用户名: 密码: 验证码:
钢丝的微动损伤行为及其微动疲劳寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井提升过程中,提升钢丝绳内部股与股、丝与丝之间存在微动磨损和微动疲劳,将加速钢丝绳的疲劳断丝,导致钢丝绳承载能力的降低,影响了钢丝绳的使用可靠性以及煤矿的安全生产。因此,研究钢丝的微动损伤行为和微动疲劳寿命预测对延长钢丝绳服役寿命和提高钢丝绳的使用可靠性具有重要的意义。
     本文以6×19+IWS钢丝绳为研究对象,通过静力学分析考察了矿井提升机上提容器始、末钢丝绳的承载状况及其受终端质量的影响。基于上提容器过程中钢丝绳张力的动力学模型建立了Simulink仿真模型,分析了最大提升速度、提升加(减)速度和终端质量对钢丝绳所受峰值张力和张力幅值的影响。仿真结果表明,在上提容器始、末阶段,过渡段钢丝绳张力的总范围分别为2102.1N~18762.1N和191.1N~16851.1N。在上提容器过程中,最大峰值张力、最大张力幅值、最小峰值张力和最小张力幅值的总变化范围分别为9793.3N~19896.9N、176N~4817.6N、1240N~19821.3N和39.5N~2366N。
     依据钢丝绳静力学理论和接触力学知识,建立钢丝绳所受张力和张力幅值与钢丝微动疲劳参数间的数学关系模型并建立Simulink仿真模型,探讨了上提容器整个过程矿井提升参数对微动疲劳参数的影响。结果表明,在整个上提容器过程中,各微动疲劳参数的总范围几乎均随着矿井提升参数的增大而呈扩大或上升扩大的趋势,整个上提容器过程中绳内钢丝的拉力范围是1.5N~175.6N,相对位移范围是0.2μm~99.6μm,接触载荷的范围是0.2N~452.1N。
     应用有限元法分析了6×19+IWS钢丝绳的应力和变形状况,运用精确的边界条件和子模型技术对受拉三层直股进行细致分析,探讨了摩擦系数和材料模型对应力分布和径向变形的影响。结果表明,钢丝表面的应力和变形均呈空间二次曲线状分布,钢丝绳轴向中间位置的截面上各应力均呈对称分布,直股和螺旋股中钢丝截面上的应力均分别沿径向向外降低,相邻螺旋股接触钢丝的变形差值最大。三层直股中,摩擦系数、材料模型和股轴向应变的变化均导致各丝的应力水平、相邻丝层钢丝接触区的应力突变和径向变形的不同。
     运用三维赫兹接触理论分析了交叉角度和接触载荷对交叉接触钢丝的接触尺寸和最大接触应力的影响,建立了微动磨损过程中以不同角度交叉接触钢丝的磨损深度的演化模型以及磨损深度与微动参数间的关联模型。结果表明,不同的接触载荷和交叉角度会导致接触尺寸和最大接触应力的差异。比较钢丝交叉角度分别为90°和18°时不同微动参数下钢丝试样的微动磨损深度实验值和演化模型预测,发现两者吻合较好。
     运用自制钢丝微动疲劳试验机开展了低周疲劳下钢丝的微动疲劳实验,探讨了微动振幅、应变幅值和接触载荷对钢丝微动疲劳行为的影响。结果表明,不同微动疲劳参数下实验过程中摩擦系数、微动运行区域、磨损机理、微动疲劳寿命以及裂纹萌生和扩展特性均有所差异,而这些微动疲劳行为要素是相互作用的。
     采用有限元法研究了垂直交叉接触钢丝(无损伤和带磨损缺口)的微动疲劳行为,探讨了微动疲劳参数对微动运行区域和接触面应力分布的影响,运用多轴疲劳准则考察了微动疲劳初期疲劳钢丝微动面的裂纹萌生特性及其受微动参数的影响,运用线弹性断裂力学理论和幂函数拟合法建立了循环应力参数、接触载荷和微动振幅与钢丝微动疲劳寿命间的定量关系。结果表明,在两种情况下,不同微动疲劳参数均导致不同的微动运行区域、应力分布和接触边缘的应力突变。随着接触载荷和微动振幅的增大,疲劳钢丝接触面上裂纹萌生分别变得困难和容易,与应力分析结果一致。通过理论预测法和拟合法得到的寿命值与实验值吻合较好,验证了理论模型的正确性。
Fretting wear and fretting fatigue occurs among neighboring strands and among contactingwires in hoisting rope during lifting in coal mine, which accelerates the fatigue fracture of steelwires, thereby reduces the endurance strength of the rope, and thus affects the rope reliability andproduction safety in coal mine. Therefore, studies on fretting damage behavior and frettingfatigue life estimation of steel wires are significant to prolong the rope service life and toenhance the rope reliability.
     6×19+IWS rope is taken as the objective of study in this thesis. Load-carrying conditionsof hoisting rope at the sheave tangent point at the start and end of a lifting cycle are explored bystatic analysis. Simulink simulation models are built based on dynamic models of the ropetension during the lifting cycle. The roles of maximum hoisting velocity, hoisting acceleration(deceleration), and terminal load on peak tensions and tension amplitudes of the rope during thelifting cycle are investigated. Simulation results show that overall ranges of the rope tensionvary from2102.1N to18762.1N and from191.1N to16851.1N at the start and end of thelifting cycle, respectively. During lifting, overall ranges of maximum peak tension, maximumtension amplitude, minimum peak tension and minimum tension amplitude are9793.3N-19896.9N,176N-4817.6N,1240N-19821.3N, and39.5N-2366N, respectively.
