用户名: 密码: 验证码:
浙江省甲3亚型流感流行与猪型流感的关系探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     流行性感冒(influenza)是由流感病毒(Influenza Virus)引起的,具有高度传染性的急性呼吸道传染病。由于流感病毒基因的高度变异性,使该病在人群中发病率高且易发生流行。2009年春季开始的甲型H1N1流感流行再次使流感病毒成为全球关注的热点。甲型流感病毒,是危害人类健康的重要病原体之一,同时中国地区,又是世界上流感变异株的发源地之一,所以对其变异规律进行深入细致地分析研究,在流感的防治工作中具有极为重要的意义。猪流感(Swine influenza,SI)是由猪流感病毒(Swine influenza virus,SIV)引起的急性猪呼吸道传染病。猪具有同时感染禽和人流感病毒的能力,被认为是新亚型流感病毒产生的中间宿主和“基因混合器”。而且,猪流感病毒具有感染人和禽的能力,因此,猪流感具有重要的兽医和人类公共卫生学意义。本研究基于这一背景,就浙江省近十年来流感流行的甲型H3N2代表株,与猪型H3N2株在主要抗原基因间进行比较分析,探讨浙江省甲3亚型流感病毒与猪流感病毒之间的关系。
     材料和方法:
     对浙江省近十年来流感流行期间分离的甲3亚型流感代表性毒株,采用逆转录-聚合酶链反应(Reverse transcription-Polymerase chain reaction ,RT-PCR)扩增病毒血凝素(Haemagglutinin, HA)和神经氨酸酶(Neuraminidase, NA)基因,进行核苷酸序列测定,并与其它同期的人源及猪源H3N2流感毒株的相应序列用BioEdit(version 5.0.9.1)和MEGA4.0软件作同源性与进化树分析。(其它同期的人源及猪源H3N2流感毒株的HA1、NA序列,由美国NCBI的GenBank下载。)
     结果:
     浙江省近十年来甲3亚型流感流行中的代表株A3/浙江(Zhejiang,ZJ)/10/98、A3/Zhejiang/6/99、A3/Zhejiang/8/02与猪流感A3/SW/安大略( Ontario,ON)/130/97、A3/SW/香港(Hongkong,HK)/4361/99、A3/SW/Hongkong/74/02在HA1区的同源性分别为99.1%、99.4%、99.4%;在NA区,A3/Zhejiang/10/98、A3/Zhejiang/6/99、A3/Zhejiang/8/02与猪流感A3/SW/Ontario/130/97、A3/SW/Henan/S4/01、A3/SW/HongKong/411//02的同源性分别达到98.2%、99.3%、99.3%。二者之间均呈现很高的同源性,有的远远高于它与同期人流感毒株的同源性,在基因系统进化树上也呈现这一状况。
     结论:
     浙江省近十年来甲3亚型流感流行的毒株与猪流感的某些毒株之间存在着密切的联系,猪流感与人流感之间的关系值得深入研究。
Background and objectives:
     Influenza is an acute respiratory disease which was caused by influenza virus. Because of high genetic variation of the virus, it infected the population again and again with high incidence. The global epidemic of influenza A H1N1 virus in Spring 2009 become the world’s attention once again. Because influenza A virus remains an important pathogen which threatens health of human in long time and China is the main resources of the new viruses, so deeply understanding the evolution and variation rule of influenza virus has very important meaning for prevention of influenza. Swine influenza is an acute respiratory disease which was caused by swine influenza virus. Pig is susceptible to avian and human influenza viruses and has been proposed to be intermediate host or“mixing vessel”for the generation of pandemic influenza virus. On the other hand, swine influenza virus could infect people and avian. Swine influenza surveillance is of great significance for veterinary and public health. In this assay, we investigated the phylogenetic relationship between swine influenza A/H3N2 virus and the representative strains of human influenza A/H3N2 virus isolated in the last ten years, through comparing the sequences within HA and NA genes.
