用户名: 密码: 验证码:
应用体内足迹法研究小鼠β-珠蛋白基因簇重要调控元件上的DNA-蛋白质间的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-珠蛋白基因簇是研究真核基因表达调控的良好模型,在个体发生中β-珠蛋白基因簇表现为从5′到3′依次表达,具有高度的红系组织特异性和发育阶段特异性,虽然α和β两个珠蛋白基因簇不在同一条染色体上,但两类珠蛋白基因表达的终产物始终维持平衡。
     基因表达是由众多顺式作用元件和反式作用因子相互作用调控的。β-珠蛋白基因的正确表达主要依赖于两种类型的调控元件:位于基因簇5′端的位点控制区(Locus Control Region,LCR)以及各珠蛋白基因的启动子等近端调控序列。LCR由4个DNase 历高敏位点(5'HS1-5'HS4)构成,每个HS的活性又都集中在核心序列上。研究发现,LCR的HSs以及单个基因的启动子上,都含有红系特异和公共表达的反式作用因子的结合位点,LCR及其HSs的形成、启动子上转录装置的建立、LCR与下游基因调控元件间的相互联系(如:Looping)等,都需要这些顺式作用元件(DNA)与相关反式作用因子(蛋白质)间的相互作用来介导。因此,研究DNA-蛋白质之间的相互作用对于阐明LCR的作用机制、珠蛋白基因表达调控的开关机制具有重要意义。
     体内足迹法(In Vivo Footprinting)是一种研究DNA-蛋白质相互作用的方法,它能真实反映体内蛋白.DNA相互作用的情况,而且可以检测体内的DNA构象的变化,连接介导的聚合酶链反应(Ligation-Mediated polymerase chain Reaction,LM-PCR)的发明,使得体内足迹研究的敏感性和特异性大大提高,有力地促进了体内足迹技术在真核基因表达调控研究方面的应用。
     本文应用连接介导的聚合酶链反应及体内足迹法研究了诱导前后的MEL细胞、处于不同发育时期的红系组织、药物处理后的成年造血组织中β珠蛋白基因启动子及LCR-HS2上的DNA-蛋白质之间的相互作用。
     (1)标准条件下培养MEL细胞,经2%DMSO诱导分化三天,收集状态良好的细胞,悬浮于无血清DMEM培养基中,调整细胞浓度为5×10~7/ml。
     (2)正常健康昆明小鼠交配,待胚胎发育至14天时,处死怀孕母鼠,取胎鼠肝脏,用另一组成年小鼠制备骨髓;然后应用40%-70%Percol1梯
β-globin gene cluster has been one of the favorite model systems for analyzing the control of gene expression,particularly developmental regulation. During erythroid development, the β-like globin genes are expressed sequentially from 5' to 3' according to the genome orientation in a erythroid-specific and developmental stage-specific manner. Although clustered in distinct chromosomal loci, the expression of α-like and β-like globin chains is balanced.
    Gene expression is regulated by the complex interaction of many cis-acting elements and trans-acting factors. The correct expression of β-globin genes mainly depends on two kinds of regulatory elements: the locus control region located 5' of this cluster and promoter regions of individual genes. The β-globin gene LCR consists of four erythroid-specific DNase I hypersensitive sites (HS1-HS4),every HS activity is defined to its core sequences. It is known now that: the HS core sequences of the LCR and the promoter of individual globin genes have many binding sites for erythroid -specific as well as ubiquitous proteins. The involvement of specific DNA-protein interaction in the formation of hypersensitive sites, in the assembly of basal transcription apparatus and in the contact between LCR and downstream gene promoter (eg. looping) is suggested by a large body of evidence. Therefore, studying DNA-protein interaction is important and significant to elucidate the mechanism of LCR action and globin gene switching.