     Mathematical relationships between tensions and tension amplitudes of the rope and frettingfatigue parameters of steel wires, and corresponding Simulink simulation models are establishedemploying the rope theory and contact mechanics. The effects of hoisting parameters onfretting fatigue parameters during the whole lifting cycle are discussed. Simulation resultsshow overall ranges of various fretting fatigue parameters almost all present the expanding orupward expanding trends with increasing hoisting parameters during the whole lifting cycle.Overall ranges of wire tension, contact load and relative displacement between wires changefrom1.5N to175.6N, from0.2N to452.1N and from0.2μm to99.6μm, respectively.
     The stresses and deformations of6×19+IWS rope are explored employing the finite elementmethod. Detailed analysis of the three-layered strand under axial extension is carried out usingconcise boundary conditions and sub-modeling technique. Effects of friction of coefficient andmaterial model on stress distributions and radial deformations are analyzed. The results showthat stresses along wire surfaces and wire deformations both present distributions of quadraticcurves. Various stresses on the cross-section of rope in the axially middle location all exhibitsymmetric distributions. The stresses on cross-sections of the straight strand and spiral strandboth decrease along the radially outward direction, respectively. Neighboring spiral strands exhibit the largest difference in deformations of contacting wires. Variations of coefficient offriction, material model and strand axial extension strain all cause distinct stress levels of variouswires, abrupt changes of stress near contact zones of contacting wires of adjacent wire layers,and radial deformations.
     Three-dimensional Hertzian contact theory is introduced to investigate the effects ofcrossing angle and contact load on the contact widths and maximum contact pressure. Theevolution of fretting wear depth of wires crossed at different angles during fretting wear and thecorrelation model between fretting wear depth and fretting parameters are established. Theresults demonstrate that different crossing angles and contact loads both cause distinct contactwidths and maximum contact pressure. Experimental values of wear depths of steel wirescrossed at angles of90°and18°in tests with different fretting parameters show good agreementwith corresponding predicted values, which validates the fretting wear evolution model.
     The roles of fretting amplitude, strain amplitude and contact load on fretting fatiguebehaviors of steel wires in low cycle fatigue are investigated employing the homemade frettingfatigue test apparatus. The results show that different fretting fatigue parameters inducesdistinct coefficients of friction, fretting regimes, wear mechanisms, fretting fatigue lives, crackinitiation and propagation characteristics during the fretting fatigue tests. Those elements offretting fatigue behaviors interact with each other.
     Fretting fatigue behaviors of perpendicularly crossed steel wires without damage and withwear gaps are studied using finite element method. The effects of fretting fatigue parameters onfretting regimes and stress distributions on contact surfaces are explored. Multiaxial fatiguecriteria are employed to investigate roles of fretting parameters on crack initiation characteristicson the tensile wire surface during the initial fretting stage. The linear elastic fracture mechanicsand method for a power function curve fitting are used to establish quantitative relationshipsbetween fretting fatigue lives of tensile wire and cyclic stress, contact load and fretting amplitude,respectively. The results show that different fretting fatigue parameters induce distinct frettingregimes, stress distributions and abrupt changes of stresses near trailing edges in two cases.Crack initiation on the contact surface of tensile wire becomes more difficult and easier withincreasing contact load and increasing fretting amplitude, respectively. Predicted fatigue livesare in good agreement with experimental values, which validates the theoretical model.
引文
[1] Kaczmarczyk S, Ostachowicz W. Transient vibration phenomena in deep mine hoisting cables. Part1:Mathematical model[J]. Journal of Sound and Vibration,2003,262:219-244.
    [2] Kaczmarczyka S, Ostachowicz W. Transient vibration phenomena in deep mine hoisting cables. Part2:Numerical simulation of the dynamic response [J]. Journal of Sound and Vibration,2003,262:245-289.
    [3] Hoeppner D W, Chandrasekaran V W, Elliot C B. Fretting fatigue: current technology and practices,ASTM STP1367[M]. Philadelphia: ASTM,2000.
    [4] Zhang D K, Ge S R, Qiang Y H. Research on the fatigue and fracture behavior due to the fretting wear ofsteel wire in hoisting rope [J]. Wear,2003,255(7-12):1233-1237.
    [5] Harris S J, McColl I R, Waterhouse R B. Fretting damage in locked coil steel rope[J]. Wear,1993,170(1):63-70.
    [6]国家煤矿安全监察局.煤矿安全规程[D].北京:国家煤矿安全监察局,2011.
    [7]陈东沛,郑长发.浅谈矿井提升钢丝绳的选择[J].煤,1998(2):65-68.
    [8]朱永刚,李桂芹.GB/T8918–1996《钢丝绳判级方法》[J].金属制品,1997,10(5):46-50.
    [9] Wu S C, Haug E J. Geometric Nonlinear Substructuring for Dynamics of Flexible Mechanical Systems [J].International Journal of Numerical Methods in Engineering,1988,26:2211-2226.
    [10] Shabana A A. Flexible Multibody Dynamics: Review of Past and Recent Developments [J]. MultibodySystem Dynamics,1997,1:189-222.
    [11] Liu Y, Chen G D, Li J H, Xue Y J. Dynamics Simulation of the hoisting cable of single cable windinghoisting device [J]. Mechanical Science and Technology for Aerospace Engineering,2009,28(9):1225-1229.
    [12] Hobbs R E, Raoo M. Behaviour of cables under dynamic or repeated loading [J]. Journal of constructionalSteel Research,1996,39(1):31-50.
