Rational design and synthesis of hybrid porous polymers derived from polyhedral oligomeric silsesquioxanes via heck coupling reactions, Macromol. Rapid Commun.,2013,34: 861-866.
    [34]Wang D. X., Yang W., Li L., Feng S., Liu H., Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction:porosity, gas sorption, and luminescence, J. Mater. Chem. A,2013,1: 13549-13558.
    [35]Gao B., Li F., Men J., Studies on preparation, structure and fluorescence emission of polymer-rare earth complexes composed of aryl carboxylic acid-functionalized polystyrene and Tb3+ ion, Polymer,2012,53:4709-4717.
    [36]Ishikawa S., Ito M. Okamoto M., Study on whole-conjugated polymer gel. Synthesis of polybenzal gel with benzal chloride and toluene, Polymer,1996,37: 3763-3765.
    [37]Dawson R., Cooper A. I., Adams D. J., Nanoporous organic polymer networks, Prog. Polym. Sci.,2012,37:530-563.
    [38]Luo Y., Li B., Wang W., Wu K., Tan B., Hypercrosslinked aromatic heterocyclic microporous polymers:a new class of highly selective CO2 capturing materials, Adv. Mater.,2012,24:5703-5707.
    [39]Li B., Gong R., Wang W., Huang X., Zhang W., Li H., Hu C., Tan B., A new strategy to microporous polymers:knitting rigid aromatic building blocks by external cross-linker, Macromolecules,2011,44:2410-2414.
    [40]Dawson R., Stevens L. A., Drage T. C., Snape C. E., Smith M. W., Adams D. J., Cooper A. I., Impact of water coadsorption for carbon dioxide capture in microporous polymer Sorbents, J. Am. Chem. Soc.,2012,134:10741-10744.
    [41]Cheng G, Vautravers N. R., Morris R. E., Cole-Hamilton D. J., Synthesis of functional cubes from octavinylsilsesquioxane (OVS), Org. Biomol. Chem.,2008, 6:4662-4667.
    [42]Chen D., Yi S., Wu W., Zhong Y, Liao J., Huang C., Shi W., Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents, Polymer,2010,51:3867-3878.
    [43]Tucker-Schwartz A. K., Farrell R. A., Garrell R. L., Thiolene click reaction as a general route to functional trialkoxysilanes for surface coating applications, J. Am. Chem. Soc.,2011,133:11026-11029.
    [44]Hoyle C. E., Bowman C. N., Thiol-ene click chemistry, Angew. Chem., Int. Ed., 2010,49:1540-1573.
    [45]Shanmuganathan K., Sankhagowit R. K., Iyer P., Ellison C. J., Thiol-ene chemistry:a greener approach to making chemically and thermally Stable Fibers, Chem. Mater.,2011,23:4726-4732.
    [46]Dare E. O., Olatunji G A., Ogunniyi D. S., Lasisi A. A., New routes to functionalized polyhedral oligomeric silsesquioxanes via friedel-crafts alkylation and dichlorocarbene sdditon to octavinylsilsesquioxane, Polish J. Chem.,2005,79: 109-114.
    [47]Weber J. and Bergstrom L., Impact of cross-linking density and glassy chain dynamics on pore stability in mesoporous poly(styrene), Macromolecules,2009,42: 8234-8240.
    [48]Kim Y., Koh K., Roll M. F., Porous networks assembled from octaphenylsilsesquioxane building blocks, R. M. Laine and A. J. Matzger, Macromolecules,2010,43:6995-7000.
    [49]Liu Q., Li Y., Shen S., Zhou S., The influence of crosslinking density on the pore morphology of copolymer beads prepared with a novel pore-forming agent, Mater. Chem. Phys.,2011,125:315-318.
    [50]Qin Y., Ren H., Zhu F., Zhang L., Shang C., Wei Z., Luo M., Preparation of POSS-based organic-inorganic hybrid mesoporous materials networks through Schiff base chemistry, Eur. Polym. J.,2011,47:853-860.
    [51]Jiang J.-X., Su F., Niu H., Wood C. D., Campbell N. L., Khimyak Y. Z. and Cooper A. I., Conjugated microporous poly(phenylene butadiynylene)s, Chem. Commun.,2008:486-488.