     Material and methods:
     HA、NA gene of the representative strains of Influenza A/H3N2 isolated in the last ten years in Zhejiang Province were amplified by reverse transcription polymerase chain reaction (RT-PCR). PCR products were purified and sequenced, other HA1、NA sequences of H3N2 human and swine influenza virus in the corresponding period of time were downloaded from NCBI GenBank, then data were aligned and used to construct phylogenetic tree with biologic software bioEdit(version 5.0.9.1) and MEGA(version4.0).
     Results:
     The homologies on the HA domain between human representative strains (A/Zhejiang/10/98, A/Zhejiang/6/99 and A/Zhejiang/8/02) and the swine strains (A/SW/Ontario/130/97、A/SW/Hongkong/4361/99 and A/SW/Hongkong/74/02) are 99.1%, 99.4% and 99.4% respectively, and based on the NA gene, the homologies between human strains (A/Zhejiang/10/98, A/Zhejiang/6/99 and A/Zhejiang/8/02) and the swine strains (A/SW/Ontario/130/97, A3/SW/Henan/S4/01 and A3/SW/HongKong/411//02) are 98.2%,99.3% and 99.3% respectively. These showed that the two types of Influenza viruses were highly homologue, and even some of their homologies were higher than that amongst the contemporary human influenza A/H3N2 strains. The same results were shown in the phylogenetic tree.
     Conclusions:
     The human influenza A/H3N2 virus isolated in the last ten years in Zhejiang Province closely associated with some of the swine influenza virus strains, and their relationship should be further studied.
引文
[1]金奇.医学分子病毒学[M].北京:科学出版社,2001,1005-1020.
    [2]李立明.流行病学[M].第5版.北京:人民卫生出版社,2004,475-480.
    [3] Suzuki Y, Ito T, Suzuki T, et al. Sialic acid species as a determinant of the host range of influenza A viruses[J]. J Virol, 2000, 74(24):11825-11831.
    [4] Alexander D J. A review of avian influenza in different bird species[J]. VetMicrobiol, 2000,74:3-13.
    [5] Earn DJ, Dushoff J, Levin SA . Ecology and evolution of the flu[J]. Trends in Ecology& Evolution, 2002, 17(7): 334-340.
    [6] Fouchier R, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16)obtained from black-headed gulls[J]. J Virol, 2005, 79(5): 2814-2822.
    [7] Suarez DL. Evolution of avian influenza viruses[J]. Vet Microbiol, 2000, 74(1-2):15-27.
    [8] Gorman OT, Bean WJ, Kawaoka Y, et al. Evolution of the nucleoprotein gene of influenza A virus[J]. J Virol, 1990, 64(4):1487-97.
    [9] Nicholson KG, Wood JM and Zambon M. Influenza[J]. Lancet, 2003, 362(9397):1733-45.
    [10]闻玉梅.现代微生物学[M].北京:人民卫生出版社,2000:1005-1020.
    [11] Shibaguchi H, Kuroki M. Cloning and sequencing of variable region cDNA of a novel human monoclonal antibody to carcinoembryonic antigen, and generation of a single chain variable fragmented antibody[J]. Anticancer Res, 2004, 24: 3355-3360.
    [12] Ito T, Kawaoka Y. Host-range barrier of influenza A viruses[J]. Veterinary Microbiology, 2000,74:71-75A.
    [13] Nicholson, K. G. , Webster, R. G. , Hay, A. J. , et al. Influenza in pigs and their role in the intermediate host. Textbook of influen2za, 1998: 137-145.
    [14] Olsen C, Carey S, Hinshaw L, et al. Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States[J].Archives of Virol, 2000, 145:1399-1419.
    [15] Kida H, Ito T, Yasuda J, et al. Potential for transmission of avian influenza viruses to pigs[J]. The Journal of General Virology, 1994, 75(9): 2183-2188.
    [16] Klenk HD, Rott R, et al. The molecular biology of influenza virus pathogenicity[J]. Adv Virus Res.1988, 34:247-81.
    [17] Hinshaw VS, Bean WJ, Webster RG, et al. The prevalence of influenza viruses in swine and the antigenic and genetic relatedness of influenza viruses from man and swine[J]. Virology,1978, 84(1):51-62.