    [13] McColl I R, Waterhouse R B, Harris S J. Lubricated fretting wear of a high-strength eutectoid steel ropewire [J]. Wear,1995;185:203-212.
    [14] Waterhouse R B, McColl I R, Harris S J. Fretting wear of a high-strength heavily work-hardenedeutectoid steel [J].Wear,1994,175:51-57.
    [15] Harris S J, Waterhouse R B, McColl I R. Fretting wear in locked coil steel rope [J]. Wear,1993,170:63-70.
    [16] Kopanakis G A. Basic lubrication and re-lubrication for steel wire ropes [C]. In: Characteristics andinspection of ropes, OITAF Seminary,2006April27, Grenoble, France.
    [17]何明鉴.机械构件的微动疲劳[M].北京:国防工业出版社,1994.
    [18]张德坤.钢丝的微动磨损及损伤疲劳行为研究[D].徐州:中国矿业大学出版社,2005.
    [19]张德英,向为国.矿井提升用钢丝绳断丝分析及预防[J].金属制品,2000,8(4):50-53.
    [20]徐延津,温殿英,张建.冷轧钢丝断裂原因分析[J].金属制品,1997,2(1):10-14.
    [21] Shen Y, Zhang D K, Duan J J, Wang D G. Fretting wear behaviors of steel wires under friction-increasinggrease conditions [J]. Tribology international,2011,44(11):1511-1517.
    [22]李祖钜.矿井提升钢丝绳拉伸时的扭转分析[J].矿山机械,1985,3:20-26.
    [23] Velinsky S A., Anderson G L, Costello G A. Wire rope with complex cross section [J]. Journal ofEngineering Mechanics,1985,52(3):380-391.
    [24] Velinsky S A. General non-linear theory for complex wire rope [J]. International Journal of MechanicalScience,1985,27:388-393.
    [25] Kumar K, Cochran, J E. Closed form analysis for elastic deformations of multi-layered strands [J].Journal of Application Mechanics,1987,54(4):898-903.
    [26] Vinogradov O G, et al. Interwire fiction due to wire twist in bent cable [J]. Journal of EngineeringMechanics,1986,12(9):859-887.
    [27] Leclair R A. Upper bound to mechanical power transmission losses in wire rope [J]. Journal ofEngineering Mechanics,1989,15(9):2011-2019.
    [28] Matteo J, Deodatis G, Billington D P. Safety analysis of suspension-bridge cables: Williamsburg Bridge[J]. Journal of Structural Engineering,1994,120(11):3197-210.
    [29] Haight R O, Billington D, Khazem D. Cable safety factors for four suspension bridges [J]. Journal ofBridge Engineering, ASCE,1997,2(4):157-167.
    [30] Fu G, Moses F, Khazem D A. Strength of parallel wire cables for suspension bridges [C]. In: Proceedingsof8thASCE Speciality Conference on Probabilistic Mechanics and Structural Reliability, Notre Dame,2000.
    [31] Atienxa E F J. The fatigue strength of steel wire rope [M]. Pennant Hills: Wire Industry,1994(10):678-683.
    [32] Atienxa E F J. Flection stresses of steel wire rope [M]. Pennant Hills: Wire Industry,1995(1):28-32.
    [33] Atienxa E F J. The fatigue strength of steel wire rope [M]. Pennant Hills: Wire Industry,1995(4):217-220.
    [34] Costello G A. Theory of wire Rope [M]. New York: Pringer-Verlags,1997.
    [35] Camo S. Probabilistic Strength Estimates and Reliability of Damaged Parallel Wire Cables [J]. Journal ofBridge Engineering,2005,10(2):239-240.
    [36]文宏光,屈本宁,李剑云.钢丝绳的拉伸疲劳性能[J].昆明理工大学学报,2000,25(1):28-33.
    [37]马军,葛世荣,张德坤.钢丝绳股内钢丝的载荷分布[J].机械工程学报,2009,45(4):259-264.
    [38]马军,葛世荣,张德坤.钢丝绳股内钢丝应力-应变分布的计算模型及数值模拟[J].机械工程学报,2009,45(11):277-282.
    [39]刘义,陈国定,李济顺,薛玉君.单绳缠绕式提升机钢丝绳动力学仿真研究[J].机械科学与技术,2009,28(9):1225-1234.
    [40]田石祥.缠绕式提升机容器参数振动的分析与仿真[J].矿山机械,2007,12:68-70.
    [41]姚美琴.缠绕式提升机提升速度的分析研究[J].山西焦煤科技,2008(4):52-54.
    [42]李玉瑾,夏荣海.摩擦轮提升钢丝绳动张力分析[J].煤炭工程,1992(8):17-20.
    [43]李玉瑾.电梯和提升机的提升钢丝绳动力学特性分析[C].第八届全国工程设计年会论文集.北京:机械工业出版社,2002:420-423.
    [44]李玉瑾.提升机钢丝绳弹性振动理论与动力学特性分析[J].起重运输机械,2003,(4):33-36.
    [45]潘英.提升钢丝绳动张力的研究[J].焦作工学院学报,1995,14(3):92-99.
    [46]徐荣,秦纪平,蔡建国,聂静.竖井提升钢丝绳动荷应力的计算[J].煤,1997,6(5):37-38.
    [47]严世榕,闻邦椿.竖井提升容器在提升过程中的动力学分析及计算机仿真[J].矿山机械,1998,(9):38-40.
    [48]严世榕,闻邦椿.矿井提升系统的动力学研究[J].金属矿山,1998(5):31-34.
    [49]严世榕,闻邦椿.下放容器时提升钢丝绳的动力学仿真[J].煤炭学报,1998,23(5):530-534.
