用户名: 密码: 验证码:
1、甲型H1N1流感病毒致病机理的研究2、PAMAM纳米材料毒性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2009年4月,在墨西哥首次检测并发现了一种新型的甲型流感病毒(Novel Swine-Origin Influenza A)在人群中传播,并造成感染人群的发病。这种新型的甲型H1N1流感病毒(S-OIV H1N1)迅速传播至全球许多国家和地区。2009年6月11日,世界卫生组织(WHO)发布公告,甲型流感病毒的全球警戒水平提升至6级,这也预示着全球流感大流行的爆发。
     尽管此次流行的甲型H1N1流感病毒感染多为散在的个体,且感染症状一般比较轻微,但对于青年人以及那些本来有基础病的人群(其中包括哮喘、糖尿病、病态肥胖症以及孕妇)而言,导致更为严重疾病的病程的情况将会大大增加。2010年8月10日,WHO甲型H1N1流感病毒大流行结束,但地区性流感爆发仍在延续。根据WHO最新统计结果,而一般情况下,因季节性流感病毒感染,每年死亡人数在250,000-500,000之间。此次甲型H1N1流感大流行共导致18,000人死亡,死亡率占4%,健康保护机构(HPA)报道,最近在英国确证因感染流感病毒导致214人死亡,其中195人确证感染了2009年的甲型H1N1流感病毒株。该机构由此提出,甲型H1N1(S-OIV H1N1)可能会卷土重来。
     2009年大流行的甲型H1N1病毒可能来源于典型的猪甲型H1N1流感病毒、可能与1918年“西班牙大流感”流行的人甲型H1N1流感病毒以及禽甲型流感病毒北欧世系有同源性。研究人员对分离到的病毒进行全基因序列测定,但没有发现任何已经确定的毒力标记物。动物实验表明,造成2009年大流行的甲型H1N1病毒比人季节性甲型H1N1流感病毒具有明显的致病力。动物模型研究显示,与季节性甲型流感病毒相比,2009年的甲型H1N1病毒可以更有效地在宿主细胞内进行病毒复制,并导致更为严重的发病率和致死率。
     对许多生理过程,包括组织萎缩、发展以及肿瘤生物学等而言,进程性细胞死亡、或凋亡是至关重要,在众多包括疾病性感染的病理过程中,细胞凋亡发挥重要的作用。许多病毒感染均可导致宿主细胞凋亡,流感病毒可在体内和体外造成许多种类的细胞凋亡。
     有报道,感染H5N1-AVI患者和禽的肺泡上皮细胞或血感管内皮细胞出现细胞凋亡。还有其他一些研究报道提出,感染H5N1-AVI的人类患者,细胞发生凋亡是导致发展成为急性呼吸窘迫症(acute respiratory distress syndrome, ARDS)所必须的。
     通过进行细胞培养和感染小鼠的研究实验证明,导致1918-1919年爆发的“西班牙大流感”的甲型H1N1流感病毒以及流感H9N2病毒均能够导致宿主细胞凋亡。然而至今,尚未有2009年造成全球流感大流行的甲型H1N1流感病毒有关可产生细胞凋亡的报道。
     有研究发现,感染猪源性甲型H1N1流感死亡患者的肺部发现有肺泡的损伤,支气管坏死和组织出血。并在支气管上皮细胞以及肺泡细胞出现病变。
     我们在研究中,对2009年流感大流行期间在国内分离到的一些猪源性甲型H1N1流感病毒株,发现其中甲型H1N1病毒文山株(A/Wenshan/01/2009H1N1)能够导致人呼吸道上皮细胞A549株和CNE-2Z株细胞的凋亡。
     我们还发现,对于感染文山株病毒(A/Wenshan/01/2009H1N1),来源于上呼吸道的CNE-2Z细胞比下呼吸道的A549更为敏感,与人季节性甲型流感病毒相比,文山株显示出更高的侵入能力和病毒复制能力。
     我们通过研究还证实了,流感病毒是利用clathrin-依赖的和dynamin依赖的进入通路进入宿主细胞。
     在人类迈入二十一世纪的今天,纳米技术在医药、信息以及通讯技术产业领域里被认为是极为重要的新兴技术。
     纳米材料半径微小,其特殊的小尺寸效应、量子效应和巨大比表面积。树状分子材料(PAMAM)为单分散结构,且高度分枝化的纳米材料,这种结构能够设计成单分散胶体、封闭的金属簇、结合组织液、或具有生物活性的成分,并且能够在适宜的介质中溶解,并可与某些成分的表面结合。由于PAMAM的这一结构特性,因此,PAMAM可用于开发成各种功能性材料用于众多领域,包括化学物质的分离、富集、医疗影像以及DNA或药物的释放等。
     树状分子材料是由重复的分支组成的球型大分子,围绕核心形成三维对称结构。树状分子呈单分散对称性球型结构的结构决定了其特性。树状分子材料可分为低分子量和高分子量。前者一般指树状分支,后者包括树枝状多聚体、超枝化聚合物多聚体等。树状分枝纳米材料的特性取决于分子表面的功能基团。同时,也是的树状分子纳米材料与其他聚合材料不同,可成为水溶性材料,树状结构包裹的功能分子结构可以成为行使活性功能的场所。树状分子纳米材料可由于合成过程中重复的分支循环数量的不同分成不同的代。每新合成一代其分子量比上一代增加一倍。PAMAM G5树状分子材料是和一定数量的乙酰酐乙酰化反应的产物。高分子量的树状纳米材料具有更多的功能基团,用于商业化的树状分子纳米材料可以有更为广泛的应用。
     聚酰胺纳米材料(PAMAM)是目前研究比较成熟的树状分子纳米材料。PAMAM的核心为是乙二胺,和另外一个乙二胺经胺化反应形成G-0代。PAMAM纳米材料的表面功能基团被认为是链接化学,具有许多潜在的应用价值。PAMAM树枝状大分子被用广泛应用于药物研究,用于抗感染,抑制细胞、病毒、细菌、蛋白间的多价结合等。纳米材料在医学领域具有极大的应用前景。
     但随着纳米技术的广泛应用,纳米材料可能存在的安全性问题越来越引起广泛的关注。当前,纳米材料对机体可能会机体造成肺损伤已成为研究的热点,由此导致全世界都在呼吁在纳米材料的安全性问题彻底解决前应暂停纳米材料的使用,特别是在医药领域的呼声更为强烈。美国环境保护机构开始评价纳米技术对人类健康产生的影响,这对PAMAM纳米材料的毒性以及对环境的安全性发挥重要作用的资料。
     目前,关于对纳米颗粒毒性的研究的重点是导致肺部疾病。我们曾经开展过相关研究显示,血管紧张素转化酶2(angiotensin I converting enzyme2,ACE2)能够保护肺部酸吸入综合征、败血症以及感染SARS冠状病毒的小鼠避免导致严重的就急性肺损伤。由以前的研究,我们设想,是否ACE2也能够保护小鼠抵抗因纳米颗粒产生的肺损伤。
     目前,可供商业化提供的全代(阳离子)或半代(阴离子)的PAMAM纳米材料。由于PAMAM纳米材料正越来越广泛地在应用于医药领域,PAMAM阳离子纳米材料也即将完成临床试验,获得美国食品药品管理局(FDA)的批准。我们对阳性PAMAM纳米材料进行了深入的研究,阐明通过实验观察到的PAMAM导致肺损伤的毒性机理。
     我们的研究显示,给小鼠注射PAMAM,能够上调小鼠肺组织的ACE2表达,下调血管紧张素Ⅱ的产生,从而避免严重肺损伤的产生。注射ACE2基因敲除小鼠,导致动物肺损伤的发生。我们的研究解释可使纳米颗粒不能够导致肺损伤的原因,并建议为日益关注的纳米技术的安全性问题提供了可能的治疗策略。
In April2009, a new strain of influenza virus that caused disease and transmitted in humans (Novel Swine-Origin Influenza A, H1N1) was detected. This new swine-origin H1N1influenza A virus (S-OIV H1N1) spread efficiently around the world, leading to the World Health Organization (WHO) declaring that the outbreak a pandemic on11June2009. Although the infection was mild for most individuals, the young and those with certain underlying conditions (including asthma, diabetes, morbid obesity, and pregnancy) seem to at great risk of severe disease progression. On10August2010, the WHO announced the H1N1influenza virus has moved into the post-pandemic period. However, localized outbreaks of various magnitudes are likely to continue. According to the latest WHO statistics, the virus has killed more than18,000people, approximately4%of the250,000to500,000annual influenza deaths. The Health Protection Agency (HPA) reported that of the recent214confirmed deaths in the UK,195has been infected with the2009H1N1strain, suggesting this S-OIV H1N1may return.