    [52]Park M., Moon D., Yoon J. W., Chang J.-S., Lah M. S., A metal-organic framework based on an unprecedented nonanuclear cluster as a secondary building unit:structure and gas sorption behavior, Chem. Commun.,2009,2026-2028.
    [53]Xiang S., Zhou W., Zhang Z., Green M. A., Liu Y, Chen B., Differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature, Angew. Chem., Int. Ed.,2010,49:4615-4818.
    [54]Neumann D., Fisher M., Tran L., Matisons J. G, Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane, J. Am. Chem. Soc.,2002, 124:13998-13999.
    [55]H. Liu, S. Kondo, Takeda N., Unno M., Synthesis of octacarboxy spherosilicate, J. Am. Chem. Soc.,2008,130:10074-10075.
    [56]Fina A., Tabuani D., Carniato F., Frache A., Boccaleri E., Camino G., Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation, Thermochim. Acta,,2006, 440:36-42.
    [57]Yang D., Zhang W., Yao R., Jiang B., Thermal stability enhancement mechanism of poly(dimethylsiloxane) composite by incorporating octavinyl polyhedral oligomeric silsesquioxanes, Polym. Degrad. Stab.,2013,97:109-114.
    [58]Dawson R., Laybourn A., Khimyak Y. Z., Adams D. J., Cooper A. I., High surface area conjugated microporous polymers:the Importance of reaction solvent choice, Macromolecules,2010,43:8524-8530.
    [59]Weber J., Thomas A., Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block, J. Am. Chem. Soc.,2008,130:6334-6335.
    [60]Jiang J.-X., Su F., Trewin A., Wood C. D., Campbell N. L., Niu H., Dickinson C., Ganin A. Y, Rosseinsky M. J., Khimyak Y. Z., Cooper A. I., Conjugated microporous poly(aryleneethynylene) networks, Angew. Chem., Int. Ed.,2007,46: 8574-8578.
    [61]Vilela F., Zhang K. and Antonietti M., Conjugated porous polymers for energy applications, Energy Environ. Sci.,2012,5:7819-7832.
    [62]Dawson R., Laybourn A., Clowes R., Khimyak Y. Z., Adams D. J., Cooper A. I., Functionalized conjugated microporous polymers, Macromolecules,2009,42: 8809-8816.
    [63]Dawson R., Adams D. J., Cooper A. I., Chemical tuning of CO2 sorption in robust nanoporous organic polymers, Chem. Sci.,2011,2:1173-1177.
    [64]Lim H., Cha M. C., Chang J. Y., Synthesis of microporous polymers by Friedel-Crafts reaction of 1-bromoadamantane with aromatic compounds and their surface modification, Polym. Chem.,2012,3:868-870.
    [65]Lowe A. B., Thiol-ene click reactions and recent applications in polymer and materials synthesis, Polym. Chem.,2010,1:17-36.
    [66]Hoyle C. E., Bowman C. N., Thiol-ene-click chemie, Angew. Chem. Int. Ed., 2010,122:1584-1617.
    [67]Han L., Sakamoto Y., Terasaki O., Li Y, Che S., Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures, J. Mater. Chem., 2007,17:1216-1221.
    [68]Han L., Terasaki O., Che S., Carboxylic group functionalized ordered mesoporous silicas, J. Mater. Chem.,2011,21:11033-11039.
    [69]N. Liu, Assink R. A., C. J. Brinker, H-bonded complexes of adenine with rebek imide receptors are stabilized by cation-pi interaction and destabilized by stacking with perfluoroaromatics, Chem. Commun.,2003,370-371.
    [1]Han S. S., Furukawa H., Yaghi O. M., Goddard W. A., Covalent organic frameworks as exceptional hydrogen storage materials, J. Am. Chem. Soc.,2008; 130:11580-1581.
    [2]Germain J., Frechet J. M. J., Svec F., Hypercrosslinked polyanilines with nanoporous structure and high surface area:potential adsorbents for hydrogen storage, J. Mater. Chem.,2007; 17:4989-4997.
    [3]Germain J., Svec F. J. M., Frechet J., Preparation of size-selective nanoporous polymer networks of aromatic rings:potential adsorbents for hydrogen storage, Chem. Mater.,2008,20:7069-7076.
    [4]McKeown N. B., Budd P. M., Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev.,2006,35:675-683.