    [50]王中琪.矿井提升钢丝绳的应力分析与强度计算[J].矿山机械,2002(11):88-89.
    [51]李铁萍,李之达,陈建桥,等.矿井提升机钢丝绳的粘弹性研究[J].机械强度,2004,26(3):337-340.
    [52]马军,王柏华,刘玉.多绳摩擦提升机钢丝绳滑动的Simulink仿真[J].矿山机械,2005,33(9):56-58.
    [53]李占芳,肖兴明,刘正全,等.矿井提升钢丝绳的动力学研究[J].煤矿安全,2007:11-14.
    [54]陈慧贤,刘双,唐清泰.基于Simulink的矿井提升机钢丝绳的动力学仿真及分析[J].矿山机械,2008,36(9):44-47.
    [55]黄银川,洪晓华,闫磊朋.矿井提升中的张力控制仿真分析[J].煤矿机械,2008(4):75-77.
    [56]刘峻,刘双,朱敏红.矿井提升机钢丝绳张力理论的探讨[J].机械制造与自动化,2009,38(4):69-71.
    [57]王平,肖兴明,丁保华,李帅波.矿井提升钢丝绳在提升过程中的动力学仿真[J].起重运输机械,2009(7):84-87.
    [58]李爱平,蒋超平,刘雪梅.以ADAMS为平台的钢丝绳动张力仿真分析[J].现代制造工程,2010,(1):43-46.
    [59] Vaughan J A. An investigation regarding the effect of kinetic shocks on winding ropes in vertical shafts[J]. Journal of the South African Association of Engineers,1904:217-245.
    [60] Perry J. Winding ropes in mines [J]. Philosophical Magazine,1906,11:107-117.
    [61] Perry J F, Smith D M. Mechanical breaking and its influence on winding equipment [J]. Proceedings ofthe Institution of Mechanical Engineers,1932,123:537-620.
    [62] Pollock P J, Alexander G W. Dynamic stresses in wire ropes for use on vertical shafts [J]. Wire Ropes inMines,1950,12:445-462.
    [63] Goroshko O A, Savin G N. The Dynamics of Threads with Variable Length [M]. In: Applications in MineHoist Systems. Kiev: The Ukrainian Academy of Sciences,1962(in Russian).
    [64] Goroshko O A, Savin G N. Introduction to Mechanics of One-Dimensional Bodies with VariableLength[M]. Kiev: Naukova Dumka,1971(in Russian).
    [65] Mitropolskii Y A. Problems of the Asymptotic Theory of Nonstationary Vibrations[M]. Jerusalem: IsraelProgram for Scientific Translations Ltd.,1965.
    [66] Kotera T. Vibrations of stringwith time-varying length [J]. Bulletin of the JSME,1978,21:1469-1474.
    [67] Marczyk S, Niziol J. Transverse-longitudinal vibrations of ropes with time-varying length [J].Engineering Transactions,1979,27:403-415(in Polish).
    [68] Klich A. The methods of calculations of operating and emergency loads in mine hoists with deep shafts[J]. Selected Problems in Mining and Mechanical Processing,1981,21:3–15(in Polish).
    [69] Mankowski R R. A Study of Nonlinear Vibrations Occurring in Mine Hoisting Cables [D]. Johannesburg:University of the Witwatersrand,1982.
    [70] Constancon C P. The Dynamics of Mine Hoist Catenaries [D]. Johannesburg: University of theWitwatersrand,1993.
    [71] Perkins N C, Mote Jr C D. Three-dimensional vibration of travelling elastic cable [J]. Journal of Soundand Vibration,1987,114:325-340.
    [72] Kumaniecka A, Niziol J. Dynamic stability of a rope with slow variability of the parameters [J]. Journalof Sound and Vibration,1994,178:211-226.
    [73] Terumichi Y, Ohtsuka M, Yoshizawa M, et al. Nonstationary vibrations of a string with time-varyinglength and a mass-spring system attached at the lower end [J]. Nonlinear Dynamics,1997,12:39-55.
    [74] Sun G F, Michael K, Liu J. Complete dynamic calculation of lattice mobile crane during hoisting motion[J]. Mechanism and Machine Theory,2005,40:447-466.
    [75] Imanishi E, Nanjo T, Kobayashi T. Dynamic simulation of wire rope with contact [J]. Journal ofMechanical Science and Technology,2009,23:1083-1088.
    [76]王庸禄.钢丝绳结构与接触应力分析[J].金属制品,1986,(6):31-36.
    [77]李祖钜.提升用钢丝绳的强度计算及分析[J].矿山机械,1989,(4):2-8.
    [78]李祖钜.钢丝绳在工作过程中的应力分析[J].金属制品,1989,(3):24-30.
    [79]王以元.提升钢丝绳的失效与寿命预测[J].矿山机械,1991,10:13-15.
    [80]余万华,袁康.钢丝绳中接触应力的计算.金属制品,1993,19(2):6-9.
    [81]倪忠进.钢丝绳力学特性及失效机理研究[D].昆明:昆明理工大学,2008.
    [82]唐文亭.1×7+IWS结构钢丝绳服役中应力应变的数值模拟[D].西安:西安理工大学,2009.
    [83]贾尚雨.不旋转钢丝绳的力学特性与失效研究[D].广州:华南理工大学,2011.
    [84] Hruska F H. Calculation on stresses in wire ropes [J]. Wire Products,1951,26(766-7):799-801.
    [85] Hruska F H. Radial forces in wire ropes [J]. Wire Products,1952,27:459-463.
    [86] Hruska F H. Tangential forces in wire ropes [J]. Wire Products,1953,28:455-460.
