用户名: 密码: 验证码:
香加皮有效成份抑制大鼠食管癌形成及其机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌是我国最常见的消化道恶性肿瘤之一,恶性程度高,发病原因不明,造成预防困难;因缺乏十分有效的诊治方法,发病率、死亡率居高不下,总5年生存率不超过10%。因此,通过预防降低食管癌发生率十分重要。流行病学调查资料显示,早期癌或癌前病变的发现、诊断和治疗是目前降低食管癌发病率和死亡率的主要措施,发现癌前病变逆转分化药物是降低食管癌死亡率的理想手段。中医药在肿瘤防治中的作用越来越受到人们的重视。已有大量研究证实,部分中药对食管癌的发生有一定防治作用,香加皮三萜类化合物(triterpenes compound of Cortex Periplocae,TCCP)是本实验室发现的既有抗肿瘤作用又有免疫调节活性的抗肿瘤活性成分,对胃癌、肝癌、乳腺癌都有较好的增殖抑制作用,对食管癌细胞的体外抑制效果也很明显,但是在体内抗肿瘤效果及作用机理尚不清楚。
     本课题首先用甲基苄基亚硝胺(N-nitro-somethylbenzylamine, NMBA)诱导建立了大鼠食管癌前病变模型,检测了在食管癌形成过程中与细胞异常增殖相关的分子、蛋白及其基因表达的动态变化和相互关系,以及外周血免疫相关分子的变化,分析了香加皮三萜类化合物对NMBA诱发食管癌发生中上述分子表达变化的影响,为香加皮三萜类化合物的临床应用提供理论依据。
     第一部分香加皮三萜类化合物对荷食管癌细胞裸鼠的抑瘤作用研究
     目的:观察TCCP对荷食管鳞癌细胞裸鼠移植瘤的抑制作用,探讨其体内对荷食管癌移植瘤的抑制作用。
     方法:将稳定表达荧光素酶基因(Luc)的人食管癌细胞株Eca109-luc细胞接种于裸鼠左侧肋腹部皮下,建立Eca109-luc细胞荷瘤裸鼠模型,待肿瘤生长至直径约5-7mm时,将裸鼠随机分为生理盐水处理组和TCCP(20mg/kg)治疗组,每组7只,隔日于瘤周注射生理盐水或药物一次,疗程4周。应用美国精诺真活体成像系统(Xenogen IVIS Imaging System)观察肿瘤生长情况,采用流式细胞仪分析肿瘤组织细胞的凋亡率;用RT-PCR和Western blot法检测肿瘤组织凋亡相关基因Fas和Survivin的表达变化。
     结果:1经TCCP(20mg/kg)治疗荷Eca109-luc细胞裸鼠后,肿瘤的生长受到明显抑制,肿瘤体积明显小于盐水处理组(P<0.01);TCCP治疗组移植瘤的质量(0.82±0.14)g显著低于对照组(1.38±0.36)g(p<0.05),对肿瘤生长的抑制率为40.7%。
     2经精诺真体内成像系统检测结果显示,TCCP治疗前裸鼠肿瘤光子数的平均值为5.47E+06±1.12E+06,与盐水处理组相比(5.02E+06±1.03E+06)无统计学差异(P>0.05);TCCP治疗后1、2、3、4周荷瘤裸鼠肿瘤的光子数分别为7.65E+06±2.14E+06、6.18E+07±1.36E+07、1.70E+08±1.14+08、5.53E+08±1.01E+08,均显著低于同时间点生理盐水处理组(6.48E+07±1.25E+07、3.65E+08±1.42E+08、7.64E+08±3.02E+07、3.34E+9±4.78E+08)(P均<0.01)。
     3 FCM检测结果显示, TCCP治疗组裸鼠移植瘤细胞的凋亡率(32.5±1.2%)明显高于盐水处理组(11.6±1.0%),差异有显著性(P<0.05)。
     4 RT-PCR分析结果显示,TCCP治疗组裸鼠瘤组织中Fas mRNA表达水平显著高于盐水处理组(P<0.01);而TCCP治疗组裸鼠瘤组织中Survivin mRNA的表达水平则显著低于盐水处理组(P<0.01)。
     5 Western blot检测结果显示,TCCP治疗组荷瘤裸鼠瘤组织中Fas蛋白表达水平(0.725±0.046)明显高于盐水处理组(0.297±0.026)(P<0.01);而TCCP治疗组瘤组织中Survivin蛋白表达的水平(0.052±0.003)明显低于盐水对照组(0.387±0.016)(P<0.05)。
     结论:TCCP在体内能明显抑制食管癌细胞增殖,其作用机制可能是调节Fas/FasL分子表达、下调肿瘤组织凋亡抑制基因Survivin的表达,从而促进肿瘤细胞的凋亡有关。
     第二部分香加皮三萜类化合物对大鼠食管癌前病变的阻断作用及其机制研究
     实验一大鼠食管癌前病变模型的建立及香加皮三萜类化合物对其阻断作用
     目的:研究NMBA诱导F344大鼠食管上皮癌前病变形成过程中组织病理学改变、细胞周期调控因子和增殖相关蛋白表达的改变及TCCP对以上分子表达的影响。
     方法:雄性F344大鼠165只,随机分为5组:1正常对照组(对照1组,n=15),常规饲养;2大豆油对照组(对照2组,n=15),每只大鼠注射大豆油1ml/kg,每周3次,共注射5周,常规饲养;3单纯诱癌组(n=45),皮下注射NMBA 0.5mg/kg,每周3次,共给药5周,常规饲养;4 TCCP高剂量干预组(干预1组,n=45),每只大鼠皮下注射NMBA(0.5mg/kg)后,同时肌注TCCP(20mg/kg),每周3次,共给药5周,常规饲养;5 TCCP低剂量干预组(干预2组,n=45),每只大鼠皮下注射NMBA(0.5mg/kg)后,同时肌注TCCP(10mg/kg),每周3次,共给药5周,常规饲养。在诱癌开始后9、15和25周时,各取对照1、2组大鼠5只,单纯诱癌组和干预1、2组各取15只大鼠,麻醉后解剖大鼠,肉眼观察食管粘膜大体变化;HE染色后光镜下观察食管上皮组织病理学变化;采用免疫组化方法检测各组食管组织PCNA、cyclinD1及CDK4蛋白表达变化。
     结果:1实验动物一般状况:实验期间各组大鼠体重正常增长,各组间平均体重变化无显著性差异。实验后期单纯诱癌组大鼠出现皮毛蓬松,弓背卷缩现象,但体重仍在稳步上升,增长速度虽较治疗组稍慢,但无统计学意义(P>0.05)。
     2各实验组食管标本大体观察:正常对照组及大豆油对照组在实验整个过程中未发现食管异常变化。NMBA诱癌大鼠食管出现以下变化:(1)食管粘膜增厚、发白及变粗糙。(2)粘膜表面出现点状、圆形、卵圆形或条状的白色斑块。这些斑块突起或平坦,直径一般0.1-0.2mm。在实验后期,白斑病变增多、变大与融合。(3)形成乳头状瘤,一般单发或多发,有时散布在食管各段。乳头状瘤呈球形、卵圆形、半球形或丘状突起,表面呈莱花状,直径约1mm。单纯诱癌组大鼠在诱癌开始后9周大鼠食管上皮仅见粘膜增厚和白斑形成,15周时有20%(3/15)的大鼠出现单发的乳头状瘤样病变(以大于1 mm计算),TCCP高剂量和低剂量干预组均未见乳头状瘤样病变发生;25周时,60.0%(6/15)单纯诱癌组大鼠食管可见单发或多发乳头状瘤样病变,平均每只大鼠的瘤数为0.93,TCCP高剂量干预组和低剂量干预组大鼠的乳头状瘤发生率分别降低至20%(P<0.01)和33.3%(P>0.05),平均每只大鼠瘤数也分别下降至0.27和0.33。两干预组相比无统计学差异(P>0.05)。
     3各实验组食管标本组织病理学观察:用NMBA诱癌开始后9周时,单纯诱癌组大鼠癌前病变发生率为20.0%,15周时46.7%,至25周时达93.3%。与单纯诱癌组相比,诱癌9、15周时TCCP高剂量和低剂量药物干预组食管上皮未发生癌前病变大鼠比率明显升高(P<0.05)。25周时,与单纯诱癌组相比,高剂量和低剂量TCCP对模型大鼠癌前病变发生的抑制率分别达64.3%和50%(P<0.05)。
     4诱癌开始后9、15和25周时,单纯诱癌组大鼠食管上皮组织PCNA表达水平分别为213.17±29.74、268.35±39.56、327.24±28.19,均显著高于正常对照组的表达水平(167.96±20.16、170.76±14.79、172.49±17.49)(P均<0.05);与单纯诱癌组相比,TCCP高剂量和低剂干预量组大鼠食管上皮组织中PCNA表达水平均显著降低(P<0.05)。
     5正常对照组和大豆油对照组大鼠食管上皮组织CDK4和cyclinD1呈阴性表达。单纯诱癌组大鼠食管组织中随用NMBA诱癌时间的延长CDK4和cyclinD1的表达水平逐渐增强,两者的阳性表达变化呈明显相关性(r=0.9631, P<0.05)。与单纯诱癌组相比,高、低剂量TCCP干预组在诱癌后9、15及25周时,大鼠食管上皮组织中CDK4和cyclinD1表达水平均明显降低(P<0.05);在诱癌9周时,高剂量与低剂量组相比,大鼠食管上皮组织CDK4和cyclinD1的表达水平无显著性差异;诱癌15周和25周时,高剂量组食管组织CDK4和cyclinD1阳性表达水平明显低于低剂量组(P<0.05)。