     The2009pandemic H1N1derived from two unrelated swine H1N1viruses, one of them a "classic" swine derivative of the1918human virus and the other the European avian-like H1N1lineage. Sequence analysis of its whole genome has failed to identify any virulence markers previously recognized. Animal studies have indicated that2009pandemic H1N1is slightly more pathogenic than contemporary human seasonal H1N1viruses. In a mouse model, the2009H1N1virus also replicated more efficiently and caused greater morbidity and mortality than seasonal influenza virus.
     Programmed cell death, or apoptosis is critical for many physiological processes, including tissue atrophy, development, and tumor biology. Apoptosis also plays an important role in the pathogenesis of many infectious diseases, including those caused by virus. Many virus infections cause apoptosis in host cells, and the influenza virus induces apoptosis in numerous cell types, both in vivo and in vitro. The alveolar epithelial cells or vascular endothelial cells of human patients and chickens infected by H5N1-AVI were reported to undergo apoptosis Other reports suggest that apoptosis of those cells is essential for the development of acute respiratory distress syndrome (ARDS) in humans which is observed in H5N1-AVI-infected patients.1918H1N1influenza virus and H9N2also have been shown to induce apoptosis in infected mouse and cell culture. But until now, there has been no report on the apoptosis induced by2009pandemic H1N1.
     The other study shows that diffuse alveolar damage was present in the patients confirmed (S-OIV) infection. The diffuse alveolar damage was associated with necrotizing bronchiolitis and in five with extensive hemorrhage. There was also a cytopathic effect in the bronchial and alveolar epithelial cells, as well as necrosis, epithelial hyperplasia, and squamous metaplasia of the large airways.
     In this study, we have screened a few2009pandemic S-OIV H1N1isolated in China and found A/Wenshan/01/2009H1N1could cause apoptotic cell death in both human airway epithelial cell lines-A549and CNE-2Z. We also found that CNE-2Z cells from upper respiratory tract are more susceptible to A/Wenshan H1N1infection than A549cells that originate in the lower respiratory tract. While compared with contemporary seasonal H1N1A/Jinnan virus, the A/Wenshan H1N1displayed higher entry efficiency and virus replication.We also found that the influenza virus can enter into the host cells via clathrin-dependent and dynamin-dependent pathway endocytosis. Nanotechnologies are thought to be potentially important for a number of different industries particularly the pharmaceutical industry, information and communication technology, and other areas that require stronger and lighter materials.
     Nano-materials have some features in a special small size, quantum effects and large surface area due to very small radius. Dendrimers are relatively monodisperseand highly branched nanoparticles that can be designed to chelate metal ions; encapsulate metal clusters; bind organic solutes or bioactive compounds; and become soluble in appropriate media or bind onto appropriate surfaces. Because of these unique properties, dendrimers are providing unprecedented opportunities to develop functional nanomaterials for a variety of applications, including chemical separations, chemical sensing, medical imaging, DNA/drug delivery.
     Dendrimers are repeatedly branched, roughly spherical large molecules. A dendrimer is typically symmetric around the core, and often adopts a spherical three-dimensional morphology. Dendritic molecules are characterized by structural perfection. Dendrimers are monodisperse and usually highly symmetric, spherical compounds. The field of dendritic molecules can be roughly divided into low-molecular weight and high-molecular weight species. The first category includes dendrimers and dendrons, and the latter includes dendronized polymers and hyperbranched polymers.