    [87] Leissa A W. Contact stresses in wire ropes [J]. Wire Products,1959,34(307-14):872-873.
    [88] Starkey W L., Cress H.A. An analysis of critical stresses and mode of failure of a wire rope [J]. Journal ofEngineering for Industry-Transactions of the ASME,1959,81:807-816.
    [89] Hobbs R E, Nabijou S. Changes in wire curvature as a wire rope is bent over a sheave [J]. Journal ofStrain Analysis for Engineering Design,1995,30:271-281.
    [90] Stein R A, Bert W. Radius of curvature of a double helix [J]. Journal of Engineering forIndustry-Transactions of the ASME,1962:394-395.
    [91] Knapp R H. Helical wire stresses in bent cable [J]. Journal of Offshore Mechanics and ArcticEngineering,1988,110:55-61.
    [92] Lee W K. An insight into wire rope geometry [J]. International Journal of Solids and Structures,1991,28(4):471-490.
    [93] Jiang W G, Yao M S, Walton J.M. A concise finite element model for simple straight wire rope strand [J].International Journal of Mechanical Sciences,1999,41:143-161.
    [94] Durville D. Modelisation du comportement mecanique de cables metalliques [J]. Revue Europeenne deselements finis,1998,7:1-3.
    [95] Siegert D. Initiation of fretting fatigue cracks in spiral multilayer strands [J]. OIPEEC Bulletin,1999,78:27-44.
    [96] Nawrocki A, Labrosse M. A finite element model for simple straight wire rope strands [J]. Computers&Structures,2000,77(4):345-359.
    [97] Kumar K, Botsis J. Contact stresses in multilayered strands under tension and torsion [J]. Journal ofApplied Mechanics,2001,68(3):432-441.
    [98] Giglio M, Manes A. Life prediction of a wire rope subjected to axial and bending loads [J]. EngineeringFailure Analysis,2005,12:549-568.
    [99] Jiang W G, Warby M K, Henshall J L. Statically indeterminate contacts in axially loaded wire strand [J].European Journal of Mechanics A/Solids,2008,27(1):69-78.
    [100] Argatov I. Response of a wire rope strand to axial and torsional loads: Asymptotic modeling of the effectof interwire contact deformations [J]. International Journal of Solids and Structures,2011,48:1413-1423.
    [101] Argatov II, Gómez X, Tato W, et al. Wear evolution in a stranded rope under cyclic bending:Implications to fatigue life estimation [J]. Wear,2011,271:2857-2867.
    [102]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006.
    [103] Zhou Z R, Gu S R, Vincent L. An investigation of fretting wear for two aluminum alloys [J]. TribologyInternational,1997(30):1-7.
    [104] Harris S J, Waterhouse R B, McColl I R. Fretting damage in lock coil steel ropes [J]. Wear,1993,170:63-70.
    [105] Waterhouse R B, McColl I R, Harris S J, et al. Fretting wear of a high-strength, heavily work-hardenedeutectoid steel [J]. Wear,1994,175:51-57.
    [106]董秀萍,刘国权,牛犁,等.金属橡胶隔振构件中不锈钢丝的微动摩擦磨损性能研究[J].摩擦学学报,2008,28(3):248-253.
    [107]张德坤,葛世荣.提升钢丝绳的微动损伤实验研究[J].矿山机械,1988(3):47-48.
    [108]张德坤,葛世荣,熊党生.矿井提升机用提升钢丝绳的微动磨损行为研究[J].摩擦学学报,2001,21(5):362-365.
    [109]张德坤,葛世荣,朱真才.提升钢丝绳的钢丝微动摩擦磨损特性研究[J].中国矿业大学学报,2002,31(5):367-369.
    [110] Zhang D.K., Ge S.R., Xiong D.S. Fretting wear of steel wires in hoisting ropes [J]. Journal of Universityof Science and Technology,2002,9(4):81-84.
    [111]张德坤,葛世荣.钢丝的微动磨损及其对疲劳断裂行为的影响研究[J].摩擦学学报,2004,24(4):356-359.
    [112]张德坤,葛世荣.钢丝微动磨损的评定参数及理论模型研究[J].摩擦学学报,2005,25(1):50-54.
    [113]张德坤,葛世荣.钢丝微动磨损过程中的接触力学问题研究[J].机械强度,2007,29(1):148-151.
    [114] Shen Y, Zhang D K, Ge S R. Effect of fretting amplitudes on fretting wear behavior of steel wires incoal mines [J]. Mining Science and Technology (China),2010,20(6):803-808.
    [115] Cruzado A, Hartelt M, W sche R, et al. Fretting wear of thin steel wires. Part1: Influence of contactpressure [J]. Wear,268(11-12):1409-1416.
    [116] Cruzado A, Hartelt M, W sche R, et al. Fretting wear of thin steel wires. Part2: Influence of crossingangle [J]. Wear,273(1):60-69.
    [117] Sato J, Shima M, Sugawara T, et al. Effect of lubricants on fretting wear of steel [J]. Wear,1988,125:83-95.
    [118] Batchelor A W, Stachowiak G W, Stachowiak G B, et al. Control of fretting friction and wear of ropingwires by laser surface alloying and vapour deposition coatings [J]. Wear,1992,152:127-150.
    [119] Stachowiak G W, Stachowiak G B, Batchelor A W. Suppression of fretting wear between roping wire bycoatings and laser-alloyed lasers of molybdenum [J]. Wear,1994,178:69-77.
    [120] McCall I R, Waterhouse R B, Harris S J, et al. Lubricated fretting wear of a high-strength eutectoid steelrope wire [J]. Wear,1995,185:203-212.