     结论:甲基苄基亚硝胺(0.5mg/kg)可诱导F344大鼠食管癌前病变的发生;单纯诱癌组大鼠食管上皮出现典型的癌前病变组织病理学变化,食管上皮组织中增殖相关蛋白PCNA及周期调控因子CDK4和cyclinD1的表达水平明显升高;香加皮三萜类化合物早期干预可明显抑制甲基苄基亚硝胺诱导大鼠食管癌前病变的发生与发展,该作用可能与其抑制大鼠食管组织上皮中PCNA、CDK4和cyclinD1表达有关。
     实验二香加皮三萜类化合物对大鼠食管癌前病变形成过程中Wnt信号通路的影响
     目的:研究TCCP对NMBA诱导F344大鼠食管癌前病变形成过程中,Wnt信号通路分子表达变化,进一步探讨其抑制食管癌前病变的作用机理。
     方法:分别取各组大鼠食管组织,用RT-PCR法检测c-myc mRNA表达水平;用Western blot法检测GSK-3β和β-catenin蛋白表达水平。
     结果:1与正常对照组相比,用NMBA诱癌9周时,大鼠食管上皮组织中c-myc mRNA表达水平显著升高,且随诱癌时间的延长表达水平逐渐升高,至诱癌25周时达峰值。与单纯诱癌组相比,在诱癌9、15周时高低剂量TCCP干预组大鼠食管上皮组织中c-myc mRNA表达水平均显著下降,且高剂量组c-myc mRNA的表达水平明显低于低剂量组(P<0.05)。诱癌25周时,两剂量TCCP干预组食管上皮组织c-myc mRNA表达水平虽较单纯诱癌组降低,但无统计学意义(P>0.05)。2正常对照组及大豆油对照组大鼠食管组织有β-catenin蛋白表达;在NMBA诱癌9周时大鼠食管上皮组织中β-catenin的表达水平明显升高,与正常对照组相比差异显著(P<0.05)。随诱癌时间延长,其表达水平逐渐升高。与正常对照及大豆油对照组大鼠相比,在诱癌9周时单纯诱癌组大鼠食管组织GSK-3β的蛋白表达水平显著下降,随着诱癌时间延长表达水平逐渐降低,至25周达最低水平(P<0.05)。
     在诱癌后9、15和25周时,与单纯诱癌组相比,高、低剂量TCCP干预组大鼠食管组织β-catenin蛋白表达水平均显著下降(P<0.05),而GSK3β蛋白表达显著升高(P<0.05);高剂量TCCP组大鼠食管组织β-catenin及GSK3β蛋白表达水平,与低剂量组相比无明显差异(P>0.05)。
     结论:TCCP可能通过促进Wnt信号分子GSK-3β的表达,抑制β-catenin蛋白的表达,进而下调下游靶基因c-myc的转录,干扰细胞周期转化,逆转细胞的分化,可能是其抑制食管癌变细胞生长机制之一。
     第三部分香加皮三萜类化合物对食管癌前病变大鼠免疫调节作用的实验研究
     目的:探讨TCCP抑制大鼠食管癌前病变形成过程中免疫调节作用机理。
     方法:1采用流式细胞技术分析TCCP对NMBA诱癌大鼠外周血中T细胞亚群CD4+CD25+调节性T细胞比率的影响,用半定量RT-PCR技术分析其对大鼠外周血单个核细胞(PBMC)中Foxp3 mRNA表达水平的影响。
     2应用RT-PCR技术分析香TCCP对NMBA诱癌大鼠外周血PBMC中细胞因子IL-2、IL-10、TGF-βmRNA表达水平的影响,应用ELISA检测技术分析TCCP对NMBA诱癌大鼠外周血中细胞因子IL-2、IL-10、TGF-β水平的影响。
     结果:1与正常对照组比,用NMBA诱癌9周时,单纯诱癌组外周血中CD4+T细胞比例显著降低,CD4+CD25+Treg细胞比例及Foxp3 mRNA表达水平明显升高,此现象随诱癌时间的延长而加重(P<0.05);在诱癌9周、15周时,与单纯诱癌组相比,高、低剂量TCCP干预组大鼠外周血中CD4+T细胞比例明显升高,CD4+CD25+Treg细胞比例及Foxp3 mRNA表达水平明显降低(P<0.05);诱癌25周时,与单纯诱癌组相比,两剂量TCCP干预组显著降低了Foxp3 mRNA的表达水平,但对CD4+CD25+Treg细胞和CD4+T细胞的比率无明显影响(P>0.05)。高剂量TCCP组大鼠外周血以上指标的水平与低剂量组相比无明显差异(P>0.05)。
     2与正常对照组相比,用NMBA诱癌9周时,单纯诱癌组大鼠外周血单个核细胞中IL-10、TGF-βmRNA表达水平及其血清中相应蛋白含量显著升高,而IL-2 mRNA表达水平及其血清中相应蛋白含量显著下降(P<0.05),15周时各指标水平虽有所升高,但与9周比无显著性差异(P>0.05);与15周相比,至25周时,IL-10、TGF-βmRNA表达水平及其血清中相应蛋白含量显著升高,而IL-2 mRNA表达水平及其血清中相应蛋白含量显著下降(P<0.05)。与单纯诱癌组相比,用NMBA诱癌9、15周时,高、低剂量TCCP干预组大鼠外周血单个核细胞中IL-10、TGF-βmRNA表达水平及其血清中相应蛋白含量显著下降(P<0.05),IL-2 mRNA表达水平及其血清中相应蛋白含量显著升高(P<0.05);25周时,高、低剂量TCCP干预组对以上细胞因子基因表达及蛋白含量无明显影响(P>0.05)。
     结论:TCCP可抑制NMBA诱导大鼠癌前病变形成的免疫调节作用,其作用机制可能与其下调外周血CD4+CD25+Tr细胞比例及Foxp3 mRNA表达水平有关;可能与其抑制大鼠免疫系统产生Th2类细胞因子,促进Th1类细胞因子有关。
Esophageal carcinoma is a kind of most common malignant tumor in China with high degree of malignity. Despite the persistent development of treatment methods in recent years, the long-term follow-up result of esophageal carcinoma, on a whole, is still unsatisfied and the prognosis is very inclement with high morbility and mortality (overall 5-year survival rates less than 10%). So preventive measure may be the best way to reduce the incidence of esophageal carcinoma in current. Epidemiological data showed that early recognition, diagnosis and treatment of cancer or preneoplastic lesions is the main measure to reduce the mortality of esophageal cancer, and seeking the drug which can reverse the development of prenoplastic lesions appears to be a useful method. In recent years, the effect of traditional Chinese medicine on cancer prevention has aroused more and more intreasts and many studies have proved that some Chinese herbs may prevent esophageal cancer. Triterpenes compound of Cortex Periplocae (TCCP) is an active component of Cortex Periplocae with anti-tumor and immunoregulation activity which is developed by our laboratory. TCCP has the significant inhibitory effect on tumor proliferation such as stomach cancer, hepatocarcinoma, or breast cancer as well as esophageal carcinoma cells in vitro. However, a further research need to be developed for whether it can reverse the development of prenoplastic lesion of esophagous in vivo.