    [5]Wan Y., Wang H., Zhao Q., Klingstedt M., Terasaki O., Zhao D., Ordered mesoporous Pd/Silica-Carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media, J. Am. Chem. Soc.,2009,131: 4541-4550.
    [6]Mackintosh H. J., Budd P. M., McKeown N. B., Catalysis by microporous phthalocyanine and porphyrin network polymers. J. Mater. Chem.,2008,18: 573-578.
    [7]Zhao X. S., Novel porous materials for emerging applications, J. Mater. Chem., 2006,16:623-625.
    [8]Ferey G, Hybrid porous solids:past, present, future, Chem. Soc. Rev.,2008,37: 191-214.
    [9]Budd P. M., Ghanem B. S., Makhseed S., McKeown N. B., Msayib K. J., Tattershall C. E., Polymers of intrinsic microporosity (PIMs):robust,
    solution-processable, organic nanoporous materials, Chem. Commun.,2004,40: 230-231.
    [10]McKeown N. B., Budd P. M., Msayib K. J., Ghanem B. S., Kingston H. J., Tattershall C. E. et al., Polymers of intrinsic microporosity (PIMs):bridging the void between microporous and polymeric materials, Chem. Eur. J.,2005,11:2610-2620.
    [11]Tsyurupa M. P., Davankov V. A., Porous structure of hypercrosslinked polystyrene:state-of-the-art mini-review, React. Funct. Polym.,2006,66:768-779.
    [12]Makowski P., Thomas A., Kuhn P., Goettmann F., Organic materials for hydrogen storage applications:from physisorption on organic solids to chemisorption in organic molecules, Energy Environ. Sci.,2009,2:480-490.
    [13]Jiang J. X., Su F., Trewin A., Wood C. D., Campbell N. L., Niu H, et al.. Conjugated microporous poly(aryleneethynylene) networks, Angew. Chem. Int. Ed., 2007,46:8574-8578.
    [14]Jiang J. X., Su F., Trewin A., Wood C. D., Niu H., Jones J. T. A., Khimyak Y. Z., Cooper A. I., Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks, J. Am. Chem. Soc.,2008,130, 7710-7720.
    [15]Dawson R., Adams D. J., Cooper A. I., Chemical tuning of CO2 sorption in robust nanoporous organic polymers, Chem. Sci.,2011,2:1173-1177.
    [16]Dawson R., Cooper A. I., Adams D. J., Nanoporous organic polymer networks, Prog. Polym. Sci.,2012,37:530-563.
    [17]Gao B. J., Fang L., Men J. Y., Studies on preparation, structure and fluorescence emission of polymer-rare earth complexes composed of aryl carboxylic acid-functionalized polystyrene and Tb3+ ion, Polymer,2012,53:4709-4717.
    [18]Li B., Gong R. Wang W., Huang X., Zhang W., Li H., Hu C., Tan B., A new strategy to microporous polymers:knitting rigid aromatic building blocks by external cross-linker, Macromolecules,2011,44:2410-2414.
    [19]Lim H., Cha M. C., Chang J. Y, Synthesis of microporous polymers by Friedel-Crafts reaction of 1-bromoadamantane with aromatic compounds and their surface modification, Polym. Chem.,2012,3:868-870.
    [20]Chaikittisilp W., Kubo M., Moteki T., Sugawara-Narutaki A., Shimojima A., Okubo T., Porous siloxaneorganic hybrid with ultrahigh surface area through simultaneous polymerizationdestruction of functionalized cubic siloxane cages, J. Am. Chem. Soc.,2011,133:13832-13835.
    [21]Nischang I., Bruggemann O., Teasdale I., Facile, single-step preparation of versatile, high-surface-area, hierarchically structured hybrid materials, Angew. Chem. Int. Ed.,2011,50:4592-4596.
    [22 Peng Y., Ben T., Xu J., Xue M. and Qiu S., A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties, Dalton Trans.,2011,40:2720-2724.
    [23]Chaikittisilp W., Sugawara A., Shimojima A. and Okubo T., Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units, Chem. Eur. J.,2010,16:6006-6014.
    [24].Dare E. O., Olatunji G. A., Ogunniyi D. S., Lasisi A. A., New routes to functionalized polyhedral oligomeric silsesquioxanes via Friedel-Crafts alkylation and dichlorocarbene sdditon to octavinylsilsesquioxane, Polish J. Chem.,2005,79: 109-114.