    [121] Zhang D K, Shen Y, Xu L M, et al. Fretting wear behaviors of steel wires in coal mine under differentcorrosive mediums [J]. Wear,2011,271(5-6):866-874.
    [122]郭强.高分子材料耐磨机理与金属绳缆微动损伤防护研究[D].北京:清华大学,1996.
    [123] Nix K J, Lindley T C. The Application of Fracture Mechanics to Fretting Fatigue [J]. Fatigue andFracture of Engineering Materials and Structures,1985,8(2):1435.
    [124] Bill R C. Review of factors that influence fretting wear [J]. ASTM-STP,1982,780:165.
    [125] Waterhouse P B. Freciton, lubrication, and wear technology [J]. The Materials Information Society,1992,18:242.
    [126] Berthier Y, Colombie C H, Vincent L. Fretting wear and their effects on fretting fatigue [J]. Journal ofTribology,1988:110-117.
    [127] Dobromirski J M. Variables of fretting process [J]. ASTM-STP,1992:1159-1160.
    [128] Zhou Z R, Goudreau S, Fiset M, et al. Single wire fretting fatigue tests for electrical conductor bendingfatigue evaluation [J]. Wear,1995,181-183:537-543.
    [129] Zhou Z R, Nakazawa K, Zhu M H, et al. Progress in fretting maps [J]. Tribology International,2006,39:1068-1073.
    [130] Fouvry S, Kapsa Ph, Vincent L, et al. Theoretical analysis of fatigue cracking under dry friction forfretting loading conditions [J]. Wear,1996,195:21-34.
    [131] Brevet P, Siegert D. Comportement à la fatigue de torons de précontrainte soumis à la flexion [J].Bulletin de Liaison des Laboratoires des Ponts et Chaussées,1993,187:45-50.
    [132] Siegert D. Mécanismes de fatigue de contact dans les cables de haubanage du Génie Civil [D]. Nantes:Université de Nantes,1997.
    [133] Siegert D, Royer J, Brevet P. Fretting fatigue in steel stay cables. In: International Symposium onFretting,1997November, Chengdu, China.
    [134] Siegert D. Initiation of fretting fatigue cracks in spiral multilayer strands [J]. OIPEEC Bulletin,1999,78:27-44.
    [135] Siegert D, Brevet P. Fatigue of stay cables inside end fittings: High frequencies of wind inducedvibrations. In: Proceedings of OIPEEC technical meeting,2003September1-3, Lenzburg, Switzerland.
    [136] Urvoy J R, Siegert D, Dieng L, et al. Influence des revêtements métalliqueset des lubrifiants sur lafatigue des contacts interfilaires de cables [J]. Congrès Francais de Mécanique,2005:1-6.
    [137] Dieng L, Urvoy J R, Siegert D, et al. Assessment of lubrication and zinc coating on the high cyclefretting fatigue behavior of high strength steel wires. In: OIPEEC Conference,2007, Johannesburg,South Africa, pp.85–97.
    [138] Starkey W L, Cress H A. An analysis of critical stresses and mode of failure of a wire rope [J]. Journalof Engineering for Industry-Transactions of the ASME,1959,81:807-816.
    [139] Ruiz C, Boddington P H B, Chen C. An investigation of fatigue dovetail joint [J]. ExperimentalMechanics,1984,24:208.
    [140] Sato K. Damage formation during fretting fatigue [J]. Wear,1988,125:163.
    [141] Hobbs R E, Raoof M. Mechanism of fretting fatigue in steel cables [J]. International Journal of Fatigue,1994,16(4):273-280.
    [142]朱如鹏,潘升材,高德平.微动疲劳中的应力状态参数和微动磨损参数的研究[J].工程力学,1998,15(4):116.
    [143] Périer V., Dieng L., Gaillet L., et al. Fretting-fatigue behavior of bridge engineering cables in a solutionof sodium chloride [J]. Wear,2009,267:308-314.
    [144] Périer V, Dieng L, Gaillet L, et al. Influence of an aqueous environment on the fretting behavior of steelwires used in civil engineering cables [J]. Wear,2011,271(9-10):1585-1593.
    [145] Llorca J, Sanchez-Galvez V. Fatigue limit and fatigue life prediction in high strength cold drawneutectoid steel wires [J]. Fatigue&Fracture of Engineering Materials&Structures,1989,12(1):31-45.
    [146] Beretta S, Matteazzi S. Short crack propagation wires in eutectoid steel wires [J]. International Journal ofFatigue,1996,18(7):451-456.
    [147] Takeuchi M, Waterhouse R B, Mutoh Y, et al. The behavior of fatigue crack growth of high tensileroping steel in air and seawater in the fretting-corrosion-fatigue [J]. Fatigue and Fracture of EngineeringMaterials and Structures,1991,14(1):69-77.
    [148] Mahmoud K M, Fisher J W. Assessment of cracking potential in bridge cable wires. In: Mahmoud KM,editor. Proceedings of seminar on bridge cables: Assessment, design and erection.2003February3,New York, USA.
    [149] Mahmoud K M. Fracture strength for a high strength steel bridge cable wire with a surface crack [J].Theoretical and Applied Fracture Mechanics,2007,48(2):152-160.
    [150] Li C X, Tang X S, Xiang G B. Fatigue crack growth of cable steel wires in a suspension bridge:Multiscaling and mesoscopic fracture mechanics [J]. Theoretical and Applied Fracture Mechanics,2010,53:113-126.
    [151] Feyrer K. Wire ropes [M]. Berlin: Springer,2007.