    In vivo footprinting is a method of studying DNA-protein interaction. It can reflect the authentic status of DNA-protein in vivo, and can also detect the change of DNA conformation. The introduction of Ligation-Mediated PCR(LM-PCR) greatly improves the sensitivity and specificity of in vivo footprinting study, and has facilitated the executation of in vivo footprinting in the regulation of eucaryotic gene expression.
    In this article, we have used in vivo footprinting and LM-PCR to study DNA - Protein interaction at HS2 of LCR and β-globin gene promoter of MEL cells with or without induction, of mouse bone marrow-derived and fetal liver-derived erythroid cells, and of bone marrow-derived erythroid cells of mice treated with myleran or hydroxyurea.
    (1) MEL cells are grown in DMEM medium,induction with 2%DMSO for three days.collect cells and resuspend in DMEM medium without serum,adjust cell concentration to 5×10~7.
    (2) Healthy kunming mice mate to produce embryo. sacifice prognant mice at
引文
1. Deisseroth A, Nienhuis A. Turner P. Velez R. Anderson WF. Ruddle F. Lawrence J. Creagan Rand Kucherlapati R. Localization of the human alpha-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay. Cell 12:205-218,1977.
    2. Deisseroth A. Nienhuis A. Lawrence J. Giles R. Turner P. and Ruddle FH. Chromosomal localization of human beta globin gene on human chromosome 11 in somatic cell hybrids. Proc Natl Acad Sci USA.75:1456-1460,1978
    3. Karlsson S.andnhuis AW. Developmental regulation of human globin genes. Annu Rev Biochem.54:1071-1108,1985.
    4. Evans T. G Felsenfeld. and M Reitman. Control of globin gene transcription. Ann.Rev. Cell. Biol. 6:95-124, 1990
    5. Shivdasani RA.SH Orkin. The Transcriptional Control of Hematopoiesis. Blood. 87:4025-4039,1996
    6. Dzierzak E. and A Medvinsky. Mouse embryonic hematopoiesis. TIG. 11:359,1995
    7. Stamatoyannopoulas G. and AW Nienhuis. (1994)Hemoglobin Switching, p107-155. in G Stamatoyannopoulos. AW Nienhuis.PW Majerus.and H Varmus. The Molecular Basis of Blood Diseases, W. B. Saunders, Philadelphia.
    8. Drisoll MC. CS Dobkin.and BP Alter. Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. Proc. Natl. Acad. Sci. USA 86: 7470- 7474 , 1989
    9. Tuan D. W Solomon. Q Li .and IM London.The "beta-like-globin"gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA. 82:6384-6388, 1985
    10. Forrester WS. C Thompson. JT Elder. And M Groudine. A developmentally stable chromatin structure in the human β-globin gene cluster. Proc. Natl. Acad. Sci. USA. 83:1359- 1363, 1986
    11. Grosveld F. GB van Assendelft. DR Greaves.and G Kollias.Position-independent, high-level expression of the human β -globin gene in transgenic mice. Cell 51:975-985,1987
    12. Orkin S.H. Globin gene regulation and switching. Cell 63:665- 672, 1990
    13. Forrester WC. E Epner. MC Driscoll.T Enver. M Brice. T Papayannopoulou and M Groudine. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes & Dev. 4: 1637-1649, 1990
    14. Aladjem MI. M Groudine. LL Brody. ES Dieken. REK Fournier. GM Wahl. And EM Epner.Participation of the human β-globin locus control region in initiation of DNA replication. Science 270: 815 -819 , 199515. Higgs DR.WG Wood.AP Jarman.J Sharpe.J Lida.M Pretorius.and H Ayyub. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes & Dev. 4: 1588 -1601,1990