     In this present study, we treated F344 rats with the esophageal carcinogen, N-nitrosomethylbenzylamine (NMBA), thrice per week for 5 weeks to establish a model of human esophageal squamous cell carcinoma. Histochemistry, immunohistochemistry, RT-PCR and western blot technique were used in this study to investigate the variable trends of expression and correlation of some proteins and genes interrelated with abnormal proliferation of esophageal epithelium cell during periods of esophageal tumorigenesis induced by NMBA and the effect of TCCP. The purpose of the study is to screen out an applicable and effective esophageal carcinoma preventive agent of traditional Chinese medicine, to offer academic foundation for further clinic study and to spread out its application.
     Part 1 The observation of tumor-inhibitory effect of TCCP on the nude mice bearing esophageal carcinoma cells
     Objective: To observe the inhibitory effect of TCCP on the nude mice bearing esophageal squmous carcinoma cells and explore the inhibitory mechanism in vivo.
     Methods: Eca109-luc stablely expressing luciferase were inoculated subcutaneously into the hind flank region of nude mice to establish tumor model. Nude mice were randomly grouped until tuomr’s length reached 5-7 mm. One group of mice (n=7) was treated i.s. with NS. A second group of mice (n=7) was treated i.s with TCCP (20mg/kg) thrice per week. The course of all the treatments would last for 4 weeks. Tumor growth were monitored with in vivo imaging system. Cell apoptosis in vivo were analyzed by flow cytometry. Western blot was used to investigate protein expression of Survivin.
     Results: 1 Compared with NS control group, the tumor growth of the nude mice bearing Eca109-luc was significantly inhibited by TCCP treatment (1.38±0.36 g vs 0.82±0.14 g), with the inhibitory ratio 40.7%.
     2 There was no significant difference in photon number detected by in vivo bioluminescence imaging between NS control group and TCCP group before treatment with TCCP (5.02E+06±1.03E+06, 5.47E+06±1.12E+06 respectively)( P>0.05). After treatment with TCCP, the average photon number of the TCCP group were decreased by 7.65E+06±2.14E+06、6.18E+07±1.36E+07、1.70E+08±1.14+08 and 5.53E+08±1.01E+08 at weeks 1, 2, 3 and 4, respectively, significantly lower than NS control group (6.48E+07±1.25E+07、3.65E+08±1.42E+08、7.64E+08±3.02E+07 and 3.34E+9±4.78E+08, respectively) (P<0.01).
     3 FCM assay for the apoptosis rate of tumor cells in vivo showed that there was a significant difference between the NS control group (11.6±1.0%) and the TCCP group (32.5±1.2%) (P<0.05).
     4 Gene expression of Fas in TCCP treated mice was significantly higher than that of NS group(P<0.01), while survivin mRNA was significantly decreased.
     5 It was observed that the protein expreesion of Fas in the tumor tissues of TCCP group was significantly higher (0.725±0.046), as compared with that of NS control group (0.297±0.026)(P<0.01), while the protein expreesion of Survivin was significantly decreased (0.052±0.003), as compared with that of NS control group (0.387±0.016)(P<0.05).
     Conclusions: Cell growth in vivo was inhibited significantly by TCCP which might exert its anti-tumor activity through Fas/FasL pathway related to reduction of survivin expression, and then inducing apoptosis of tumor cells.
     Part 2 Effect of TCCP on NMBA-induced rats esophageal carcinogenesis and its mechanism
     1 The establish of rat model of esophageal preneoplastic lesion and the effect of TCCP on the cacinogenesis
     Objective: To investigate the effect of TCCP on esophageal pathology , proliferating cell muclear antigen (PCNA) expression and cell cycle regulatory components in NMBA-induced rat tumorigenesis.
     Methods: 165 male F344 rats (5-6 weeks of age) were randomly divided into five experimental groups according to the different regiments. It consisted of the following groups: (1) normal control groups (group 1, n=15): rats were raised rountinly; (2) soya oil control groups (group 2, n=15): rats were injected with soya oil 1ml/kg intramuscularily (i.m.); (3) NMBA control groups (group 3, n= 45): rats were injected with NMBA 0.5mg/kg only; (4) Low dose TCCP treatment groups (group 4, n=45): rats received NMBA 0.5mg/kg s.c. plus TCCP 20mg/kg i.m.; (5) High dose TCCP treatment groups (group 5, n=45): rats received NMBA 0.5mg/kg s.c. plus TCCP 10mg/kg i.m..The administration of drugs was scheduled as below: thrice per week for 5 weeks. At 9, 15 and 25 week, 5 rats from groups 1 and 2 and 15 rats from groups 3, 4 and 5 were euthanized by pentobarbital sodium and subjected to gross necropsy. The esophagus of each rat was excised and opened longitudinally. Then esophagus were fixed in 10% phosphate-buffer formalin solution, and routinely embedded in paraffin for HE staining to observe the pathological changes of esophageal tissues, while the expression of PCNA, cyclinD1 and CDK4 was measured by immunohistochemistry.
     Results: 1 General observations. The mean body weights and food consumption in all rats were not significantly different throughout the bioassay. At the end of the bioassay rats treated with NMBA were found in low spirits with shaggy fur. However, body weights still increased.
     2 General observations of esophagi of rats. There were no abnormal changes in normal and soya oil group among bioassay. Changes were observed in NMBA-induced rats as following: (1) esophageal mucosa becoming incrassation with color white and scabrities; (2) white patch. there were some pathologic white patch changes on the surface of esophageal mucosa just like dot, circle, orbicular-ovate or strip with size about 0.1-0.2 mm and the area of the pathologic changes increased at the end of bioassay. (3) papilloma. At week 9 of the bioassay, esophagi had pathologic changes like incrassation and white patch. At weeks 15 and 25 of the bioassay, 20% to 60% of the esophagi, respectively, had papillomas. Mean number of papillomas per rat is 0.93 at week 25.TCCP showed significant inhibitory effects on the incidence of the papilloma in group 4 to 20% ( P<0.01), and the mean number of papillomas was also decreased to 0.27. In group 5, the decrease of incidence and number of the papilloma was not statistically significant (33.3%, 0.33, respectively). There was also no statistically significant between group 4 and group 5.