    [18] Scholtissek C. Pig as the“mixing vessel”for the creation of new pandemic influenza A viruses. Med Princ Pract,1990, 2(1): 65?71.
    [19] Nerome K, Ishida M, Nakayama M, Oya A, Kanai C, Suwicha K. Antigenic and genetic analysis of A/Hong Kong (H3N2) influenza viruses isolated from swine and man. J Gen Virol 1981;56(Pt 2):441–5.
    [20] Dowdle WR, Millar JD. Swine influenza: lessons learned[J]. Med Clin North Am. 1978,62(5):1047-57.
    [21] Lindstrom S E, Cox N J, Klimov A. Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957-1972: evidence for genetic divergence and multiple reassortment events[J]. Virology, 2004, 328(1):101-119
    [22] Webster RG, Dean WJ,German OT,et al. Evolution and ecology of influenza A viruses[J]. Microbiological Reviews, 1992, 56:152- 179
    [23] Kawaoka Y, Krauss S, Webster R G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics[J]. J Virol, 1989, 63(11): 4603-4608.
    [24] Rota PA, Rocha EP, Harmon MW, et al. Laboratory characterization of a swine influenza virus isolated from a fatal case of human influenza[J]. Clin Microbiol, 1989, 27(7): 1413?1416.
    [25] Garten RJ, Davis CT, Russell CA, et al. Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Vivuses Circulating in Humans[J]. Science,2009:science.1176225
    [26] Kaverin NV, Rudneva IA, Ilyushina NA, et al. Structure of antigentic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants[J]. J Gen Virol, 2002, 83(Pt 10):2497-505.
    [27] Fleury D, Barrere B, Bizebard T, et al. A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site[J]. Nat Struct Biol, 1999,6(6):530-4.
    [28] Couth R B, Kasel J A. Induction of partial immunity to influenza by a neuraminidase-specific influenza A virus vaccine in humans[J]. J Infect Dis, 1974, 129:411-420.
    [29] Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals[J]. J Virol. 2000, 74(18):8502-8512.
    [30] Connor RJ, Kawaoka Y, Webster RG, et al, Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates[J]. Virology. 1994, 205(1):17-23
    [31] Ludwing S,Stitz L, Planz O, et al. European swine virus as a possible source for the next influenza pandemic[J]. Virology,1995,212(2):551-561.
    [32] Peiris JS, Guan Y, Markwell D, et al. Cocirculation of avian H9N2 and contemporary“human”H3N2 influenza A viruses in pig in Southeastern China : potential for genetic reassortment ? [J]. J Virol, 2001,75(20):9679-9686.
    [33] Glaser L, Stevens J, Zamar N D, et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity[ J ]. J Virol, 2005, 79: 11533 - 11536.
    [34] Webby R, Swenson S, Krauss S, et al. Evolution of swine H3N2 influenza viruses in the United States-Department of Virology and Molecular Biology[J], St. Jude Children's Research Hospital. Virol, 2000, 74:8243-8251.
    [35] Pensaert M, Ottis K, Vandeputte J et al. 1981. Evidence for the natural transmission of influenza A virus from wild ducts to swine and its potential importance for man. Bull World Health Organ, 59, 75-78.
    [36] Sun l, et al. Genetic correlation between H3N2 human and swine influenza viruses. J Clin Virol (2008), doi:10.1016/j.jcv.2008.10.011.
    [1]金奇.医学分子病毒学[M].北京:科学出版社,2001,1005-1020.
    [2]李立明.流行病学[M].第5版.北京:人民卫生出版社,2004,475-480.
    [3] Suzuki Y, Ito T, Suzuki T, et al. Sialic acid species as a determinant of the host range of influenza A viruses[J]. J Virol, 2000, 74(24):11825-11831.
    [4] Alexander D J. A review of avian influenza in different bird species[J]. VetMicrobiol, 2000,74:3-13.
    [5] Earn DJ, Dushoff J, Levin SA . Ecology and evolution of the flu[J]. Trends in Ecology& Evolution, 2002, 17(7): 334-340.
    [6] Fouchier R, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16)obtained from black-headed gulls[J]. J Virol, 2005, 79(5): 2814-2822.