     The properties of dendrimers are dominated by the functional groups on the molecular surface. Dendritic encapsulation of functional molecules allows for the isolation of the active site, also, it is possible to make dendrimers water soluble, unlike most polymers, by functionalizing their outer shell with charged species or other hydrophilic groups.
     Dendrimers are also classified by generation, which refers to the number of repeated branching cycles that are performed during its synthesis. Each successive generation results in a dendrimer roughly twice the molecular weight of the previous generation. The primary amines of generation5(G5) PAMAM dendrimers were acetylated by reaction with prescribed amounts of acetic anhydride. Higher generation dendrimers also have more exposed functional groups on the surface, which can later be used to customize the dendrimer for a given application.
     Poly(amidoamine), or PAMAM, is perhaps the most well known dendrimer. The core of PAMAM is a diamine (commonly ethylenediamine), which is reacted with methyl acrylate, and then another ethylenediamine to make the generation-0(G-0) PAMAM. The functional group on the surface of PAMAM dendrimers is ideal for click chemistry, which gives rise to many potential applications.
     Dendrimer itself is also used as a drug for eliminating infection, inhibiting multivalent binding among cell, virus, bacteria and proteins. It has great prospects in the medical field. However, several issues have been raised that threaten the potential widespread utility of nanotechnologies. Of these concerns, the toxicities of nanoparticles in humans are among the most distressing; nanomaterials have been reported to be potentially harmful at the cellular, subcellular, and protein level, and have been found to evoke injurious responses in various organisms.
     Many of these studies have focused on lung diseases and a worldwide moratorium on nanomaterials has been called until the safety issues have been resolved. Therefore, it is of critical importance to elucidate the molecular mechanisms by which nanoparticles induce lung injury. As the U.S. Environmental Protection Agency (EPA) begins its assessment of the impact of nanotechnology on human health and the environment, there is a critical need of data and quantitative tools for assessing the environmental fate and toxicity of engineered nanomaterials such as dendrimers。
     Most studies on nanoparticle toxicity have focused on lung diseases. We previously showed that angiotensin I converting enzyme2(ACE2) protects mice from severe acute lung injury induced by acid aspiration, sepsis and the SARS coronavirus, and in this study we sought to determine whether ACE2also protects against nanoparticle-induced lung injury.
     PAMAM dendrimers are commercially available as either whole (cationic) or half (anionic) generation polymers. Because PAMAM dendrimer nanomaterials are widely used in the pharmaceutical industry-a cationic species was just being completed in clinical trials, as approved by US FDA.we further examined the toxicity of the cationic PAMAM dendrimers to investigate the underlying molecular mechanism that leads to the observed lung injury. Moreover, the in vivo tissue distribution of G5has been reported to show high concentrations in lung tissue.
     Here we show that administration of specific cationic Starburst polyamidoamine dendrimers, but not functional carbon nanotubes, to mice downregulated ACE2expression in lung tissues, upregulated angiotensin II production, and precipitated acute lung failure.
     Administration of recombinant ACE2ameliorated nanoparticle-induced lung injury. Our data provide a molecular explanation for nanoparticle-induced acute lung failure, and suggest potential therapeutic strategies to address the growing concerns over the safety of nanotechnology.
引文
1.2009. swine influenza A (H1N1) infection in two children-Southern California, March-April 2009. MMWR Morb Mortal Wkly Rep.58,400-2.
    2. Anderson, H.A., Chen, Y., Norkin, L.C. (1996). Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell.7,1825-1834.
    3. Baskin, C.R., Bielefeldt-Ohmann, H., Tumpey, T.M., Sabourin, P.J., Long, J.P., Garcia-Sastre, A., Tolnay, A.E., Albrecht, R., Pyles, J.A., Olson, P.H et al. (2009). Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U S A.106,3455-3460.
    4. Chen, W., Calvo, P.A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P et al. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med.7,1306-1312.
    5. Daidoji, T., Koma, T., Du, A., Yang, C.S., Ueda, M., Ikuta, K., Nakaya, T. (2008). H5N1 avian influenza virus induces apoptotic cell death in mammalian airway epithelial cells. J. Virol.82,11294-11307.
    6. Doherty, G. J., McMahon, H. T. (2009). Mechanisms of endocytosis. Annu. Rev. Biochem.78,857-902.
    7. Dunham, E.J., Dugan, V.G., Kaser, E.K., Perkins, S.E., Brown, I.H., Holmes,E.C., and Taubenberger, J.K. (2009). Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. J. Virol.83,5485-5494.
    8. Ehrhardt, C., Wolff, T., Pleschka, S., Planz, O., Beermann, W., Bode, J.G., Schmolke, M., Ludwig, S. (2007). Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol.81,3058-3067.
    9. Garten, R.J., Davis, C.T., Russell, C.A., Shu, B., Lindstrom, S., Balish, A., Sessions, W.M., Xu, X., Skepner, E., Deyde, V., et al. (2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science.325,197-201.
    10. Garcia-Sastre, A., Tumpey, T.M., Palese, P. (2010). PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J Virol. 84,4442-50.
    11. Gavrieli, Y., Sherman, Y., Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol.119,493-501.
    12. Gocnikova, H., Russ, G. (2007). Influenza a virus PB1-F2 protein. Acta Virol.51,101-108.
    13. Hai, R., Schmolke, M., Varga, Z.T., Manicassamy, B., Wang, T.T., Belser, J.A., Pearce, M.B., Herfst, S., Chutinimitkul, S., Ye, J., de Wit, E., Munster,V.J., Schrauwen, E.J., Bestebroer, T.M., Jonges, M., Meijer, A., Koopmans, M eta al. (2010). Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol.84,3752-3758.
    14. Ito, T., Kobayashi, Y., Morita, T., Horimoto, T., Kawaoka, Y. (2002). Virulent infuenza A viruses induce apoptosis in chickens. Virus Res.84,27-35.