    [25]Morrison J. J., Love C. J., Manson B. W., Shannon I. J., Morris R. E., Synthesis of functionalised porous network silsesquioxane polymers, J. Mater. Chem.,2002, 12:3208-3212.
    [26]Wang, D. X., Xue L., Li L., Feng S., Liu H., Zhao X., Rational design and synthesis of hybrid porous polymers derived from polyhedral oligomeric silsesquioxanes via heck coupling reactions, Macromol. Rapid Commun.,2013,34: 861-866.
    [27]Wang D. X., Yang W., Li L., Feng S., Liu H., Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction:porosity, gas sorption, and luminescence, J. Mater. Chem. A,2013,1: 13549-13558.
    [28]Weber J., Bergstrom L., Impact of cross-linking density and glassy chain dynamics on pore stability in mesoporous poly(styrene), Macromolecules,2009,42: 8234-8240.
    [29]Sing K. S. W., Everett D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem.,1985,57:603-619.
    [30]Wu Y., Wang D. X., Li L., Yang W., Feng S., Liu H., Hybrid Porous Polymers Constructed from Octavinylsilsesquioxane and Benzene via Friedel-Crafts Reaction: Tunable Porosity, Gas Sorption, and Postfunctionalization, J. Mater. Chem. A,2014, 2:2160-2167.
    [31]Yang D., Zhang W., Yao R., Jiang B., Thermal stability enhancement mechanism of poly(dimethylsiloxane) composite by incorporating octavinyl polyhedral oligomeric silsesquioxanes, Polym. Degrad. Stab.,2013,97:109-114.
    [32]Dawson R., Laybourn A., Khimyak Y. Z., Adams D. J., Cooper A. I., High surface area conjugated microporous polymers:the importance of reaction solvent choice, Macromolecules,2010,43:8524-8530.
    [33]Weber J., Thomas A.., Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block, J. Am. Chem. Soc.,2008,130:6334-6335.
    [1]Tsyurupa M. P., Davankov V. A., Porous structure of hypercrosslinked polystyrene:state-of-the-art mini-review, React. Funct. Polym.,2006,66:768-779.
    [2]Podlesnyuk V. V., Hradil J., Kralova E., Sorption of organic vapors by macroporous and hyper-crosslinked polymeric adsorbents, React. Funct. Polym., 1999,42:181-191.
    [3]Azanova V. V., Hradil J., Sorption properties of macroporous and hypercrosslinked copolymers. React. Funct. Polym.,1999,41:163-175.
    [4]Penner N. A., Nesterenko P. N., Application of neutral hydrophobic hypercrosslinked polystyrene to the separation of inorganic anions by ion chromatography. J. Chromatogr. A,2000,884:41-51.
    [5]Kiseleva M. G, Radchenko L. V., Nesterenko P. N., Ion-exchange properties of hypercrosslinked polystyrene impregnated with methyl orange. J. Chromatogr. A, 2001,920:79-85.
    [6]Lee J. Y., Wood C. D., Bradshaw D., Rosseinsky M. J., Cooper A. I., Hydrogen adsorption in microporous hypercrosslinked polymers, Chem. Commun.,2006, 2670-2672.
    [7]Germain J., Hradil J., Frechet J. M. J., Svec F., High surface area nanoporous polymers for reversible hydrogen storage, Chem. Mater.,2006,18:4430-4435.
    [8]M. Kaliva, Armatas G S., Vamvakaki M., Microporous polystyrene particles for selective carbon dioxide capture, Langmuir,2012,28:2690-2695
    [9]Fuβler R., Schafer H., Seubert A., Effect of the porosity of PS-DVB copolymers on ion chromatographic behavior in inverse size-exclusion and ion chromatography, Anal. Bioanal. Chem.,2002,372:705-711.
    [10]Balkus K. J., Kortz Jr., A., Drago R. S., Carbon Monoxide Binding by Copper(Ⅰ) Complexes Supported on Polystyrene, Inorg. Chem.,1988,27:2955-2958.
    [11]Xu J., Chen G, Yan R., Wang D., Zhang M., Zhang W., Sun P., One-stage synthesis of cagelike porous polymeric microspheres and application as catalyst scaffold of Pd nanoparticles, Macromolecules,2011,44:3730-3738.