    [7] Memorandum W, A revised system of nomenclature for influenza viruses. 1980, WHO. P. 585-91.
    [8] Nicholson KG, Wood JM and Zambon M. Influenza[J]. Lancet, 2003, 362(9397):1733-45
    [9]闻玉梅.现代微生物学[M].北京:人民卫生出版社,2000:1005-1020.
    [10] Shibaguchi H, Kuroki M. Cloning and sequencing of variable region cDNA of a novel human monoclonal antibody to carcinoembryonic antigen, and generation of a single chain variable fragmented antibody[J]. Anticancer Res, 2004, 24: 3355-3360.
    [11] Van Nimwegen E. Epidemiology. Influenza escapes immunity along neutral networks [J]. Science, 2006, (314):1884-1886.
    [12] Belshe R B. The origins of pandemic influenza—lessons from the 1918 virus[J]. N Engl J Med, 2005, 353(21):2209-2211.
    [13] Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics[J]. Emerg Infect Dis, 2006, 12:15-22.
    [14] Taubenberger JK, Reid AH, Jancaewski TA, et al. Characterization of the 1918 influenza virus hemagglutinin and neuraminidase genes[J]. International Congress Series, 2001, 1219:545-549.
    [15] Kawaoka Y, Krauss S, Webster R G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics[J]. J Virol, 1989, 63(11): 4603-4608.
    [16] Mueller M. Influenza vaccine: a long way from Hong Kong[J]. Science, 1968, 162(854):651.
    [17] Lindstrom S E, Cox N J, Klimov A. Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957-1972: evidence for genetic divergence and multiple reassortment events[J]. Virology, 2004, 328(1):101-119.
    [18] Webster RG,Dean WJ,German OT,et al. Evolution and ecology of influenza A viruses[J]. Microbiological Reviews, 1992, 56:152- 179.
    [19] Nicholson, K. G. , Webster, R. G. , Hay, A. J. , et al. Influenza in pigs and their role in the intermediate host. Textbook of influen2za, 1998: 137~145.
    [20] Laver W G, Air G M, Dopheide T A, et al. Amino acid sequence changes in the haemagglutinin of A/Hong Kong (H3N2) influenza virus during the period 1968-77[J]. Nature 1980, 283(5746):454-457.
    [21] Lindstrom S E, Cox N J, Klimov A. Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957-1972: evidence for genetic divergence and multiple reassortment events[J]. Virology, 2004, 328(1): 101-119.
    [22] Dinh P N, Long H T, Tien N T, Hien N T et al 2006 Risk factors for human infection with avian infl uenza A H5N1, Vietnam, 2004; Emerg. Infect. Dis. 12 1841–1847.
    [23]中国科学院甲型H1N1流感信息平台,http://www.avian-flu.info/H1N1/
    [24]殷震,刘景华.动物病毒学.第二版.北京:科学出版社, 1997, pp.729?931.
    [25] Shope RE. Swine Influenza III. Filtration experiments and etiology. J Exp Med, 1931, 54(3): 373?385.
    [26] Olsen C, Carey S, Hinshaw L, et al. Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States[J].Archives of Virol, 2000, 145:1399-1419.
    [27] Pensaert M, Ottis K, Vandeputte J, et al. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bull World Health Organization, 1981, 59(1): 75?78.
    [28] Katsuda K, Sato S, Shirahata T, et al. Antigenic and genetic characteristics of H1N1 human influenza virus isolated from pigs in Japan. J Gen Virol, 1995, 76(5):1247?1249.
    [29] Yu H, Zhang G, Hua R, et al. Isolation and genetic analysis of human origin H1N1 and H3N2 influenza viruses from pigs in China[J]. BBRC, 2007, 356(3):91-96.
    [30] Kundin WD. Hong Kong A-2 influenza virus infection among swine during a human epidemic in Taiwan. Nature,1970, 228(5274): 857.
    [31] Roberts DH, Cartwright SF, Wibberley G. Outbreaks of classical swine influenza in pigs in England in 1986. Vet Rec, 1987, 121(3): 53?55.