     3 The results of histopathologic examination of esophagi. The preneoplatic lesion of esophageal tissues was evaluated. At weeks 9, 15 and 25, the incidence of preneoplastic lesion in groups 3 was 20.0%, 46.7% and 93.3 %, respectively. TCCP markedly inhibited rat esophageal preneoplastic lesion, the inhibitory rates at 25 weeks were 64.3% in group 4 and 50% in group 5, respectively (P<0.05).
     4 There were a markedly increase in the expression of PCNA in NMBA control group (week 9: 213.17±29.74; week 15: 268.35±39.56; week 25: 327.24±28.19), as compared with that in normal control group(167.96±20.16、170.76±14.79、172.49±17.49, respectively)( P <0.05). TCCP significantly decreased the expression of PCNA in groups 4 (185.28±22.98、200.56±28.19、282.23±37.43) and group 5 (189.27±22.10、209.73±28.88、305.60±17.46) (P<0.05).
     5 The expreesion of CDK4 and cyclin D1 were not found in normal mucosa of esophagi of rats in normal control and soya oil control group, but were induced by administering NMBA. Positive expression of cyclinD1 and CDK4 increased gradually and reached the peak at 25wk. There were significant positive correlations between the two protein expression (r=0.9631, P<0.05). Treatment with TCCP could significantly decrease the protein expression of CDK4 at weeks 9, 15 and 25 (P<0.05). And there was significant difference between the high TCCP group and low TCCP group at weeks 15 and 25. TCCP could act a similar effect on the expreesion of cyclinD1.
     Conclusions: NMBA (0.5mg/kg) can sucessfully induced F344 rats model of esophageal preneoplastic lesion. Typical histophathologic changes was examined in the NMBA-treated rats. TCCP may restrain the high expression of PCNA, while alleviate the esophageal preneoplastic lesion of rats induced by NMBA. TCCP can also inhibit the uncontrolled proliferation of esophageal epithelia cells and regulating cell-cycle process.
     2 The effect of TCCP on wnt signal pathway in NMBA-induced rat tumorigenesis
     Objective: To study the effect of TCCP on wnt signal pathway in NMBA-induced rats tumorigenesis and to investigate the mechanism by which TCCP modulate tumorigenesis.
     Methods: Total cellular RNA was isolated from frozen tissues using TRIzol Reagent. The expression of c-myc mRNA was detected by RT-PCR. Western blot was used to investigate the protein expression of GSK-3βandβ-catenin in the esophageal epithelium.
     Results: 1 The gene expression of c-myc of esophageal epithelium in NMBA control group was significantly increased at weeks 9, 15, 25 compared with normal control (P<0.05). TCCP supressed the mRNA expression of c-myc at both weeks 9 and 15 (P<0.05), but not at weeks 25.There was no significant difference between the high TCCP group and low TCCP group.
     2 It was observed that the expression ofβ-catenin was slightly present in normal mucosa of esophagi of the rats which were untreated with NMBA, and then was significantly increased by administering NMBA from weeks 9 to 25 (P<0.05). The up-regulatedβ-catenin expression was decreased significantly by TCCP treatment at each check-point (P<0.05). The expression of GSK-3βwas rich in normal mucoa of esophagus, but was decreased significantly by administering NMBA, and was lowest at 25th week (P<0.05). The decreased protein levels of GSK3βwas significantly elevated by TCCP treatment at each check-point (P<0.05). But there was no significantly between the two treatment groups.
     Conclusions: TCCP inhibited NMBA-induced rat esophageal carcinogenesis probably via acitivition of GSK-3β, suppression ofβ-catenin and c-myc expression.
     Part 3 Effects of triterpenes compound of Cortex Periplocae on cyto-immunologic function in N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in F344 rats
     Objective: To investigate the mechanism and effects of triterpenes compound of Cortex Periplocae on cyto-immunologic function in N-nitrosomethyl- benzylamine-induced esophageal tumorigenesis in F344 rats.
     Methods: 1 FCM and RT-PCR were used to detected the proportion of CD4+CD25+ and gene expression of Foxp3 in peripheral blood of rats . 2 RT-PCR and ELASA were used to detected the gene and protein expression of IL-2, IL-10 and TGF-β1 in peripheral blood of rats .
     Results: 1 At week 9 after the NMBA treatment, CD4+T cells in peripheral blood of NMBA group rats were decreased significantly and CD4+CD25+ regulatory T cells and Foxp3 mRNA in peripheral blood of NMBA group rats were significantly increased, which deteriorated further with the time going on (P<0.05). At weeks 9 and 15, TCCP treatment can decreased the proportions of CD4+CD25+ regulatory T cells and the gene expression of Foxp3, while the proportions of CD4+ cells were significantly increased (P<0.05), compared with NMBA group. At week 25, TCCP significantly decreased the expression of Foxp3 mRNA, but had no significant effect on CD4+CD25+Treg and CD4+T cell.
     At week 9 after NMBA treatment, the protein levels of TGF-β1 and IL-10 in peripheral blood of in F344 rats were significantly higher than those in normal control group and soy control group. The gene expression of TGF-β1 and IL-10 were also significantly elevated. While the levels of protein and gene expression of IL-2 were significantly decreased, as compared with normal control. TCCP can decrease the expression of IL-10 and TGF-β1, increase the expression of IL-2.
     Conclusions: The expression of CD4+CD25+ regulatory T cells and Foxp3 mRNA in peripheral blood of rats were enhanced after treatment with NMBA, while the triterpenes compound of Cortex Periplocae can effectively inhibit the expression, thus it obviously improve the immune dysfunction in experimental esophageal tumorigenesis in F344 rats.
引文
1连小赟,陈谦,张小智,等.食管癌的化学预防.肿瘤防治研究, 2003, 30(2): 165-169
    2单保恩,李俊新,张静,等.中药香加皮与其易混物体外抑瘤效果研究.癌变?畸变?突变, 2004, 17(5): 265-268
    3单保恩,赵连梅,艾军,等.香加皮羽扇豆烷乙酸酯对人外周血淋巴细胞免疫调节功能的影响.中草药, 2008, 39(7): 1035-1039
    4陈奇.中药药理研究方法学.北京:人民卫生出版社, 1993, 9-10
    5李仪奎.中药药理学实验方法学.上海:上海科学技术出版社, 1991, 6-9
    6吴林,陈林兴,陈慎仁.食管癌动物模型研究进展.国际检验医学杂志,2007, 28(5): 433-435
    7宿华威,崔云甫,吴德全,等.活体生物萤光成像技术新进展.世界华人消化杂志, 2006, 14(24): 2440-2443
    8 Dirk B, Mendel A, Douglas L, et al. In Vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor andplatelet-derived growth factor receptors: determination of a pharmacokinetic /pharmacoynamic relationship. Clinical cancer research, 2003, 9: 327- 337
    9 Jenkins DE, Yu SF, Horning YS, et al. In vivo monitoring of tumor relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine modles of human prostate cancer. Clinical Experimental Metastasis, 2003, 20(8): 745-756
    10司徒镇强,吴军正.细胞培养.西安:世界图书出版公司, 2004, 197- 198
    11 Kumar D, Zimpelmann J, Robertson S, et al. Tubular and interstitial cell apoptosis in the streptozotocin-diabetic rat kidney. Nephron Exp Nephrol, 2004, 96(3) : 77-88
    12 Meng H, Lu C, Mabuchi H, et al. Prognostic significance and different properties of survivin splicing variants in gastric cancer. Cancer Lett, 2004, 216: 147-155
    13 Mesri M, Wall NR, Li J, et al. Cancer gene therapy using a survivin mutant adenovirus. J Clin Invest, 2001, 108: 981-990
    14 Shin S, Sung BJ, Cho YS, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 2001, 40(4) :1117-1123
    1陈正言.我国食管鳞癌癌前病变研究回顾与思考.中国肿瘤, 2006, 15(10): 653-658
    2王国清.降低食管癌发病率和死亡率的现场临床防治策略与方法.中华肿瘤杂志, 1999, 21(3): 223
    3林培中,杨简,赵三妹.亚硝胺诱发大鼠食管癌的一些特性以及癌变的病理学及组织发生学的观察.肿瘤学附刊, 1979, 6(2): 88-93
    4汤钊猷,主编.现代肿瘤学.上海:上海医科大学出版社, 1993:15.