    16. Craddock CF. P Vyas. JA Sharpe. H Ayyub. WG Wood, and DR Higgs. Contrasting effects of a and β-globin regulatory elements on chromatin structure may be related to their different chromosomal environments. EMBO J. 14: 1718 -1726, 1995
    17. Jimenez G. Gale KB. and T Enver. The mouse β-globin locus control region:hypersensitive 3 and 4. Nucleic Acids Res. 20:5797-5803,1992
    18. Jimenez G. Griffiths SD.Ford AM. Greaves MF and T Enver. Activation of β-globin locus control region precedes commitment to the erythroid lineage. Proc. Natl.Acad.Sci.USA 89:10618-10622,1992
    19. Moon AM.and TJ Ley. Conservation of the primary structure, organization, and function of the human and mouse β-globin locus-activating regions. Proc. Natl.Acad.Sci. USA. 87:7693-7697,1990
    20. Baron.MH. Transcriptional control of globin gene switching during vertebrate development. BBA. 1351:51-72,1997
    21. Talbot D.S Philipsen.P Fraser.and F Grosveld. Detailed analysis of the site 3 region of the human β-globin dominant control region. EMBO J. 9:2169-2178, 1990
    22. Fraser P. S Pruzina. M Antoniou. and F Grosveld. Each hypersensitive site of the human β-globin locus control region confers a different developmental pattern of expression on the globins. Genes & Dev. 7:106-113, 1993
    23. Kulozik AE.S Bail. A Bellan-Koch. CR Bartrann. E Kohne.and E Kleihauer. The proximal element of the β-globin locus control region is not functionally required in vivo. J. Clinic. Inverst. 87:2142-2146, 1991
    24. Milot E. J Strouboulis. T Trimborn. M Wijgerde. E de Boer. A Langeveld. K Tan-Un. W Vergeer. N Yannoutsos. F Grosveld. and P Fraser. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell. 87:105-114, 1996
    25. Philipsen S.D Talbot.P Fraser.and F Grosveld.The β-globin dominant control region:hypersensitive site 2. EMBO J. 9:2159-2167, 1990
    26. Collis P.M Antoniou. And F Grosveld. Definition of the minimal requirements within the human β-globin gene and the dominant control region for high level expression. EMBO J. 9:233-240, 1990
    27. Hardison R.JR Slightom.DL Gumucio.M Goodman. N Stojanovic. And W Miller. Locus control regions of mammalian β-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene. 205:73-94,1997
    28. Li Q. and .G Stamatoyannopoulos. Hypersensitive site 5 of the human β -locus control region functions as a chromatin insulator. Blood. 84:1399-1401,199429. Moi P. and YW Kan. Synergistic enhancement of globin gene expression by activator protein-1-like proteins. Proc. Natl.Acad.Sci.USA. 87:9000-9004, 1990
    30. Ney PA.BP Sorrentino. KT McDonagh.and AW Nienhuis.Tandem AP-1 binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes & Dev. 4:993-1006, 1990
    31. Talbot.D.and.F Grosveld.The 5'HS2 of the globin locus control region enhances transcription through the interaction of a multimeric complex binding at two functionally distinct NFE2 binding sites. EMBO J. 10: 1391-1398, 1991
    32. Gong QH.Stern J.and Dean A. Transcriptional role of a conserved GATA-1 site in the human epsilon-globin gene promoter. Mol. Cell. Biol. 11: 2558-2562, 1991
    33. Langdon SD.and.RE Kaufman. Gamma-Globin Gene PromoterElements Required for Interaction With Globin Enhancers. Blood 91: 309 -318 , 1998