    [152] Gibson P T. Operational characteristics of ropes and cables. In: Bash JF (Ed.). Handbook ofOceanographic Winch, Wire and Cable Technology.3rd ed. National Science Foundation,2001.
    [153] Chaplin C R. Interactive fatigue in wire rope applications. In: Symposium on Mechanics of SlenderStructures (MoSS2008), Keynote Lecture,2008July23-25, Baltimore, USA.
    [154]张春于.浅议钢丝绳直径的计算和选择[J].工程机械,1992(3):41-42.
    [155] Tmoshenko S, Young D H, Weaver W J R. Vibration problems in engineering [M]. New York: JohnWiley&Sons,1974.
    [156]夏荣海.矿井提升机械设备[M].徐州:中国矿业大学出版社,1987.
    [157]肖林京.矿井提升设备钢丝绳载荷系统纵向振动的研究[J].矿山机械,1995(1):18-20.
    [158]严世榕,闻邦椿.提升钢丝绳容器天轮系统的振动仿真研究[J].冶金设备,1998(5):12-14.
    [159]曹国华,朱真才,彭维红,等.箕斗在装载过程中的震动特性研究[J].煤炭学报,2007,32(3):327-330.
    [160]严世榕,闻邦椿.竖井提升钢丝绳容器系统在提升过程中的动力学仿真[J].中国有色金属学报,1998,8(增刊2):618-622.
    [161] Vanderveldt H H, Chung B S, Reader W T. Some dynamic properties of axially loaded wire ropes [J].Experimental Mechanics,1973:24-30.
    [162] Vanderveldt H H., Gilheany J J. Propagation of a longitudinal pulse in wire ropes under axial loads [J].Experimental Mechanics,1970:401-407.
    [163]郑旭民.提升机盘式制动器的可靠性设计与试验研究[D].徐州:中国矿业大学,2009.
    [164]常用根.提升机盘式制动器系统可靠性研究[D].徐州:中国矿业大学,2007.
    [165]张素侠,唐友刚,林维学,等.水下缆绳松弛-张紧过程的冲击张力实验研究[J].中国造船,2008,49(增刊2):385-390.
    [166] Czitary E. Seilschwebebahnen [M]. Wien: Springer,1952.
    [167] Benndorf H. Beitrage zur Theorie der Drahtseile. Zeitschr. d. oster-reichischen Ingenieur-u [J].Architektenvereins,1904,56(30):433-437.
    [168] Costello G A, Miller R E. Lay efect of wire rope [J]. Journal of the Soil Mechanics and FoundationEngineering Division, ASCE,1979,105(EM5):597-608.
    [169] Costello G A, Sinha S K. Static behavior of wire rope [J]. Journal of the Soil Mechanics and FoundationEngineering Division, ASCE,1977103(EM5):1011-1022.
    [170] Erdonmez C, Imrak C E. A finite element model for independent wire rope core with double helicalgeometry subjected to axial loads [J]. Sadhana,2011,36(6):995-1008.
    [171] Costello G A. Theory of wire rope [J]. Berlin: Springer,1990.
    [172]沈燕.钢丝的切向微动磨损机理研究[D].徐州:中国矿业大学,2011.
    [173]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [174] Cormier N G, Smallwood B S, Sinclair G B, et al. Aggressive submodeling of stress concentration [J].International Journal for Numerical Methods in Engineering,1999,46:889-909.
    [175] Kim H S, Mall S. Investigation into three–dimensional effects of finite contact width on fretting fatigue[J]. Finite Elements in Analysis and Design,2005,41:1140-1159.
    [176] ABAQUS Standard User’s Manual [M]. Pawtucket: Hibbit, Karlsson and Sorensen, Inc.,2002
    [177] Fernández J, Jiménez M A, Pradera J M, et al. Application of the substructuring technique to the stressanalysis of a railcar underframe bolster[J]. In: Proceedings of16th Annual ABAQUS Users’Conference.2003June4-6, Munich, Germany.
    [178] Jiang W G, Henshalla J L, Waltonb J M. A concise finite element model for three–layered straight wirerope strand [J]. International Journal of Mechanical Sciences,2000,42:63-86.
    [179] Pilkey W D. Formulas for stress, strain, and structural matrices [D]. New Jersey: John Wiley&Sons,Inc.,2005.
    [180] Boresi A P, Schmidt R J, Sidebottom O.M. Advanced Mechanics of materials [M]. New York:Wiley,1993.
    [181] Thomas H R, Hoersch V A. Stress due to the pressure of one elastic solid upon another [D]. Champaign:University of Illinois,1930.
    [182] Warburton J, Bradford R. The progressive wear of tubes: The volumes of the intersections of cylinderswith each other and with flats [J]. Wear,1986,113:331-352.
    [183] McColl I R, Ding J, Leen S B. Finite element simulation and experimental validation of fretting wear [J].Wear,2004,256:1114-1127.
    [184] Johnson K L. Contact Mechanics [M]. Cambridge: Cambridge University Press,1985.
    [185] Urchegui M A, Tato W, Gómez X. Wear evolution in a stranded rope subjected to cyclic bending [J].Journal of Materials Engineering and Performance,2008,17:550-560.
    [186] Out J M M, Von Morgen B J. Slippage of helical reinforcing on a bent cylinder [J]. EngineeringStructures,1997,19:507-515.
    [187]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2001.
    [188] Zhou Z R, Vincent L. Mixed fretting regime [J]. Wear,1995(181-3):531-536.
    [189] Jin O, Mall S. Effect of independent pad displacement on fretting fatigue behavior of Ti-6Al-4V [J].Wear,2002,253(5-6):585-596.