    [32] Campitelli L, Donatell I, Foni E, et al. Continued evolution of H1N1 and H3N2 in pigs in Italy. Virology, 1997,232(2): 310?318.
    [33] Sugimura T, Yonemochi H, Ogawa T, et al. Isolation of a recombinant influenza virus (Hsw1N2) from swine in Japan.Arch Virol. 1980, 66(3): 271?274.
    [34] Choi YK, Lee JH, Erickson G, et al. H3N2 influenza virus transmission from swine to turkeys[J]. United States. Emerg Infect Dis. 2004,10: 2156–2160.
    [35] Olsen CW, Karasin AI, Carman S, et al. Triple reassortant H3N2 influenza A viruses, Canada, 2005[J]. Emerg Infect Dis. 2006,12:1132–1135.
    [36] Garten RJ, Davis CT, Russell CA, et al. Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Vivuses Circulating in Humans[J]. Science,2009:science.1176225.
    [37] Brown I H, Alexander D J, Chakraverty P, et al. Isolation of man influenza A virus of unusual subtype(H1N7) from pigs in England, and the subsequent experimental transmission from pig to pig[J]. Veterinary Microbiology, 1994, 39(122): 125-134.
    [38] Shin JY, Song MS, Lee EH, et al. Isolation and characterization of novel H3N1 swine influenza viruses from pigs with respiratory diseases in Korea[J]. J Clin Microbiol, 2006,44(11): 3923-3927.
    [39] Karasin AI, West K, Carman S, et al. Characterization of avian H3N3 and H1N1 influenza A viruses isolated from pigs in Canada[J]. J Clin Microbiol, 2004, 42(9): 4349-4354.
    [40] Stepen C. H4N6 influenzavirus isolated from pigs in Ontario[J]. Can Vet J, 2000, 41:938-939.
    [41] L'vov DK. Population interactions in biological system: influenza virus A-wild and domestic animals-human; reasons and consequences of introduction high pathogenic influenza virus A/H5N1 on Russian territory[J]. Mikrobiol Epidemiol Immunobiol, 2006, (3): 96-100.
    [42] Ma W, Vincent AL, Gramer MR, et al. Identification of H2N3 influenza A viruses from swine in the United States[J]. PNAS, 2007, 104(52): 20949-20954.
    [43] Kida H, Ito T, Yasuda J, et al. Potential for transmission of avian influenza viruses to pigs[J]. The Journal of General Virology, 1994, 75(9): 2183-2188.
    [44] Klenk HD, Rott R, et al. The molecular biology of influenza virus pathogenicity[J]. AdvVirus Res.1988, 34:247-81.
    [45] Hinshaw VS, Bean WJ, Webster RG, et al. The prevalence of influenza viruses in swine and the antigenic and genetic relatedness of influenza viruses from man and swine[J]. Virology,1978, 84(1):51-62.
    [46] Scholtissek C. Pig as the“mixing vessel”for the creation of new pandemic influenza A viruses. Med Princ Pract,1990, 2(1): 65?71.
    [47] Nerome K, Ishida M, Nakayama M, Oya A, Kanai C, Suwicha K. Antigenic and genetic analysis of A/Hong Kong (H3N2) influenza viruses isolated from swine and man. J Gen Virol 1981;56(Pt 2):441–5.
    [48] Dowdle WR, Millar JD. Swine influenza: lessons learned[J]. Med Clin North Am. 1978 62(5):1047-57.
    [49] Rota PA, Rocha EP, Harmon MW, et al. Laboratory characterization of a swine influenza virus isolated from a fatal case of human influenza. J Clin Microbiol, 1989, 27(7): 1413?1416.
    [50] De Jong JG, De Ronde-Verloop JM, Bangma PJ, et al.Isolation of swine-influenza-like A (H1N1) viruses from man in Europe. Lancet, 1986, 328(8520): 1329?1330.
    [51] Claas ECJ, Kawaoka Y, De Jong JC, et al. Infection of children with avian-human reasssortant influenza virus from pigs in Europe. Virology, 1994, 204(2): 453?457.
    [52] Kawaoka Y, Krauss S, Webster R G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics[J]. J Virol, 1989, 63(11): 4603-4608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700