    34. Antoniou M. and.F Grosveld.beta-globin dominant control region interacts differently with distal and proximal promoter elements. Genes & Dev. 4: 1007-1012, 1990
    35. Orkin S. H. Regulation of globin gene expression in erythroid cells. Eur. J. Biochem. 231: 271- 281, 1995
    36. Evans T.and G Felsenfeld. The erythroid specific transcription factor Eryf1: a new finger protein. Cell. 58:877-885,1989
    37. Tsai S-F. DI Martin.LI Zon.AD D'Andrea.GG Wong, and SH Orkin. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 339:446-451,1989
    38. Martin DIK.and SH Orkin. Transcriptional activation and DNA-binding by the erythroid factor GF-1/NF-E1/Eryf1. Genes & Dev. 4:1886-1898
    39. Trainor CD. JG Omichinski. TL Vandergon AM Gronenborn. GM Clore. and G Felsenfeld. A Palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA binding domain for high -affinity interaction. Mol. Cell. Biol. 16:2238-2247,1996
    40. Onodera K.S Takahashi. S Nishimura. J Ohta. H Motohashi.K Yomogida. N Hayashi. ID Engel. and M Yamamoto.GATA-1 transcription is controlled by distinct regulatory mechanisms during primitive and definitive erythropoiesis Proc. Natl.Acad.Sci.USA. 94:4487-4492,1997
    41. Orkin. SH. GATA-binding transcription factors in hematopoietic cells. Blood 80:575-581,1992
    42. Briegel K.P Bartunek. G Stengl. KC Lim.H Beug. JD Engel. and M Zenke.Regulation and function of transcription factor GATA-1 during red blood cell differentiation. Development. 122:3839-3850,1996
    43. Pevny L. MC Simon. E Robertson.WH Klein SF Tsai. VD Agati. SH??Orkin. and F Constantini. Erythroid differentiation in chimeric mice blocked by a argeted mutation in the gene for transcription factor GATA-1. Nature. 349:257-260,1991
    44. Tsang AP.JE Visvader.CA Turmer. Y Fujiwara. C Yu. MJ Weiss. M Crossley. And SH Orkin.FOG, a Multitype Zinc Finger Protein, Acts as a Cofactor for Transcription Factor GATA-1 in Erythroid and Megakaryocytic Differentiation. Cell. 90:109-119,1997
    45. Yang HY. and. T Evans. Homotypic interactions of chicken GATA-1 can mediate transcriptional activation. Mol. Cell. Biol. 15:1353,1995
    46. Visvader JE .M Crossley. J Hill. SH Orkin. and JM Adams.The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol. Cell. Biol. 15:634-641,1995
    47. Merika M.and SH Orkin. Functional synergy and physical interactions of the erythroid transcription GATA-1 with the kruppel family proteins Spl and EKLF. Mol. Cell. Biol. 15:2437-2447,1995
    48. Osada H. G Grutz. H Axelson.A Forster. and TH Abbitts. Association of erythroid transcription factors:complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA-1. Proc. Natl. Acad.Sci.USA. 92:9585-9589,1995
    49. Raich N .CH Clegg. J Grofti. PH Romeo, and G Stamatoyannopoulou. GATA-1 and YY1 are developmental repressors of the human epsilon-globin gene. EMBO J. 14:801-809,1995
    50. Andrews NC. Erdjument-Bromage H Davidson MB. Tempst P. and SH Orkin. Erythroid transcription factor NFE2 is a haemetopoietic-specific basic-leucine zipper protein. Nature. 362:722-728,1993
    51. Andrews NC. Kotkow KJ. Ney PA. Erdjument-Bromage H Tempst P. and SH Orkin. The ubiquitous subunit of erythroid transcription factor NFE2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc. Natl.Acad. Sci.USA. 90:11488-11492,1993