    [190] Jin O, Mall S. Influence of contact configuration on fretting fatigue behavior of Ti-6Al-4V underindependent pad displacement condition [J]. International Journal of Fatigue,2002,24(12):1243-1253.
    [191] Gnanamoorthy R, Rosi R R. Fretting fatigue in AISI1015steel [J]. Bulletin of Materials Science,2002,25(2):109-114.
    [192] Arora P, Jacob M, Salit M, et al. Experimental evaluation of fretting fatigue test apparatus [J].International Journal of Fatigue,2007,29:941-952.
    [193] Lee H, Mall S. Investigation into effects and interaction of various fretting fatigue variables underslip-controlled mode [J]. Tribology International,2006,39:1213-1219.
    [194] Wallace J M, Neu R. Fretting fatigue crack nucleation in Ti-6Al-4V [J]. Fatigue and Fracture ofEngineering Materials and Structures,2003,26:199-214.
    [195] Pape J A, Neu R W. Influence of contact configuration in fretting fatigue testing [J]. Wear,1999(225-229):1205-1214.
    [196] Lee H, Mall S. Effect of dissimilar mating materials and contact force on fretting fatigue behavior ofTi-6Al-4V [J]. Tribology International,2004,37:35-44.
    [197] Wang Z A, Zhou Z R, Chen G X. An investigation of palliation of fretting wear in gross slip regime withgrease lubrication [J]. Industrial Lubrication and Tribology,2011,63(2):84-89.
    [198] Petit J, Sarrazin-Baudoux C, Lorenzi F. Fatigue crack propagation in thin wires of ultra-high strengthsteels [J]. Procedia Engineering,2010,2:2317-2326.
    [199] Nishioka K, Hirakawa K. Fundamental investigation of fretting fatigue (Part6, Effects of contactpressure and hardness of materials)[J]. Bull JSME,1972,15:135-144.
    [200]王希靖,张杰,牛勇,等.7050-T7451铝合金搅拌摩擦焊接头低周疲劳性能研究[J].金属铸锻焊技术,2008,37(13):68.
    [201]宋志坤,谢基龙,李强,郭少中.840D货车车轮CL60钢在300℃下的低周疲劳特性[J].北京交通大学学报,2010,34(1):120127.
    [202] Sumita H, Nakazawa K, Hamano R, et al. Research on improvement of fretting fatigue characteristics ofhigh-strength structural material [J]. Research Reports of National Institute for Materials,1993,14:207-218.
    [203] Fang D, Berkovits A. Fatigue design model based on damage mechanisms revealed by acoustic emissionmeasurements [J]. Journal of Engineering Materials and Technology,1995,117:201-208.
    [204]邵永波,裴珍,于大安,王师.制绳钢丝疲劳损伤过程声发射研究[J].材料研究学报,2000,14(2):163-166.
    [205] Jayaprakash M, Ganesh Sundara Raman S. Influence of pad span on fretting fatigue behavior of AISI304stainless steel [j]. Journal of Materials Science,2007,42:4308-4315.
    [206] A d A, Amrouche A, Bachir Bouiadrjra B, et al. Fatigue life prediction under variable loading based on anew damage model [J]. Materials&Design,2011,32(1):183-191.
    [207]莫德锋,何国求,朱正宇,等.Al-7Si-0.3Mg合金低周疲劳行为及其机理[J].特种铸造及有色合金,2008,28(7):493495.
    [208] Jayaprakash M, Mutoh Y, Yoshii K. Fretting fatigue behavior and life prediction of automotive steelbolted joint [J]. Materials&Design,2011,32(7):3911-3919.
    [209] Hills D A, Nowell D. Mechanics of fretting fatigue. Dordrecht: Kluwer Academic Publishers;1994.
    [210]刘道新,刘军,刘元慵.微动疲劳裂纹萌生位置及形成方式研究[J].工程力学,2007,24(3):4247.
    [211]周文.微动疲劳裂纹萌生特性及寿命预测[D].杭州:浙江工业大学,2007.
    [212]欧红永.微动疲劳接触应力的有限元分析[D].杭州:浙江工业大学,2009.
    [213] Dominguez J. Cyclic variations in friction forces and contact stresses during fretting fatigue [J]. Wear,1998,218:43-53.
    [214] Socie D F, Marquis G B. Multiaxial fatigue [M]. Warrendale: Society of Automotive Engineers,Inc.,2000.
    [215] Fatemi A, Socie D. A critical plane approach to multiaxial fatigue damage including out-of-phaseloading [J]. Fatigue&Fracture of Engineering Materials&Structures,1988,11(3):149-165.
    [216] Kim K S, Chen X, Han X, et al. Estimation methods for fatigue properties of steels under axial andtorsional loading [J]. International Journal of Fatigue,2002,24:783-793.
    [217] Miyagawa H, Takeuchi M, Waterhouse R B. Propagation of fatigue cracks in high strength steel ropingwire in oil and the influence of fretting. In: Proceedings of5thInternational Congress on Tribology,1989, Helsinki, Finland, pp.267-271.
    [218] Schijve J. Fatigue of Structures and Materials [M]. New York: Springer-Verlag New York Inc,2nd ed.2009.
    [219] Murakami Y. Stress intensity factors [M]. Oxford: Pergamon Press,1987
    [220] Llorca J, Sanchez-Galvez. Fatigue threshold determination in high strength cold drawn eutectoid steelwires [J]. Engineering Fracture Mechanics,1987,26(6):869-882.
    [221]陈浩宾.高压输电导线微动损伤及微动疲劳寿命预测[D].武汉:华中科技大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700