    5赵卫星,石太新,高新平,等.食管黏膜内微量元素含量与p53, PCNA表达的关系[J].癌症, 2002, 21(7): 757-760
    6 Carmen C. Update on proliferation associated antibodies applicable to formalin-fixed parraffin embedded tissue and their clinical applications[J]. Histochem J, 1993, 25: 843~848
    7陶仪声,宗永生. P53及PCNA的异常表达在食管上皮增生和癌变过程中的意义.癌变?畸变?突变. 2002, 14(2): 87-90
    8叶萍,李兆申,许国铭,等.反流性食管炎和食管腺癌组织中P16、P53、PCNA表达及其临床意义.解放军医学杂志, 2000, 25: 326-329
    9谷化平,尚培中,刘艳茹. CD44V6和PCNA在食管癌中的表达及相关性研究[J].肿瘤防治杂志, 2003, 10(2): 140-142
    10符宝敏,谭红文,张庆远. PCNA和C-erbB-2在食管癌的表达及临床意义.中古实用医药. 2007, 2(33): 61-62
    11邹继彬,黄广恩,陈鸿莲,等.食管癌survivin和PCNA的表达及其临床意义.中国医师杂志, 2005, 7(7): 898-900
    12隗王月,林晨.与细胞周期G1-S调控点相关的几个重要元件及其与肿瘤的关系.国外医学分子生物学分册, 1998, 20(1): 10-13
    13黄文林,朱孝峰.细胞信号转导.人民卫生出版社, 2005, 366
    14 Maclachlan TK, Sang N, Giordano A. Cyclins, cyclin-dependent-kinases and cdk inhibitors: implication in cell cycle control and cancer[J].Crit Rev Euk Gene Expr, 1995, 5(2): 127-156
    15 Hortwell LH,KastanMB. Cell cycle control and cancer[J]. Science, 1994,266(5192): 1821
    16张小蔓,邹桂华,江庆萍. Survivin和CyclinD1及CDK4在胃癌组织中的表达及临床意义.河北医学, 2005, 11(5): 396-399
    17 Yan ke-xia, Liu bing-ci, Shi xiang-lin. Role of CyclinD1 and CDK4 in the carcinogenesis induced by Silica. Biomedical and Environmental Sciences, 2005, 18, 286-296
    18牛韵韵,李靖若,高巍,等.食管鳞癌组织中p16、cyclinD1、CDK4的表达[J].河南医科大学学报, 2001, 36(50): 539-541
    19丁益宏,黄剑飞,黄华.食管鳞癌中CDK4表达及意义的研究[J].河南肿瘤学杂志, 2004, 4(17): 241-242
    20吴晓华,徐小虎,沈忠英.细胞周期蛋白CyclinD1、CKD4在食管癌中的表达及意义[J].癌症, 2000, 19(1): 23-26
    21 Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends pharmacol sci, 2003, 24(3): 139-145
    1 Miler JR. The cancer handbook[M]. London: Nature Publishing Group, 2002
    2 Karim R, Tse G, Prtti T, et al. The significance of the Wnt pathway in the pathology of human cancers[J]. Pathology, 2004, 36(2): 120-128
    3 Seidler HB, Utsuyama M, Nagaoka S, et al. Expression level of Wnt signaling components possibly influences the biological behavior of colorectal cancer in different age group[J]. Exp Mol Pathol, 2004, 76(3): 224-233
    4 Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development[J]. J Cancer Res Clin Oncol, 2003, 129(4): 199-221
    5 Artavamos Tsalpmas S, Matsuno K, Fortini ME. Notch signaling[J]. Science, 1995,268(5208): 225-232
    6 Zagouras P, Stifani S, Blaumueller CM, et al. Alterations in Notch signaling in neoplastic lesions of the human cervix[J]. Proc Natl Acad Sci USA, 1995, 92(14): 6414-6418
    7 Leethanakul C, Patel V, Gillespie J, et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays[J]. Oncogene, 2000, 19(28): 3220-3224
    8 Enlund F, Behboudi A, Andren Y, et al. Altered Notch signaling resulting from expression of a WAMTPI-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin’s tumors[J]. Exp Cell Res, 2004, 292(1): 21-28
    9 Jundt F, Schulze Proebsting KS, Anagnostopoulos I, et al. Jaggedl-induced Notch signaling drives proliferation of multiple myeloma cells[J]. Blood, 2004, 103(9): 3511-3515
    10王守立. TGF-信号转导与肿瘤[J].中国肿瘤临床, 2004, 31(8): 476-477
    11 Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem, 2006, 281(32):22429-22433
    12 Polakis P. Wnt signaling and cancer[J]. Genes Dev, 2000, 14(15): 1837~1851
    13 Fuerer C, Nusse R, Ten Berge D. Wnt signalling in development and disease. EMBO Rep, 2008, 9(2): 134-138
    14郑键,郭美君,王丽岩. Wnt途径的组成调控及在肿瘤发生中作用机制的研究.医学综述, 2004, 10(9): 519-522
    15 Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet, 2004, 5(9): 691-701
    16 Widelitz R. Wnt signaling through canonical and non-canonical pathways: recent progress[J]. Growth Factors, 2005, 23(2): 111-116
    17 Tamai K, Senenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction[J]. Nature, 2000, 407(6803): 530-535
    18 Uren A, Reichsman F, Anest V, et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling[J]. J Biol Chem, 2000, 275(6): 4374-4382
    19 Hobmayer B, Rentzsch F, Kuhn K, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature, 2000, 407(6801): 186-189
    20 Behrens J, Jerchow BA, Würtele M, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 1998 , 280(5363): 596-9
    21 Itoh K, Krupnik VE, Sokol SY. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol, 1998, 8(10): 591-594
    22 Hamada F, Tomoyasu Y, Takatsu Y, et al. Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science, 1999, 283(5408): 1739-1742
    23 Yanagawa S, Matsuda Y, Lee JS, et al. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J, 2002,21(7): 1733-1742
    24 Amit S, Hatzubai A, Birman Y, et al. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev, 2002, 16(9): 1066-1076
    25 Aberle H, Bauer A, Stappert J, et al. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 1997 , 16(13): 3797-3804
    26 Maniatis T. A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev, 1999, 13(5): 505-510
    27 Salic A, Lee E, Mayer L, et al. Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell, 2000, 5(3): 523-532
    28 Farr GH 3rd, Ferkey DM, Yost C, et al. Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol, 2000, 148(4): 691-702
    29 Hsu W, Zeng L, Costantini F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem, 1999 , 274(6): 3439-3445
    30 Smalley MJ, Sara E, Paterson H, et al. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J, 1999, 18(10): 2823-2835
    31 Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer, 2008, 8(5): 387-398
    32 Krishnadath KK,Tilanus HW,Blankenstein MV,et a1.Reduced expression of the cadherin-catenin complex in oesophageal adenocarcinoma correlates with poor prognosis[J].J Pathol, 1997, 182(3): 331-338
    33 Osterheld MC,Bian YS,Bosman FF,et a1.Beta-catenin expression and its association with prognostic factors in adencarcinoma developed in Brrett esophagus[J]. Am J Clin Pathol, 2002, 117(3): 451-456
    34 Washington K,Chiappori A,Hamilton K,et a1.Expression ofβ–catenin,α-catenin, and E-cadhenin in Barrett’s Esophagus and EsophagealAdenocarcinomas[J]. Modern Pathology, 1998, 1l(9): 805-813
    35 Bian YS,Osterheld MC,Bosman FT,et a1.Nuclear accumulation of beta-catenin is a common and early event during neoplastic progression of Barrett esophagus[J]. Am J Clin Pathol, 2000, l l4(4): 583-590
    36 Plante I, Cyr DG, Charbonneau M. Involvement of the integrin-linked kinase pathway in hexachlorobenzene-induced gender-specific rat hepatocarcinogenesis. Toxicol Sci, 2005, 88(2): 346-357
    37 Wang Q, Lin ZY, Feng XL. Alterations in metastatic properties of hepatocellular carcinoma cell following oncogene transfection.World J Gastroenterol, 2001,7:355-339
    38 He TC, Sparks AB, Rago C, et al. Identification of c-myc as a target gene of APC. Science, 1998, 281(5382): 1509-12
    39 Albrechtsen N, Domreiter I, Grosse F, et a1. Extra C-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br J Cancer, 2001, 84(1): 72-77
    40石光峰,王晓霜,丁宇. C-myc在结直肠良恶性病变中的表达.中国现代医学杂志, 2002, 12(21): 47-49