    52. Nagai T. Igarashi K. Akasaka Jun-etsu.Furuyama K. Fujita H. Hayashi N.Yamamoto M.and Sassa S. Regulation of NFE2 Activity in Erythroleukemia Cell Differentiation. J.Biol. Chem. 273:5358-5365,1998
    53. Kotkow KJ.and SH Orkin. Dependence of globin gene expression on mouse erythroleukemia cells on the NFE2 heterodimer. Mol. Cell. Biol. 15:4640-4647,1995
    54. Amrolia PJ.L Ramamurthy. D Saluja. N Tanese. SM Jane, and JM Cunningham. The activation dmain of the enhancer binding protein p45NFE2 interacts with TAFII130 and mediates long-range activation of the α-and β-globin gene loci in an erythroid cell line. Proc. Natl.Acad.Sci. USA. 94:10051-10056,1997
    55. Shivdasani RARosenblatt MF.Zucker-Franklin D.Jackson CW.Hunt P.Saris CJ.and SH Orkin.Transcription factor NFE2is required for platelet formation independent of the actoins of thrombopoietin/MGDF in??megakaryocyte development. Cell. 81:695-704,1995
    56. Martin F. JM van Deursen. RA Shivdasani. CW Jackson.AG Troutman. and PA Ney. Blood . 91:3459-3466,1998
    57. Farmer SC. Sun CW.Winnier GE.Hogan BLM.and TM Townes. The bZIP transcription factor LCR-F1 is essential for mesoderm formation in mouse development. Genes & Dev. 11:786,1997
    58. Oyake T. Itoh K. Motohashi H.Hayashi N.Hoshino H. Nishizawa M.Yamamoto M.and igarashi K.Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NFE2 site. Mol. Cell. Biol. 16:6083,1996
    59. Igarashi K. Itoh K. Motohashi H. Hayashi N. Matuzaki Y. Nakauchi H. Nishizawa M.and Yamamoto M. Activity and expression of murine small Maf family protein MafK.J Biol Chem. 270:7615-7624 ,1995
    60. Kitkow KJ.and SH Orkin.Complexity of the erythriod transcription factor NFE2 as revealed by gene targetting of the mouse p18 NFE2 locus. Proc. Natl.Acad.Sci.USA 93:3514,1996
    61. Stamatoyannopoulas G. A Goodwin. T Joyce, and CH Lowrey. NFE2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J. 14:106-116,1995
    62. Gong QH.Mcdowell JC. and Dean A.Essential Role of NFE2 in Remodeling Chromatin Structure and Transcriptional Activation of the e-globin gene in vivo by 5'Hypersensitive Site2 of the β-globin Locus Control Region. Mol. Cell. Biol. 16:6055-6064,1996
    63. Ronchi AE. Bottardi S. Mazzucchelli C. Ottolenghi S. and. Santoro C. Differential binding of the NFE3 and CP1/NFY transcription factors to the human gamma-and epsilon-globin CCAAT boxes.J Biol Chem. 270:21934-21941,1995
    64. Choi OR.and JD Engel.Developmental regulation of β-globin gene switching. Cell. 55:17-26,1988
    65. Jane SM. Nienhuis AW. and Cunningham JM.Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein.EMBO J. 14:97-105,1995
    66. 纪新军.刘德培.梁植权.EKLF红系特异开关因子.国外医学遗传学 分册. 19:225-228,1996
    67. Miller IJ. and JJ Backer.A novel, erythroid cell specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol. Cell. Biol. 13:2776-2786,1993
    68. Chen XY.and. JJ Bieker. Erythroid kruppel-like factor (EKLF) contains a multifunctional transcriptional activation domain important for inter-and intramolecular interactions. EMBO J. 15:5888-5896,1996
    69. Nuez B. Michalovich D. Bygrave A. Ploemacher R and F Grosveld.??Defective haematopoiesis in fetal liver resuiting from inactivation of the EKLF gene. Nature. 375: 316-318, 1995