    15. Itoh, Y., Shinya., M, Kiso., T, Watanabe., Y, Sakoda., M, Hatta., Y, Muramoto., D, Tamuta., Y, Sakai-Tagawa., T, Noda et al. (2009). In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses.460,1021-1025.
    16. Jacobson, M.D., Weil, M., Raff, M.C. (1997). Programmed cell death in animal development. Cell.88,347-354.
    17. Jain,s., L.Kamimoto., A.M.Bramley., A.M.Schmitz., S.R.Benoit., J.Louie., D.E.Sugerman., J.K.Druckenmiller., K.A.Ritger., R.Chugh et al. (2009). Hospitalized Patients with 2009 H1N1 Influenza in the United States, April-June 2009. N Engl J Med. 361,1935-1944.
    18.Jeffery, K., Taubenberger., John,C.K. (2010). Influenza virus evolution, host adaptation, and pandemic formation.7,440-451.
    19. Kuwano, K. (2007). Epithelial cell apoptosis and lung remodeling. Cell. Mol.Immunol. 4,419-429.
    20. Lakadamyali, M., Rust, M.J., and Zhuang. X. (2004). Endocytosis of influenza viruses. Microbes Infect 6,929-936.
    21.Lam, W.Y., Tang, J.W., Yeung, A.C., Chiu, L.C., Sung, J.J., Chan, P.K. (2008). Avian infuenza virus A/HK/483/97(H5N1) NS1 protein induces apoptosis in human airway epithelial cells. J. Virol.82,2741-2751.
    22. Ludwig, S., Pleschka, S., Planz, O., Wolff, T. (2006). Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cell Microbiol.8,375-386. Ludwig, S., Pleschka, S., Wolff, T. (1999). A fatal relationship-influenza virus interaction with the host cell. Vial immunol.12,175-196.
    23. Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C., Kirchhausen, T. (2006). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell.10,839-850.
    24. Maines, T.R., Jayaraman, A., Belser, J.A., Wadford, D.A., Pappas, C., Zeng, H., Gustin, K.M., Pearce, M.B., Viswanathan, K., Shriver, Z.H., Raman, R., Cox, N.J., Sasisekharan, R., Katz, J.M., Tumpey, T.M. (2009). Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science.24,484-487.
    25. Majno, G., Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol.146,3-15.
    26. Martin, S.J., Green, D.R., Cotter, T.G. (1994). Dicing with death:dissecting the components of the apoptosis machinery. Trends Biochem Sci.19,26-30.
    27. McAuley, J.L., Zhang, K., McCullers, J.A. (2010). The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. J Virol.84,558-564.
    28. McLean, J.E, Datan, E., Matassov, D., Zakeri, Z.F. (2009). Lack of Bax prevents influenza A virus-induced apoptosis and causes diminished viral replication. J Virol.83, 8233-8246.
    29. Mori, I., Komatso, T., Takeuchi, K., Nakakuki, K., Sudo, M., Kimura, Y. (1995). In vivo induction of apoptosis by influenza virus. J Gen Virol.76,2869-2873.
    30. Morris, S.J., Price, G.E., Barnett, J.M., Hiscox, S.A., Smith, H., Sweet C. (1999). Role of neuraminidase in influenza virus-induced apoptosis. J Gen Viral.80,147-146.
    31. Munster, V.J., de Wit, E, van den Brand J.M., Herfst, S., Schrauwen, E.J., Bestebroer, T.M., van de Vijver, D., Boucher, C.A., Koopmans, M., Rimmelzwaan, G.F., Kuiken, T., Osterhaus, A.D., Fouchier, R.A. (2009). Science. Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets.24,481-483.
    32.Nencioni, L., De Chiara, G., Sgarbanti, R., Amatore, D., Aquilano, K., Marcocci, M.E., Serafino, A., Torcia, M., Cozzolino, F., Ciriolo, M.R. (2009). Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus:impact on virally induced apoptosis and viral replication. J Biol Chem.284,16004-16015.
    33. Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Ding, CK., Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik, Y.A., et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature.376,37-43.
    34. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. (2009). Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans. N Engl J Med. 360,2605-2615.
    35. Nunes-Correia, I., Eulalio, A., Nir, S., Pedroso de Lima, M.C. (2004). Caveolae as an additional route for influenza virus endocytosis in MDCK cells. Cell Mol Biol Lett. 9,47-60.
    36. Reed, L. J., and H. Muench. (1938). A simple method for estimating fifty percent endpoints. Am. J. Hygiene.27,493-497.
    37. Rust, M.J., Lakadamyali, M., Zhang, F., Zhuang, X. (2004). Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol.11, 567-573.
    38. Sieczkarski, S.B., and G.R.Whittaker. (2002). Dissecting virus entry via endocytosis. J Gen Virol 83,1535-1545.
    39. Sieczkarski, S.B., Whittaker, G.R. (2002). Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis. J Virol.76,10455-10464.
    40. Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, GS., Dixit, V.M. (1995). Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell.81,801-809.
    41. Ueda, M., Daidoji, T., Du, A., Yang, C.S., Ibrahim, M.S., Ikuta, K., Nakaya T. (2010). Highly pathogenic H5N1 avian influenza virus induces extracellular Ca2+influx, leading to apoptosis in avian cells. J Virol.84,3068-3078.
    42. Uiprasertkul, M., Kitphati, R., Puthavathana, P., Kriwong, R., Kongchanagul, A., Ungchusak, K., Angkasekwinai, S., Chokephaibulkit, K., Srisook, K., Vanprapar, N., Auewarakul, P. (2007). Apoptosis and pathogenesis of avian influenza A (H5N1) virus in humans. Emerg. Infect. Dis.13,708-712.
    43. Wiesmann, U.N., DiDonato, S., Herschkowitz, N.N. (1975). Effect of chloroquine on cultured fibroblasts:release of lysosomal hydrolases and inhibition of their uptake. Biochem Biophys Res Commun.66,1338-1343.