    41姜涛,田晓丰,张广,等.癌基因C-myc在大肠癌中的表达及临床意义的研究.中国实验诊断学, 2004, (8)6: 615-619
    42 Sarbia M, Arjumand J, Wolter M, et al. Frequent c-myc amplification in high-grade dysplasia and adenocarcinoma in Barrett esophagus. Am J Clin Pathol, 2001, 115(6): 835-840
    43 Tsuneoka M, Teye K, Arima N, et al. A novel Myc-target gene, mimitin, that is involved in cell proliferation of esophageal squamous cell carcinoma. J Biol Chem, 2005, 280(20): 19977-19985
    44 Wang YH, Liu S, Zhang G, et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res, 2005, 7(2): R220-228
    45 Bitzer M, Stahl M, Arjumand J, et al. C-myc gene amplification in different stages of oesophageal squamous cell carcinoma: prognostic value in relation to treatment modality. Anticancer Res, 2003, 23(2B):1489-1493
    46 Ponzielli R, Katz S, Barsyte-Lovejoy D, et al. Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer, 2005, 41(16): 2485-2501
    47 Grotzer MA, Castelletti D, Fiaschetti G, et al. Targeting Myc in pediatric malignancies of the central and peripheral nervous system. Curr Cancer Drug Targets, 2009, 9(2): 176-188
    1张静,单保恩,张超.香加皮羽扇豆烷乙酸酯(CPLA)对树突状细胞分化成熟的影响[J].细胞与分子免疫学杂志, 2006, 26(1): 26-32
    2毛朝明,王胜军.调节性T细胞与肿瘤免疫治疗.肿瘤防治研究, 2007, 34(6): 465-467
    3 Vigouroux S, Yvon E, Biagi E, et al. Antigen-induced regulatory T cells[J]. Blood, 2004, 104(1): 26-33
    4 Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibtors[J]. Nat Rev Cancer, 2006, 6(8): 613-625
    5 SakaguchiS. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and nonself[J]. Nat Immunol, 2005, 6(4): 345-352
    6 Woo EY, Yeh H, Chu CS, et al. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation[J]. J Immunol, 2002, 168(9): 4272-4276
    7 Viguier M, Lemaitre F, Verola O, et al. Foxp3expressing CD4 +CD25 +high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells[J]. J Immunol, 2004, 173(2): 1444-1453
    8 Wolf A, Wolf D, Steurer M, et al. Increase of regulatory T cells in the peripheral blood of cancer patients[J]. Clin Cancer Res, 2003, 9(2): 606-612
    9 Ichihara F, Kono K, Takahashi A, et al. Increased population of regulatory T cells in peripheral blood and tumor infiltrating lymphocytes in patients with gastric and esophageal cancers[J]. Clin Cancer Res, 2003, 9(12): 4404-4408
    10 Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD4+CD25+T cells: a common basis between tumor immunity and autoimmunity. J Immunol, 1999, 163(10): 5211-5218
    11 Maloy KJ, Salaun L, Cahill R, et al. CD4+CD25+T (R) cells suppress innate immune pathology through cytokine-dependent mechanisms[J]. J Exp Med, 2003, 197: 111-119
    12 MasakiH, Cherry IK, Masanori N, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigen in vivo[J]. J Immunol, 2001, 166(9): 3789-3796
    13 Yamagiwa S, Gray J, Hashimoto S, et al. A role for TGF-βin the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood [J]. Immunol, 2001, 166 (12): 728-729
    14 Diederichsen AC, Hjelmborg JB, Christensen PB, et al. Prognostic value of the CD4+/CD8+ ratio of the tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells [J]. Cancer Immunol Immunother, 2003, 52 (7): 423-428
    15 Sutmuller RP, Van Duivenvoorde LM, Van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses [J]. J Exp Med, 2001, 194(6): 823-832
    16孙卫民,王惠琴.细胞因子研究方法学[M].北京:人民卫生出版社, 1999, 393
    17 Nakayama H, Kitayma J, Muto T, et al. Characterization of intracellular Cytokine Profile of CD4+T Cells in Peripheral Blood and Tumor-draining Lymph Nodes of Patients with Gastrointestinal cancer. Jpn J Clin Oncol, 2000, 30(7): 301- 305
    1 Polakis P. Wnt signaling and cancer[J]. Genes Dev, 2000,14(15): 1837~1851
    2 Tamai K, Senenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction[J]. Nature, 2000, 407(6803): 530-535
    3 Uren A, Reichsman F, Anest V, et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling[J]. J Biol Chem, 2000, 275(6): 4374-4382
    4 Fedi P, Bafico A, Nieto Soria A, ea al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling[J]. J Biol Chem, 1999, 274(27): 19465-19472
    5 Willert K, Jones KA. Wnt signaling: is the party in the nucleus [J]? Genes Dev, 2006, 20(11): 1394-1404
    6 Widelitz R. Wnt signaling through canonical and non-canonical pathways: recent progress[J]. Growth Factors, 2005, 23(2): 111-116
    7 Morin PJ, Sparks AB, Korinek V, et al. Activation ofβ–catenin–Tcf signaling in colon cancer by mutations inβ–catenin or APC[J]. Science, 1997, 275(5307): 1787-1790
    8 Luu HH, Zhang R, Haydon RC, et al. Wnt/β–catenin signaling pathway as a novel cancer drug target[J]. Curr Cancer Drug Targets, 2004, 4(8): 653-671
    9 Ilyas M. Wnt signaling and the mechanistic basis of tumour development [J]. J Pathol, 2005, 205(2): 130-144
    10 Jin LH, Shao QJ, Luo W, et al. Detection of point mutations of the Axin 1 gene in colorectal cancers[J]. Int J Cancer, 2003, 107(5): 696-699
    11 Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine[J]. Biol Cell, 2005, 97(3): 185-196
    12 Krishnadath KK,Tilanus HW,Blankenstein MV,et a1.Reduced expression of the cadherin-catenin complex in oesophageal adenocarcinoma correlates with poor prognosis [J].J Pathol, 1997, 182(3): 331-338
    13 Osterheld MC,Bian YS,Bosman FF,et a1.Beta-catenin expression and its association with prognostic factors in adencarcinoma developed in Brrett esophagus[J]. Am J Clin Pathol, 2002, 117(3): 451-456
    14 Washington K,Chiappori A,Hamilton K,et a1.Expression ofβ–catenin,α-catenin, and E-cadhenin in Barrett’s Esophagus and Esophageal Adenocarcinomas[J]. Modern Pathology, 1998, 1l(9): 805-813
    15 Bian YS,Osterheld MC,Bosman FT,et a1.Nuclear accumulation of beta-catenin is a common and early event during neoplastic progression of Barrett esophagus[J]. Am J Clin Pathol, 2000, l l4(4): 583-590
    16 Choi YW, Heath EI, Heitmiller R, et al. Mutations inβ–catenin and APC genes are uncommon in esophageal and esophagegastric junction adenocarcinomas [J]. Mod Pathol, 2000, 13(10): 1055-1059
    17 Clement G, Braunschweig R, Pasquier N, et al. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett’s oesophagus patients at risk for malignat transformation[J]. J Pathol, 2006, 208(1): 100-107
    18 Clement G, Braunschweig R, Pasquier N, et al. Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett’sesophagus[J]. Oncogene, 2006, 25(21): 3084-3092
    19 Mikami I,You L,He B, et al. Efficacy of Wnt1 monoclonal antibody in sarcoma cells[J]. BMC Cancer, 2005, 5(1): 53-59
    20 He B,You L,Uematsu K,et a1.A monoclonal antibody against Wnt1 induces apoptosis in human cancer cells[J]. Neoplasia, 2004, 6(1): 7-14
    21 You L,He B,Xu Z,et a1.An anti-Wnt2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth[J]. Cancer Res, 2004, 64(15): 5385-5389
    22 Nagayama S,Fukukawa C, Katagiri T,et a1.Therapeutic potential of antibodies against FZD 10, a cell-surface protein , for synovial sarcomas[J]. Oncogene, 2005, 24(41): 6201-6212