    70. Perkins AC. Sharpe AH. and SH Orkin. Lethal β-thalassemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 375: 318-322, 1995
    71. Asano H. and G Stamatoyannopoulos. Activation of β-globin promoter by erythroid kruppel-like factor. Mol. Cell. Biol. 18: 102-109, 1998
    72. Armstrong JA. JJ Bieker. and BM Emerson. A SWI/SNF-related Chromatin Remodeling Complex, ERC1, is Required for Tissue-Specific Transcriptional Regulation by EKLF In Vitro. Cell. 95: 93-104, 1998
    73. Briegel K. KC-Lim. C Plank. H Beug. J Engel. and. M Zenke. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes & Dev. 7: 1097-1109, 1993
    74. Leonard MW. KC Lim. and. JD Engel. Expression of the chicken GATA factor family during early erythroid development and differentiation. Devevopment. 119: 519-531, 1993
    75.纪新军.刘德培.梁植权.多功能转录因子---阴阳因子-1研究进展.国外医学遗传学分册.21:10-16,1998
    76. Lam. LT. and EH Bresnick. Identity of the β-globin locus control region binding protein HS2NF5 as the mammalian homolog of the notch-regulated transcription factor suppressor of hairless. J. Biol. Chem. 273: 24223-24231, 1998
    77. Navas PA. Peterson KR. Li Q. Skarpidi E. Rohde A. Shaw SE. Asano H and Stamatoyannopoulos G. Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion. Mol. Cell. Biol. 18: 4188-4196, 1998
    78. Lindenbaum MH. and Grosveld F. An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes Dev. 4: 2075-2085, 1990
    79. Raich N. T Enver. B Nakamoto. B Josephson. T Papayannopoulou. and G Stamatoyannopoulos. Autonomous developmental control of human embryonic globin gene switching in transgenic mice. Science 250: 1147-1149, 1990
    80. Shih D. M. RJ Wall. and SG Shapiro. Developmentally regulated and erythroid-specific expression of the human embryonic β-globin gene in transgenic mice. Nucleic Acid Res. 18: 5465-5472, 1990
    81.刘德培,梁植权:珠蛋白基因特异性表达的调控,基础医学与临床12:78-82,1992.
    82. Behringer RR. TM Ryan RD Palmiter. RL Brinster. and TM Townes. Human γto β-globin gene switching in transgenic mice. Genes & Dev. 4: 380-389,199083. Orkin SH. SC Goff. The duplicated human α-globin genes: Their relative expression as measured by RNA analysis. Cell 24: 345-351, 1981
    84. Hanscombe O. D Whyatt. P Fraser. N Yannoutsos. D Greaves. N Dillon. And F Grosveld. Importance of globin gene order for correct developmental expression. Genes & Dev. 5: 1387-1394, 1991
    85. Engel JD. Developmental regulation of human beta-globin gene transcription: a switch of loyalties? Trends Genet. 9: 304-9,1993
    86. Wijgerde M. Grosveld F. and Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature 377: 209-213, 1995
    87.纪新军.刘德培.梁植权.连接介导PCR及其在体内足迹研究中的应用.生物化学与生物物理进展.24:224-227,1997
    88. Church GM. and Gilbert W. Genomic sequencing. Proc Natl Acad Sci USA. 81: 1991-1995, 1984
    89. Muller PR. and BJ Wold. in vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science. 246: 780-786, 1989
    90.张庆一.薛社普.一种分离Wistar大鼠中幼、晚幼有核红细胞的有效方法.解剖学报.19:416-420,1988
    91. Rovera G. C Magarian and TW Borun. Resolution of Hemoglobin Subunits by Electrophoresis in Acid Polyacylamide Gels Containing Triton x-100. Analytical Biochemistry. 85: 506-518, 1978
    92. Frederick MA. Ligation-Mediated PCR for Genomic Sequencing and Footprinting. in Short Protocol in Molecular Biology (Third Edition). 15. 5, 1995