    [12]Sidorov S. N., Bronstein L. M., Davankov V. A., Tsyurupa M. P., Solodovnikov S. P., Valetsky P. M., Wilder E. A., Spontak R. J., Cobalte nanoparticle formation in the poresof the hyper-crosslinked polystyrene:control of nanaoparticl growth and morphology, Chem. Mater.,1999,11:3210-3215.
    [13]Kuo S.W., Chang F. C., POSS related polymer nanocomposites, Prog. Polym. Sci.,2011,36:649-1696.
    [14]Cordes D. B., Lickiss P. D., Rataboul F., Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes, Chem. Rev.,2010,110:2081-2173.
    [15]Guo X., Wang W., Liu L., Novel strategy to synthesize POSS/PS composite and study on its thermal properties, Polym. Bull.,2010,64:15-25.
    [16]Blanco I., Abate L., Bottino F. A., Bottino P., Polymer Thermal degradation of hepta cyclopentyl, mono phenyl-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites Polym. Degrad. Stab.,2012,97: 849-855.
    [17]Wu J., Haddad T. S., Kim G M., Mather P. T., Rheological behavior of entangled polystyrene-polyhedral oligosilsesquioxane (POSS) copolymers, Macromolecules,2007,40:544-554.
    [18]Romo-Uribe A., Mather P. T., Haddad T. S., Lichtenhan J. D., Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers, J. Polym. Sci. Part B:Polym. Phys.,1998,36:1857-1872.
    [19]Hao N., Bolhning M., Scholnhals A., Dielectric Properties of Nanocomposites Based on Polystyrene and Polyhedral Oligomeric Phenethyl-Silsesquioxanes, Macromolecules,2007,40:9672-9679.
    [20]Song X., Geng H., Li Q., The synthesis and characterization of Polystyrene/magnetic Polyhedral oligomeric silsesquioxane (POSS) nanocomposites, Polymer,2006,47:3049-3056.
    [21]Morrison J. J., Love C. J., Manson B. W., Shannon I. J. and Morris R. E., Synthesis of functionalised porous network silsesquioxane polymers, J. Mater. Chem.,2002,12:3208-3212.
    [22]Nischang I., Bruggemann O. Teasdale I., Facile, single-step preparation of versatile, high-surface-area, hierarchically htructured hybrid materials, Angew. Chem. Int. Ed.,2011,50:4592-4596.
    [23]Zhang C., Babonneau F., Bonhomme C., Laine R. M., Soles C. L., Hristov H. A. and Yee A. F., Highly porous polyhedral silsesquioxane polymers. Synthesis and Characterization, J. Am. Chem. Soc.,1998,120:8380-8391.
    [24]Chen D. Z., Yi S. P., Wu W. B., Zhong Y. L., Liao J., Huang C., Shi W. J., Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents, Polymer,2010,51: 3867-3878.
    [25]Chaikittisilp W., Kubo M., Moteki T., Sugawara-Narutaki A., Shimojima A. and Okubo T., Porous siloxaneorganic hybrid with ultrahigh surface area through simultaneous polymerizationdestruction of functionalized cubic siloxane cages, J. Am. Chem. Soc.,2011,133:13832-13835.
    [26]Dare E. O., Olatunji G A., Ogunniyi D. S. and Lasisi A. A., New routes to functionalized polyhedral oligomeric silsesquioxanes via friedel-crafts alkylation and dichlorocarbene sdditon to octavinylsilsesquioxane, Polish J. Chem.,2005,79: 109-114.
    [27]Wang, D. X., Xue L., Li L., Feng S., Liu H., Zhao X., Rational design and synthesis of hybrid porous polymers derived from polyhedral oligomeric silsesquioxanes via heck coupling reactions, Macromol. Rapid Commun.,2013,34: 861-866.
    [28]Chaikittisilp W., Sugawara A., Shimojima A. and Okubo T., Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units, Chem. Eur. J.,2010,16:6006-6014.
    [29]Wang D. X., Yang W., Li L., Feng S., Liu H., Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction:porosity, gas sorption, and luminescence, J. Mater. Chem. A,2013,1: 13549-13558.
    [30]Sing K. S. W., Everett D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem.,1985,57:603-619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700