    44. World health organization (2010). WHO recommendations for the post-pandemic period, http://www.who.int/csr/disease/swineflu/en/index.html.
    45. Xing, Z., Cardona, C.J., Adams, S., Yang, Z., Li, J., Perez, D., Woolcock, P.R. (2009). Differential regulation of antiviral and proinflammatory cytokines and suppression of Fas-mediated apoptosis by NS1 of H9N2 avian influenza virus in chicken macrophages. J Gen Virol.90,1109-1118.
    46. Xing, Z., Cardona, C.J., Anunciacion, J., Adams, S., Dao, N. (2009). Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus. J Gen Virol.291,343-351.
    47. Yoshimori, T., Yamamoto, A., Moriyama, Y, Futai, M., Tashiro, Y. (1991). Bafilomycin Al, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem.266,17707-17712.
    48. Young, L.S., Dawson, C.W., Eliopoulos, A.G. (1997). Viruses and apoptosis. Br Med Bull.53,209-521.
    49. Zamarin, D., Garcia-Sastre, A., Xiao, X., Wang, R., Palese, P. (2005). Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog. I(1):e4.
    1. Leung GM, Nicoll A. Reflections on pandemic (H1N1) 2009 and the international response. PLoS Med 2010; 7:e 1000346.
    2. SteelFisher GK, Blendon RJ, Bekheit MM, Lubell K. The public's response to the 2009 H1N1 influenza pandemic. N Engl J Med 2010; 362:e65.
    3. Viboud C, Miller M, Olson D, Osterholm M, Simonsen L. Preliminary estimates of mortality and years of life lost associated with the 2009 A/H1N1 pandemic in the US and comparison with past influenza seasons. PLoS Curr Influenza 2010; RRN1153.
    4. Capua I, Kajaste-Rudnitski A, Bertoli E, Vicenzi E. Pandemic vaccine preparedness-have we left something behind? PLoS Pathog 2009; 5:e1000482.
    5. Cohen J, Enserink M. Pandemic vaccine "will arrive too late for many," CDC concedes. Sci Insider 2009. Available at:http://ews.sciencemag.org/scienceinsider /2009/10/pandemic-vaccin-2.htmI. Accessed 22 February 2011.
    6. PCAST/White_House. Report to the president on reengineering the influenza vaccine production enterprise to meet the challenges of pandemic influenza. Washington, DC,2010. Available at:http://www. whitehouse.gov/sites/default/files/microsites/ostp/PCAST-Influenza-Vaccinology- Report.pdf Accessed 22 February 2011.
    7. Edwards KM, Sabow A, Pasternak A, Boslego JW. Strategies for broad global access to pandemic influenza vaccines. Curr Top Microbiol Immunol 2009; 333:471-93.
    8. Nabel GJ, Fauci AS. Induction of unnatural immunity:prospects for a broadly protective universal influenza vaccine. Nat Med 2010; 16:1389-91.
    9. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature advance online publication 4 February 2009
    10. Fiore AE, Uyeki TM, Broder K, et al. Prevention and control of influenza with vaccines:recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010; 59(RR-8):1-62.
    11. Couch RB, Winokur P, Brady R, et al. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects. Vaccine 2007;25:7656-63.
    12. Kilbourne ED, Schulman JL, Schild GC, Schloer G, Swanson J, Bucher D. Related studies of a recombinant influenzavirus vaccine. I. Derivation and characterization of virus and vaccine. J Infect Dis 1971; 124:449-62.
    13. Matthews JT. Egg-based production of influenza vaccine:30 years of commercial experience. Bridge 2006:36:17-24.(http://www.nae.edu/Publications/The Bridge/Archives/EngineeringandVaccineProductionforanInfluenzaPandemic/Egg-Based ProductionoflnfluenzaVaccine 30YearsofCommercialExperience.aspx.)
    14. Nicholson KG, Wood JM, Zambon M. Influenza. Lancet.2006;362:1733-44.
    15. Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM. Predicting the evolution of human influenza A. Science.1999;286:1921-5.
    16. Plotkin JB, Dushoff J. Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc Natl Acad Sci U S A.2005;100:7152-7.
    17. Danishuddin. AU Khan, Analysis of PB2 protein from H9N2 and H5N1 avian flu virus. Bioinformation, Vol.3, No.1. (2008), pp.41-46.
    18. Schulman JL, Kilbourne ED. Induction of partial specific heterotypic immunity in mice by a single infection with influenza A virus. J Bacteriol.1965;89:170-4.
    19. Benton KA, Misplon JA, Lo C-Y, Brutkiewicz RR, Prasad SA, Epstein SL. Heterosubtypic immunity to influenza A virus in mice lacking IgA, all Ig, NKT cells, or y8 T cells. J Immunol.2007; 166:7437-45.
    20. Nguyen HH, van Ginkel FW, Vu HL, McGhee JR, Mestecky J. Heterosubtypic immunity to influenza A virus infection requires B cells but not CD8+cytotoxic T lymphocytes. J Infect Dis.2001;183:368-76.
    21. Liang S, Mozdzanowska K, Palladino G, Gerhard W. Heterosubtypic immunity to influenza type Avirus in mice. Effector mechanisms and their longevity. J Immunol. 1994; 152:1653-61.
    22. Gerhard W, Mozdzanowska K, Furchner M. The nature of heterosubtypic immunity. In: Brown LE, Hampson AW, Webster RG, editors. Options for the control of influenza III. Amsterdam:Elsevier Science; 1996. p.235-43.
    23. Sambahara S, Kurichh A, Miranda R, Tumpey T, Rowe T, Renshaw M, et al. Heterosubtypic immunity against human influenza A viruses, including recently emerged avian H5 and H9 viruses, induced by flu-iscom vaccine in mice requires both cytotoxic T-lymphocyte and macrophage function. Cell Immunol.2007;211:143-53.