    93. Becker, P. B. & Schutz, G. (1988) In Genetic Engineering Principles and Methods, ed. Selton, J. K. (Plenum, New York), Vol. 10, pp. 1-19
    94. Sambrook, JE. F. Fritsch. & T. Maniatis. Molecular Cloning A Laboratory Manual, 2nd ed 1989, 9. 16-9.19
    95. Maxam, A. &W. Gilbert. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65: 499-560, 1980
    96. Garrity, D. A. & B. J. Wold. Effects of different DNA polymerases in ligationmediated PCR: Enhanced genomic sequencing and in vivo footprinting. Proc. Natl. Acad. Sci. USA. 89: 1021-1025, 1992
    97. Reddy PMS. and CKJ Shen. Erythroid Differentiation of Mouse Erythroleukemia Cells Results in Reorganization of Protein-DNA Complexes in the Mouse β~(maj) Globin gene Promoter but Not Its Distal Enhancer. Mol. Cell. Biol. 13: 1093-1103, 1993
    98. Leroy-Viard K. P Rouyer-Fessard and Y Beuzard. Improvement of mouse β-thalassemia by Recombinant Human Erythropoietin. Blood. 78: 1596-1602, 1991
    99. Sauvage C. P Rouyer-Fessard and Y Beuzard. Improvement of mouse β-thalassaemia by hydroxyurea. British Journal of Haematology. 84: 492-496, 1993100. Olivieri NF. Reactivation of Fetal Hemoglobin in patients with β- thalassimia. Seminar in Hematology 33:24-42,1996
    101.Liang CC.Liu DP. Jia PC.Ao ZH.Chen SS and Yang KG. Augmentation of fetal hemoglobin in anemic monkeys by mylelan. in Developmental Control of globin gene expression. Edi: Stamatoyannopolous G and Nienies AW pp467-478(1987), Alan and Liss. Inc
    102.Liu DP .Liang CC. Ao ZH Jia PC. Chen SS. Wang RX. Liu LJ. Jin HQ. Zha DY and Huang YW. Treatment of severe β-thalassimia (patient)with myleran. Amer J Hematol. 33:50-55,1990
    103. Strauss EC and SH Orkin. In vivo protein-DNA interactions at hypersensitive site 3 of the human β-globin Locus control region. Proc. Natl. Acad. Sci.USA. 89:5809-5813,1992
    104. Ikuta T and YW Kan.In vivo Protein-DNA interactions at the β-globin gene locus. Proc. Natl. Acad.Sci.USA. 88:10188-10192,1991
    105. Ikuta T. T Papayannopoulou. G Stamatoyannopoulos. and YW Kan. Globin gene switching. J. Biol. Chem. 271:14082-14091,1996
    106.Reddy PMS. G Stamatoyannopoulos. T Papayannopoulou and CKJ Shen. Genomic Footprinting and Sequencing of Human β-Globin Locus. J.Biol.Chem. 269:8287-8295,1994
    107.Reddy PMS. and CKJ Shen. Protein-DNA interactions in vivo of an erythroid-specific, human β-Globin Locus enhancer. Proc. Natl. Acad. Sci. USA. 88:8676-8680,19911 Grosveld F et al. Cell, 1987; 51: 975
    2 Hanscombe O et al. Genes Dev, 1991; 5: 1387
    3 Fang TC et al. Genes Dev, 1992; 6: 521
    4 Evans T et al. Annu Rev Cell Biol, 1990; 6: 95
    5 Ronchi AE et al. J Biol Chem, 1995; 270: 21934
    6 Tsai SF et al. Nature, 1989; 339: 446
    7 David IK et al. Genes Dev, 1990; 4: 1886
    8 Merika M et al. Mol Cell Biol, 1995; 15: 2437
    9 Pevny L et al. Development, 1995; 121: 163
    10 Weiss MJ et al. Proc Natl Acad Sci USA, 1995; 92: 9623
    11 Raich N et al. EMBO J, 1995; 14: 801
    12 Andrews NC et al. Nature, 1993; 362: 722
    13 Igarashi K et al. Naure, 1994; 367: 568
    14 Igarashi K et al. Proc Natl Acad Sci USA, 1995; 92: 7445
    15 Kataoka K et al. Mol Cell Biol, 1995; 15: 2180
    16 Pishedda C et al. Proc Natl Acad Sci USA, 1995; 92: 3511