    23 Boon EM,Keller JJ,Wormhoudt TA,et a1.Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines[J]. Br J Cancer, 2004, 90(1): 224-229
    24 Chang WC,Everley LC, Pfeiffer GR, et a1. Sulindac sulfone is most effective in modulating beta-catenin mediated transcription in cells with mutant APC[J]. Ann N Y Acad Sci,2005,1059:41-55
    25 Maier TJ,Janssen A,Schmidt R,et a1. Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase -2- independent anticarcinogenic effects of celecoxib in human colon carcinoma cells[J]. FASEB J, 2005, 19(10): 1353-1355
    26 Zou H, Molina JR, Harrington JJ, et al. Aberrant methylation of secreted frizzled-related protein genes in esophageal adenocarcinoma and Barrett’s esophagus[J]. Int J Cancer, 2005, 116(4): 584-591
    1 Banerjee S, Zhang Y, Ali S, et al.Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res, 2005, 65: 9064-72
    2 Li Y, Ahmed F, Ali S, et al. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res, 2005, 65: 6934-42
    3 Notarbartolo M, Poma P, Perri D, et al. Antitumor effects of curcumin, alone or incombination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kappaB activation levels and in IAP gene expression. Cancer Lett, 2005, 224: 53-65
    4 Bava SV, Puliappadamba VT, Deepti A, et al. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/ threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem, 2005, 280: 6301-6308
    5 Chan MM, Fong D, Soprano KJ, et al. Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J Cell Physiol, 2003, 194: 63-70
    6 Li Y, Kucuk O, Hussain M, et al. Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation ofosteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res, 2006, 66: 4816-4825
    7 Li Y, Ellis KL, Ali S, et al. Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line. Pancreas, 2004, 28: e90-e95
    8 Hwang JT, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemoresistant cancer cells through the modulation of MAPK and COX-2 signaling pathways. Biochem Biophys Res Commun, 2005, 332: 433-440.
    9 Kamsteeg M, Rutherford T, Sapi E, et al. Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresistant ovarian cancer cells. Oncogene, 2003, 22: 2611-2620
    10 Kelloff GJ, Crowell JA, Steele VE, et al. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr, 2000, 130: 467S-471S
    11 Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol, 1997, 53: 121-133
    12 Messina MJ, Persky V, Setchell KD, et al. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer, 1994, 21: 113-131
    13 Mohammad RM, Al-Katib A, Aboukameel A, et al. Genistein sensitizes diffuse large cell lymphoma to CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy. Mol Cancer Ther, 2003, 2: 1361-1368
    14 Satoh H, Nishikawa K, Suzuki K, et al. Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent. Res Commun Mol Pathol Pharmacol, 2003, 113–114: 149-158
    15 Tanos V, Brzezinski A, Drize O, et al. Synergistic inhibitory effects of genistein and tamoxifen on human dysplastic and malignant epithelialbreast cells in vitro. Eur J Obstet Gynecol Reprod Biol, 2002, 102: 188-194
    16 Lee R, Kim YJ, Lee YJ, et al. The selective effect of genistein on the toxicity of bleomycin in normal lymphocytes and HL-60 cells. Toxicology, 2004, 195: 87-95
    17 Khoshyomn S, Manske GC, Lew SM, et al. Synergistic action of genistein and cisplatin on growth inhibition and cytotoxicity of human medulloblastoma cells. Pediatr Neurosurg, 2000, 33: 123-31
    18 Khoshyomn S, Nathan D, Manske GC, et al. Synergistic effect of genistein and BCNU on growth inhibition and cytotoxicity of glioblastoma cells. J Neurooncol, 2002, 57: 193-200
    19 Yashar CM, Spanos WJ, Taylor DD, et al. Potentiation of the radiation effect with genistein in cervical cancer cells. Gynecol Oncol, 2005, 99: 199-205
    20 Akimoto T, Nonaka T, Ishikawa H, et al. Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: possible involvement of inhibition of survival signal transduction pathways. Int J Radiat Oncol Biol Phys, 2001, 50: 195-201
    21 Pereira MA, Grubbs CJ, Barnes LH, et al. Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane- induced colon cancer and 7,12-dimethylbenz[a] anthracene-induced mammary cancer in rats. Carcinogenesis, 1996, 17: 1305-1311
    22 Li N, Chen X, Liao J, et al. Inhibition of 7,12-dime- thylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis, 2002, 23: 1307-13
    23 Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 2003, 23: 363-398
    24 Lev-Ari S, Strier L, Kazanov D, et al. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res, 2005, 11: 6738-6744
    25 Deeb D, Xu YX, Jiang H, et al. Curcumin (diferuloyl-methane) enhancestumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther, 2003, 2: 95-103
    26 Kunnumakkara AB, Guha S, Krishnan S, et al. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-{kappa}B-regulated gene products. Cancer Res, 2007, 67: 3853-61
    27 Chendil D, Ranga RS, Meigooni D, et al. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene, 2004, 23: 1599-607
    28 Nakachi K, Matsuyama S, Miyake S, et al. Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors, 2000, 13: 49-54
    29 Nihal M, Ahmad N, Mukhtar H, et al. Anti-proliferative and proapoptotic effects of epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer, 2005, 114: 513-521
    30 Taniguchi S, Fujiki H, Kobayashi H, et al. Effect of epigallocatechin gallate, the main constituent of green tea, on lung metastasis with mouse B16 melanoma cell lines. Cancer Lett, 1992, 65: 51-54
    31 Chisholm K, Bray BJ , Rosengren RJ. Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDAMB-231 human breast cancer cells. Anticancer Drugs, 2004, 15: 889-897
    32 Zhang Q, Wei D, Liu J. In vivo reversal of doxorubicin resistance by (-)-epigallocatechin gallate in a solid human carcinoma xenograft. Cancer Lett, 2004, 208: 179-186
    33 Rostom A, Dube C, Lewin G, et al. Nonsteroidal anti-inflammatory drugs and cyclooxygenase- 2 inhibitors for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med, 2007, 146: 376-389
    34 Sandler AB, Dubinett SM. COX-2 inhibition and lung cancer. SeminOncol, 2004, 31: 45-52
    35 Ou YC, Yang CR, Cheng CL, et al. Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT. Eur J Pharmacol, 2007, 563(1-3): 49-60
    36 Grosch S, Maier TJ, Schiffmann S, et al. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects ofselective COX-2 inhibitors. J Natl Cancer Inst, 2006, 98: 736-747
    37 Sorokin A. Cyclooxygenase-2: potential role in regulation of drug efflux and multidrug resistance phenotype. Curr Pharm Des, 2004, 10: 647-657
    38 Altorki NK, Keresztes RS, Port JL, et al. Celecoxib, a selective cyclooxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol, 2003, 21: 2645-2650