    24. McMichael AJ, Gotch FM, Noble GR, Beare PAS. Cytotoxic T cell immunity to influenza, New Engl J Med.1983;309:13-7.
    25. Wright PF, Johnson PR, Karzon DT. Clinical experience with live, attenuated vaccine in children. In:Options for the control of influenza; 1986. New York:Alan R Liss, Inc. p. 243-53.
    26. Gruber WC, Belshe RB, King JC, Treanor JJ, Piedra PA, Wright PA, et al. Evaluation of live attenuated influenza vaccines in children 6-18 months of age:Safety, immunogenicity and efficacy. J Infect Dis.1996; 173:1313-9.
    27. Universal Influenza Vaccine Tested Successfully In Humans, ScienceDaily, Jan. 25,2008;
    28. Jocelyn Kaiser, A One-Size-Fits-All Flu Vaccine, Science 21 April 2006: Vol.312. no.5772, pp.380-382;
    29. Paul P. Heinen1, Frans A. Rijsewijk1, Vaccination of pigs with a DNA construct expressing an influenza virus M2-nucieoprotein fusion protein exacerbates disease after challenge with influenza A virus, Journal of General Virology (2002),83,1851-1859.
    30. Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker G, et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine.2006;22:2993-3003.
    31. Liu W, Li H, Chen Y-H. N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol Med Microbiol. 2003;35:141-6.
    32. Fouchier RAM, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol.2005;79:2814-22.
    33. Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell.1998;95:409-17.
    34. Horvath A, Toth GK, Gogolak P, Nagy Z, Kurucz I, Pecht I, et al. A hemagglutinin-based multipeptide construct elicits enhanced protective immune response in mice against influenza A virus infection. Immunol Lett.1998;60:127-36.
    35. Bianchi E, Liang X, Ingallinella P, Finotto M, Chastain MA, Fan J, et al. Universal influenza B vaccine based on the maturational cleavage site of the hemagglutinin precursor. J Virol.2005;79:7380-8.
    36. Paterson RG, Takeda M, Ohigashi Y, Pinto LH, Lamb RA. Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. Virology. 2003;306:7-17.
    37. Brassard DL, Leser GP, Lamb RA. Influenza B virus NB glycoprotein is a component of the virion. Virology.1996;220:350-60.
    38. A One-size-Fits-All Flu Vaccine,21 April 2006 Vol.312, science;
    39. A. D. Altsteinl, A. K. Gitelman2,et al, Immunization with influenza A NP-expressing vaccinia virus recombinant protects mice against experimental infection with human and avian influenza viruses, Arch Virol (2006) 151:921-931;
    40. HHS awards conracts totaling more than$1 billion to develop cell-based influenza vaccine.News release of the Department of Health and Human Services, Washington, DC, May 4,2006.(http://archive.hhs.gov/news/press/2006pres/20060504.html.)
    41. Cryz SJ, Que JU, Gluck R. A virosome vaccine antigen delivery system does not stimulate an antiphospholipid antibody response in humans. Vaccine 1996; 14:1381-3.
    42. Ansaldi F, Zancolli M, Durando P, et al. Antibody response against heterogeneous circulating influenza virus strains elicited by MF59-and non-adjuvanted vaccines during seasons with good or partial matching between vaccine strain and clinical isolates. Vaccine 2010;28:4123-9.
    43. Health Canada. Health Canada approves pandemic H1N1 flu vaccine for Canadians. October,21,2009. (http://www.hc-sc.gc.ca/ahc-asc/media/nr-cp/_2009/ 2009_171-eng.php.)
    44. Johansen K, Nicoll A, Ciancio BC, Kramarz P. Pandemic influenza A(H1N1) 2009 vaccines in the European Union. Euro Surveill 2009; 14:19361.
    45. Wichmann O, Stocker P, Poggensee G, et al. Pandemic influenza A(H1N1) 2009 breakthrough infections and estimates of vaccine effectiveness in Germany 2009-2010. Euro Surveill 2010;15:19561.
    46. Leroux-Roels I, Borkowski A, Vanwolleghem T, et al. Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine:a randomised controlled trial.Lancet 2007;370:580-9.
    47. Vogel FR, Caillet C, Kusters IC, Haensler J. Emulsion-based adjuvants for influenza vaccines. Expert Rev Vaccines 2009;8:483-92.
    48. Atmar RL, Keitel WA, Patel SM, et al. Safety and immunogenicity of nonadjuvanted and MF59-adjuvanted influenza A/H9N2 vaccine preparations. Clin Infect Dis 2006;43:1135-42.
    49. Nicholson KG, Colegate AE, Podda A, et al. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine:a randomized trial of two potential vaccines against H5N1 influenza. Lancet 2001; 357:1937-43. al. Dose-related safety and immunogenicity of a trivalent baculovirus-expressed influenza-virus hemagglutinin vaccine in elderly adults. J Infect Dis 2006; 193:1223-8.
    50. Treanor JJ, Schiff GM, Hayden FG, et al. Safety and immunogenicity of a baculovirus-expressed hemagglutinin influenza vaccine:a randomized controlled trial. JAMA 2007;297:1577-82.
    51. Kang SM, Pushko P, Bright RA, Smith G, Compans RW. Influenza virus-like particles as pandemic vaccines. Curr Top Microbiol Immunol 2009;333:269-89.
    52. Heaton P, Allende M, Lenhard K, Massare M, Wolff M. Safety and immunogenicity of a recombinant trivalent seasonal influenza virus-like particle (VLP) vaccine in healthy adults. Late-breaker poster presented at the 47th Annual Meeting of theInfectious Diseases Society of America, Philadelphia, October 29-November 1, 2009. abstract.
    53. Idem. Safety and immunogenicity of replication-competent adenovirus 4-vectored vaccine for avian influenza H5N1. (http://www.clinicaltrials.gov/ct2/show/NCT01006798.)
    54. Kim JH, Jacob J. DNA vaccines against influenza viruses. Curr Top Microbiol Immunol 2009;333:197-210.
    55. Laddy DJ, Yan J, Kutzler M, et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS One 2008;3(6):e2517.
    56. Drape RJ, Macklin MD, Barr LJ, Jones S, Haynes JR, Dean HJ. Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine 2006;24:4475-81.