    17 Shivdasani RA et al. Proc Natl Acad Sci USA, 1995; 92: 8690
    18 Shivdasani RA et al. Cell 1995; 81: 695
    19 Choi OR et al. Cell, 1988; 55: 17
    20 Amrolia PJ et al. J Biol Chem. 1995; 270: 12892
    21 Jane SM et al. EMBO J. 1995; 14: 97
    22 Jane SM et al. EMBO J, 1992; 11: 2961
    23 Miller U et al. Mol Cell Biol, 1993; 13: 2776
    24 Donze D et al. J Biol Chem, 1995; 270: 1955
    25 Nuez B et al. Nature, 1995; 375: 316
    26 Perkins AC et al. Nature, 1995; 375: 318
    27 Yang HY et al. Mol Cell Biol, 1995; 15: 1353
    28 Visvader JE et al. Mol Cell Biol. 1995; 15: 634
    29 Pandolfi PP et al. Nature Genet, 1995; 11: 40
    30 Orkin SH. J Biol Chem, 1995; 270: 49551 Strauss EC, Andrews NC, Higgs DR et al. in vivo footprinting of the human a-globin locus uptream regulatory element by guamine and adenine ligation-mediated polymerase chain reaction. Mol Cell Biol, 1992, 12(5): 2135-2142
    2 Ikuta T. Kan YW. in vivo protein-DNA interactions at the B-globin gene locus. Proc Natl Acad Sci USA. 1991, 88: 10188-10192
    3 Becker PB, Schutz G. Genetic engineering. New York: Plenum Press, 1988. 1-19
    4 Mueller P R, Wold BJ. in vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science, 1989, 246: 780-786
    5 Garrity DA, Wold BJ. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc Natl Acad Sci USA, 1992, 89: 1021~1025
    6 Rodriguez H, Drouin R, Holmquist GP et al. Mapping of copper/hydrogen peroxideinduced DNA damage at nucleotide resolution in human genomic DNA by ligationmediated polymerase chain reaction. J Biol Cell, 1995, 270(29): 17633~17640
    7 Pfeifer GP, Steiserwald SD, Mueller PR et al. Genomic sequencing and methylation analysis by ligation mediated PCR. Science, 1989, 246: 810~813
    8 Quivy JP, Becket PB. An improved protocol for genomic sequencing and footprinting by ligation-mediated PCR. Nucleic Acids Res, 1993, 21(11): 2779-2781
    9 Tormanen VT, Swidershi PM, Kaplan BE et al. Extension product capture improves genomic sequencing and DNAse Ⅰ footprinting by ligation-mediated PCR. Nucleic Acids Res, 1992, 20(20): 5487-5488
    10 Brunvand MW, Krumm A, Groudine M. in vivo footprinting of the human IL-2 gene reveals a nuclear factor hound to the transcription start site in T cells. Nucleic Acids Res, 1993. 21(20): 4824-4829
    11 Reddy PMS, Stamatoyannoqoulos G, Papayannopoulou T et al. Genomic footprinting and sequencing of human Bglobin locus. J Biol Cell, 1994, 269(11): 8287-8295
    12 Dimitrova DS, Giacca M, Demarchi F et. al. in vivo protein-DNA interactions at a human DNA replication origin. Proc Natl Acad Sci USA, 1996, 93: 1498-1503
    13 Hershkovitz M, Riggs A D. Metaphase chromoxome analysis by ligation-mediared PCR: heritable chromatin structure and a comparison of active and inactive X chromosomes. Proc Natl Acad Sci USA, 1995, 92: 2379-23S3
    14 Pfeifer GP, Tanguay RL, Steigerwald SD et al. in vivo footprinting and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Gene Dev, 1990, 4(8): 1277~1287
    15 Pfeifer GP, Riggs AD. Chromatin differences between active and inactive X chromosomes reveals by genomic footprinting of permeabilized ligation-mediated PCR. Gene Dev, 1991, 5(6): 1102-1113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700