    39 Komaki R, Liao Z, Milas L. Improvement strategies for molecular targeting: cyclooxygenase-2 inhibitors as radiosensitizers for non-small cell lung cancer. Semin Oncol, 2004, 31: 47-53
    40 Shin YK, Park JS, Kim HS, et al. Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res, 2005, 65: 9501-9509
    41 Liao Z, Milas L, Komaki R, et al. Combination of a COX-2 inhibitor with radiotherapy or radiochemotherapy in the treatment of thoracic cancer. Am J Clin Oncol, 2003, 26: S85-S91
    42 Aggarwal BB, Bhardwaj A, Aggarwal RS, et al. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res, 2004, 24: 2783-2840
    43 Jazirehi AR, Bonavida B. Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther, 2004, 3: 71-84
    44 Mittal A, Elmets CA, Katiyar SK. Dietary feeding of proanthocyanidinsfrom grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis, 2003, 24: 1379-1388
    45 Martinez C, Vicente V, Yanez J, et al. The effect of the flavonoid diosmin, grape seed extract and red wine on the pulmonary metastatic B16F10 melanoma. Histol Histopathol, 2005, 20: 1121-1129
    46 Zhang XY, Li WG, Wu YJ, et al. Proanthocyanidin from grape seeds potentiates anti-tumor activity of doxorubicin via immunomodulatory mechanism. Int Immunopharmacol, 2005, 5: 1247-1257
    47 Sharma G, Tyagi AK, Singh RP, et al. Synergistic anti-cancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Res Treat, 2004, 85: 1-12
    48 Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol, 2006, 71: 1397-1421
    49 Qin J, Xie LP, Zheng XY, et al. A component of green tea, (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem Biophys Res Commun, 2007, 354: 852-857
    50 Zou CP, Kurie JM, Lotan D, et al. Higher potency of N-(4-hydroxyphenyl) retinamide than alltransretinoic acid in induction of apoptosis in non-small cell lung cancer cell lines. Clin Cancer Res, 1998, 4: 1345-1355
    51 Schroeder CP, Kadara H, Lotan D, et al. Involvement of mitochondrial and Akt signaling pathways in augmented apoptosis induced by a combination of low doses of celecoxib and N-(4-hydroxyphenyl) retinamide in premalignant human bronchial epithelial cells. Cancer Res, 2006, 66: 9762-9770
    52 Chaudhuri D, Orsulic S, Ashok BT. Antiproliferative activity of sulforaphane in Akt-overexpressing ovarian cancer cells. Mol Cancer Ther, 2007, 6: 334-345
    53 Nair AS, Shishodia S, Ahn KS, et al. Deguelin, an Akt inhibitor, suppresses Ikappa- Balpha kinase activation leading to suppression of NF-kappaBregulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion. J Immunol, 2006, 177: 5612-5622
    54 Lee HY, Oh SH, Woo JK, et al. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J Natl Cancer Inst, 2005, 97: 1695-1699
    55 McCubrey JA, Steelman LS, Franklin RA, et al. Targeting the RAF/MEK/ERK, PI3K/ AKT and P53 pathways in hematopoietic drug resistance. Adv Enzyme Regul, 2007, 47:64-103
    56 Han Z, Hong L, Wu K, et al. Reversal of multidrug resistance of gastric cancer cells by downregulation of Akt1 with Akt1 siRNA. J Exp Clin Cancer Res, 2006, 25: 601-606
    57 Tazzari PL, Cappellini A, Ricci F, et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia, 2007, 21: 427-438
    58 Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 1999, 401: 86-90
    59 Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2003, 2: 339-345
    60 Daksis JI, Lu RY, Facchini LM, et al. Myc induces cyclin D1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene, 1994, 9: 3635-3645
    61 Mateyak MK, Obaya AJ, Sedivy JM. c-Myc regulates cyclin D, Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol, 1999, 19: 4672-4683
    62 Lin JK. Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin. Arch Pharm Res, 2004, 27: 683-692
    63 Wilson AJ, Velcich A, Arango D, et al. Novel detection and differentialutilization of a cmyc transcriptional block in colon cancer chemoprevention. Cancer Res, 2002, 62: 6006-6010
    64 Lin JK. Cancer chemoprevention by tea polyphenols through modulating signal transduction pathways. Arch Pharm Res, 2002, 25: 561-571.
    65 Tao L, Kramer PM, Wang W, et al. Altered expression of c-myc, p16 and p27 in rat colon tumors and its reversal by short-term treatment with chemopreventive agents. Carcinogenesis, 2002, 23: 1447-1454
    66 Park JK, Chung YM, Kang S, et al. c-Myc exerts a protective function through ornithine decarboxylase against cellular insults. Mol Pharmacol, 2002, 62: 1400-1408
    67 Walker TL, White JD, Esdale WJ, et al. Tumour cells surviving in vivo cisplatin chemotherapy display elevated c-myc expression. Br J Cancer, 1996, 73: 610-614
    68 Walker TL, Dass CR, Burton MA. Enhanced in vivo tumour response from combination of carboplatin and low-dose c-myc antisense oligonucleotides. Anticancer Res, 2002, 22: 2237-2245
    69 Biliran H Jr, Wang Y, Banerjee S, et al. Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastasemyc transgene- expressing pancreatic tumor cell line. Clin Cancer Res, 2005, 11: 6075-6086
    70 Karin M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441: 431-436
    71 Greten FR, Karin M. The IKK/NF-kappaB activation pathwaya target for prevention and treatment of cancer. Cancer Lett, 2004, 206: 193-199
    72 Bharti AC, Donato N, Singh S, et al. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 2003, 101: 1053-1062
    73 Yang F, Oz HS, Barve S, et al. The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation byinhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol, 2001, 60: 528-533.
    74 Dell’Eva R, Ambrosini C, Minghelli S, et al. The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-kappaB pathway. Carcinogenesis, 2007, 28: 404-413
    75 Jiang J, Slivova V, Sliva D. Ganoderma lucidum inhibits proliferation of human breast cancer cells by down-regulation of estrogen receptor and NF-kappaB signaling. Int J Oncol, 2006, 29: 695-703
    76 Singh RP, Agarwal R. Prostate cancer chemoprevention by silibinin: bench to bedside. Mol Carcinog, 2006, 45: 436-442
    77 Davis JN, Kucuk O, Sarkar FH. Genistein inhibits NF-kappa B activation in prostate cancer cells. Nutr Cancer, 1999, 35: 167-174
    78 Singh AV, Franke AA, Blackburn GL, et al. Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Res, 2006, 66: 1851-1858
    79 Chuang SE, Yeh PY, Lu YS, et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol, 2002, 63: 1709-1716
    80 Raffoul JJ, Wang Y, Kucuk O, et al. Genistein inhibits radiation-induced activation of NfkappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer, 2006, 6: 107
    81 Venkatraman M, Anto RJ, Nair A, et al. Biological and chemical inhibitors of NF-kappaB sensitize SiHa cells to cisplatin-induced apoptosis. Mol Carcino, 2005, 44: 51-59
    82 Hussain T, Gupta S, Adhami VM, et al. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int J Cancer, 2005, 113: 660-669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700