    57. Jones S, Evans K, McElwaine-Johnn H, et al. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled phase 1b clinical trial. Vaccine 2009;27:2506-12.
    58. Smith LR, Wloch MK, Ye M, et al. Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 2010;28:2565-72.
    59. Robert B. Belshe, M.D., Kathryn, et.al., Live Attenuated versus Inactivated Influenza Vaccine in Infants and Young Children, The New England Journal of Medicine, Volume 356:685-696, February 15.2007
    60. Damian C. Ekiert 1, Gira Bhabha 1, Marc-Andre Elsliger 1,et.al., Antibody Recognition of a Highly Conserved Influenza Virus Epitope, Science February 26,2009
    1. Nel, A., Xia, T., Madler, L.& Li, N. Toxic potential of materials at the nanolevel. Science 311,622-627 (2006).
    2. Faunce, T.A. Toxicological and public good considerations for the regulation of nanomaterial-containing medical products. Expert Opin Drug Saf 7,103-106 (2008).
    3. Linkov, I., Satterstrom, F.K..& Corey, L.M. Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine 4,167-171 (2008).
    4. Kim, J.W., Galanzha, E.I., Shashkov, E.V., Moon, H.M.& Zharov, V.P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4,688-694 (2009).
    5. Dhawan, A.& Sharma, V. Toxicity assessment of nanomaterials:methods and challenges. Anal Bioanal Chem.
    6. Buzea, C, Pacheco, Ⅱ& Robbie, K. Nanomaterials and nanoparticles:sources and toxicity. Biointerphases 2, MR17-71 (2007).
    7. Inoue, K., et al. Effects of inhaled nanoparticles on acute lung injury induced by lipopolysaccharide in mice. Toxicology 238,99-110 (2007).
    8. Kemp, S.J., et al. Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. Am J Respir Cell Mol Biol 39,591-597 (2008).
    9. Imai, Y., et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436,112-116 (2005).
    10. Kuba, K., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11,875-879 (2005).
    11. Izmerov, N.F., Tkach, A.V.& Ivanova, L.A. [Nanotechnology and nanoparticles-state of the problem, objectives of industrial medicine]. Med Tr Prom Ekol,1-4 (2007).
    12. Whitesides, G.M. The 'right' size in nanobiotechnology. Nat Biotechnol 21,1161-1165 (2003).
    13. Li, C., et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol 1,37-45 (2009).
    14. Lee, J.H., et al. Nanosized polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction. Toxicol Lett 190,202-207 (2009).
    15. Liu, M., Zhang, H.& Slutsky, A.S. Acute lung injury:a yellow card for engineered nanoparticles? J Mol Cell Biol 1,6-7 (2009).
    16. Svenson, S.& Tomalia, D.A. Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev 57,2106-2129 (2005).
    17. Malik, N., et al. Dendrimers:relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 1251-labelled polyamidoamine dendrimers in vivo. J Control Release 65,133-148 (2000).
    18. Nigavekar, S.S., et al.3H dendrimer nanoparticle organ/tumor distribution. Pharm Res 21,476-483(2004).
    19. Ingenito, E.P., Mark, L.& Davison, B. Effects of acute lung injury on dynamic tissue properties. J Appl Physiol 77,2689-2697 (1994).
    20. Stimler, N.P., Hugli, T.E.& Bloor, C.M. Pulmonary injury induced by C3a and C5a anaphylatoxins. Am J Pathol 100,327-348 (1980).
    21. Sugerman, H.J., Tatum, J.L., Strash, A.M., Hirsch, J.I.& Greenfield, L.J. Effects of pulmonary vascular recruitment on gamma scintigraphy and pulmonary capillary protein leak. Surgery 90,388-395 (1981).
    22. Crackower, M.A., et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417,822-828 (2002).
    23. Hoet, P., Legiest, B., Geys, J.& Nemery, B. Do nanomedicines require novel safety assessments to ensure their safety for long-term human use? Drug Saf 32,625-636 (2009).
    24. Adams RJ, Bray D.1983. Rapid transport of foreign particles microinjected into crab axons. Nature 303:718-720.
    25. Akerman MA, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E.2002. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617-12621. Amato I.1989. Making the right stuff. Sci News 136:108-110.
    26. Anderson PJ, Wilson JD, Hiller FC.1990. Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest 97:1115-1120.
    27. ANSI.2004. Home page. American National Standards Institute.Available: http://www.ansi.org. [accessed 16 March 2005].
    28. Arvidson B.1994. A review of axonal transport of metals.Toxicology 88:1-14.
    29. Carolyn L. Mazzitelli and JENNIFER S. BRODBELT, Grant F-1155, (The University of Texas at Austin), "Investigation of Silver Binding to Polyamidoamine (PAMAM) Dendrimers by ESI Tandem Mass Spectrometry", Journal of the American Society for Mass Spectrometry,17,676-684, (2006).
    30. Anil Singh and BERT D. CHANDLER, Grant W-1552, (Trinity University), "Low-Temperature Activation Conditions for PAMAM Dendrimer Templated Pt Nanoparticles", Langmuir,21,10776-10782, (2005).
    31. Cristina Buzea, Ivan Pacheco, and Kevin Robbie (2007). "Nanomaterials and Nanoparticles:Sources and Toxicity". Biointerphases 2 (4):MR17-MR71. doi:10.1116/1.2815690.
    32. Bodian D, Howe HA.1941a. Experimental studies on intraneural spread of poliomyelitis virus. Bull Johns Hopkins Hosp 69:248-267.
    33. Bodian D, Howe HA.1941b. The rate of progression of poliomyelitis virus in nerves. Bull Johns Hopkins Hosp 69:79-85.
    34. Brand P, Gebhart J, Below M, Georgi B, Heyder J.1991. Characterization of environmental aerosols on Helgoland Island. Atmos Environ 25A(3/4):581-585.
    35. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K.2000. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 57:685-691.
    36. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K.2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles:a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191-199.
    37. Brown JS, Zeman KL, Bennett WD.2002. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166:1240-1247.
    38. Whitesides, G.M., et al. (1991). "Molecular Self-Assembly and Nanochemistry:A Chemical Strategy for the Synthesis of Nanostructures". Science 254:1312. doi:10.1126/science.1962191.PMID?1962191.?
    39. D. Astruc, E. Boisselier, C. Ornelas (2010). "Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, and Nanomedicine". Chem. Rev.110:1857-1959. doi:10.1021/cr900327d.?
    40. Nanjwade, Basavaraj K.; Hiren M. Bechraa, Ganesh K. Derkara, F.V. Manvia, Veerendra K. Nanjwade (2009). "Dendrimers:Emerging polymers for drug-delivery systems". European Journal of Pharmaceutical Sciences (Elsevier) 38 (3):185-196. doi:10.1016/j.ejps.2009.07.008. PMID719646528.?
    41. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith (1985). "A New Class of Polymers:Starburst-Dendritic Macromolecules". Polymer Journal 17:117. doi:10.1295/polymj.17.117.
    42. Cheng X, Kan A, Tomson M.2004. Napthalene adsorption and desorption from aqueous C60 fullerene. J Chem Engineer Data 49:675-678.
    43. Chitose N, Ueta S, Seino S, Yamamoto T.2003. Radiolysis of aqueous phenol solutions with nanoparticles.1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, gamma-ray and electron beams. Chemosphere 50:1007-1013.
    44. Cohen A, Hnasko R, Schubert W, Lisanti M.2004. Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341-1379.
    45. Coleman WE, Scheel LD, Gorski CH.1968. The particle resulting from polytetrafluorethylene (PTFE) pyrolysis in air. AIHA J 29:54-60.
    46. Corachan M, Tura JM, Campo E, Soley M, Traveria A.1988. Poedoconiosis in Aequatorial Guinea. Report of two cases from different geological environments. Trop Geogr Med 40:359-364.
    47. Cyrys J, Stolzel M, Heinrich J, Kreyling WG, Menzel N, Wittmaack K, et al.2003. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci Tot Environ 305:143-156.
    48. Frechet, Jean M.; Donald A. Tomalia (March 2002). Dendrimers and Other Dendritic Polymers. New York, NY:John Wiley & Sons. ISBN?978-0-471-63850-6
    49. M. Fischer, F. Vogtle (1999). "Dendrimers:From Design to Application-A Progress Report". Angew. Chem. Int. Ed.38:884. doi:10.1002/(SICI) 1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K
    50. New methodologies in the construction of dendritic materials A. Carlmark, C. J. Hawker, A. Hult and M. Malkoch Chem. Soc. Rev.,2009,38, pp 352-362 doi:10.1039/b711745k
    51. Dendrimer Design Using Cu(I)-Catalyzed Alkyne-Azide Click Chemistry, G. Franc, A. Kakkar Chem. Comm,2008, pp 5267-5276 doi:10.1039/b809870k
    52. Oberdorster G. Systemic effects of inhaled ultrafine particles in two compromised, aged rat strains. Inhal Toxicol,2004.16(6/7):461-471.
    53. Elder ACP, Gelein R, Finkelstein JN, Cox C, Oberdorster G.2000. Pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin. Inhal Toxicol 12(suppl 4):227-246.
    54. Essential Day Spa.2005. Skin Anatomy and Physiology. Available: http://www.essentialdayspa.com/Skin_ Anathomy_and_Physiology.htm [accessed 26 April 2005.
    55. Evelyn A, Mannick S, Sermon PA.2003. Unusual carbon-based nanofibers and chains among diesel-emitted particles. Nano Lett 3:63-64.
    56. Fechter LD, Johnson DL, Lynch RA.2002. The relationship of particle size to olfactory nerve uptake of a non-soluble form of manganese into brain. Neurotoxicology 23:177-183.
    58. Feikert T, Mercer P, Corson N, Gelein R, Opanashuk L, Elder A, et al.2004. Inhaled solid ultrafine particles (UFP) are efficiently translocated via neuronal naso-olfactory pathways [Abstract]. Toxicologist 78(suppl 1):435-436.
    59. Ferin J, Oberdorster G.1992. Translocation of particles from pulmonary alveoli into the interstitium. J Aerosol Med 5:179-187.
    60. Ferin J, Oberdorster G, Penney DP.1992. Pulmonary retention of ultrafine and fine particles in rats. Am J Resp Cell Mol Biol 6:535-542.
    61. Ferin J, Oberdorster G, Penney DP, Soderholm SC, Gelein R, Piper HC.1990. Increased pulmonary toxicity of ultrafine particles? I. Particle clearance, translocation, morphology. J Aerosol Sci 21:381-384.
    62. Ferin J, Oberdorster G, Soderholm SC, Gelein R.1991. Pulmonary tissue access of ultrafine particles. J Aerosol Med 4(1):57-68.
    63. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al.2002. Cellular localisation of a water-soluble fullerene derivative.Biochem Biophys Res Commun 294:116-119.
    64. Foresight and Governance Project.2003. Nanotechnology & Regulation:A Case Study using the Toxic Substance Control Act (TSCA):A Discussion Paper. Publication 2003-6.
    65. Fox JE, Starcevic M, Kow KY, Burow ME, McLachlan JA.2001.Nitrogen fixation: endocrine disrupters and flavonoid signalling. Nature 413:128-129.
    66. Freitas RA Jr.1999. Nanomedicine, Volume I:Basic Capabilities Georgetown, TX:Landes Bioscience.
    67. Gianutsos G, Morrow GR, Morris JB.1997. Accumulation of manganese in rat brain following intranasal administration.Fundam Appl Toxicol 37:102-105.
    68. Gibaud S, Andreux JP, Weingarten C, Renard M, Couvreur P.1994. Increased bone marrow toxicity of doxorubicin bound to nanoparticles. Eur J Cancer 30A:820-826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700