用户名: 密码: 验证码:
食管癌遗传易感性分子基础的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Molecular Basis of Genetic Susceptibility to Esophageal Cancer
  • 副题名:1.O~6-甲基鸟嘌呤-DNA甲基转移酶基因与食管癌DNA修复能力低下的研究 2.食管癌组织3号和9号染色体特定位点上遗传学改变的研究
  • 英文副题名:1.O~6-Methylguanine-DNA Methyltransferase Gene and DNA Repair Defect of Esophageal Cancer Tissues 2.Genetic Alterations at Specific Loci of Chromosomes 3 and 9 in Esophageal Cancer Tissues
  • 作者:王亮
  • 论文级别:博士
  • 学科专业名称:细胞生物学
  • 学位年度:1995
  • 导师:吴旻
  • 学科代码:071009
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:1995-03-01
摘要
食管癌(esophageai cancer,EC)是我国的—种常见肿瘤,尤其是在北方某些地区EC发病率是世界上最高的。多年来对EC的发病原因进行了大量的研究工作,调查显示EC具有独特的流行学特征,如明显的地区分布差异和家族聚集现象等。目前认为EC的发生是遗传因素和环境因素共同作用的结果。我室前期工作已经证实除EC具有明显的家族聚集现象外,EC患者及其血缘亲属表现出明显的遗传不稳定性和DNA修复能力低下,胡楠等对221个EC核心家族的分析提示人类基因组中存在潜在的EC易感基因。EC高发区调查还显示,环境中亚硝胺含量较高是EC发生的主要因素之一。亚硝胺是一种烷化剂,可作用于DNA分子形成各种烷基加成物,其中O~(5-)烷基鸟嘌吟被认为是主要的致癌致突变前损伤。O~(5-)甲基鸟嘌呤-DNA甲基转移酶(O~(6-)methy Lguanine-DNA methyltransfersae,MGMT)是一种DNA修复酶,可特异性地修复烷化的碱基。据报道EC高发区居民食管上皮DNA中O~(6-)甲基鸟嘌呤明显升高,这就提出一个问题:升高的O~(6-)甲基鸟嘌呤是遗传性MGMT功能降低造成的?还是环境中亚硝胺作用的结果?或两者皆有?为此,我们用PCR-SSCP及直接测序技术以及Southern Bloc和Western Blot法,对6个EC高危家族成员的淋巴细胞和70例EC组织(40例石蜡包埋组织和30例新鲜组织)的MGMT基因进行了分析。
Esophageal Cancer(EC) is a very common disease in many areas of China. The reported mortality rates in North China are the highest in the world. A nationwide survey of mortality identified EC as the second most common cause of cancer death in China.
    Over the past two decades, many studies have been conducted on the etiologic factors associated with EC. Our previous work had demonstrated that EC patients and their blood-relatives showed genetic instability and DNA repair defects caused by N-nitroso-compounds and other genotoxic agents. Surveys in high EC areas suggested that many of EC patients had family history and some autosomal recessive (and even dominant) genes might play an important role in the EC pathogenesis.
    Epidemiologic studies in China have implicated environmental factors in the etiology of EC. One of the main factors is the exposure of the inhabitants living in these areas to high level nitroso-compounds. N-nitroso-compounds are alkylating agents that can produce various alkyladducts in DNA and induce tumors directly in experimental animals. Among those. O~6-alklguanine appears to be primarily
引文
1. Collins. FS.: Positional cloning: Let's not call it reverse anymore. Nature Genetics 1: 3-6, 1992
    2. Koshland DE Jr. Molecule of the year: DNA repair enzyme. Science 266: 1925, 1994
    3. Culotta E and Koshland DE. DNA repair works its way to the top. Science 266: 1926-1925, 1994
    4. Sancar A. Mechanisms of DNA excision repair. Science 266: 1954-1956, 1994
    5. Hanawalt PC. Transcription-coupled repair and human disease. Science: 266: 1957-1958, 1994
    6. Modrich P. Mismatch repair. genetic stability and cancer. Science 266: 1959-1960, 1994
    7. Swift M: Morrel D: Massey RB and Ckase CL.: Incidence of Cancer in 161 families affected by ataxia telangiectasia. New Engl. J. Med. 325: 1831-1836, 1991
    8. Legerski RJ and Li L. DNA repair capability and cancer risk. The Cancer Bulletin 46(3): 228-232, 1994
    9. Kraemer KH: Lee MM: Scotto j. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 5: 511-414, 1984
    10. Cleaver JE. Defective repair replication of DNA in xeroderma plgmentosum. Nature 218: 652-655, 1968
    11.吴德丰 付明 王秀琴等.类核沉降法对三个着色性干皮病(XP)家系成员DNA修复能力的测定及杂合子的检出.遗传学报19:9-16,1992
    12. Hoeijmakers JHJ and Bootsma D. Molecular 9enetics of eukaryotic DNA excision repair. Cancer Cells 2: 311-320, 1990
    13. Tanaka K: Satokata I: Ogita T: et al. Analysis of a human DNA repair gene involved in group A xeroderma pigmentosum and containing a zinc finger domain. Nature348: 73-76, 1990
    14. Weber CA: Salazar EP: Stewart SA: et al. ERCC2, cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9: 1437-1447, 1990
    15. Weeda G; van Ham CAR; Vermeulen W; et al. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders Xeroderma pigmentosum and Cockayne's syndrome. Cell 62: 777-791, 1990
    16. Legerski RJ and Peterson CA. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature 359: 70-73, 199217. Scherly D: Nouspikel T; Corlet J; et al. Complementation of the DNA repair defect in xeroderma pigmentosum froup G celts by a human cDNA related to yeast RAD2. Nature 363: 182-185, 1993
    18.吴旻 王秀琴 王定邦.一例着色性干皮病患者皮肤成纤维细胞株的建立.中华医学杂志 60:591-592,1980
    19. Lehmann AR. Cockayne's syndrome and trichothiodvstrophy: degective repair without cancer. Cencer Rev. 7: 82-87, (?)
    20. Mayne LV and Lehmann AR. Failure of RNA (?)thesis to recover after UV irradiation: on early degert in celts from in(?)ividuats with cockayne's syndrome and Seroderma pigmentosum. Tancer Res 13: 1473-1479. 1982
    21. Bohr VA: Smith CA; (?)kumota DS: et al. DNA repair in an active gene: removal of pyrimidine diners from the DHFR genee of CHO cells is much more efficient than in the genome overakk, Cell 40: 559-369, 1982
    22. Mellon I, Bohr VA, Smith CA et al. Preferential DNA repair of an active gene in human cells. PANS USA. 83: 8878-8882, 1986
    23. Venema J: Mullenders LH; Natarajan AT: et al. The genetic degect in Cockayne's syndrome is associated with a defect in repair of UVinduced DNA damage in transcriptionally active DNA. PANS USA 87: 4707-4711, 1990
    24. Troetstra C: van Geel A: de Wit J: et al. ERCC6. a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71: 939-953, 1992
    25. German J. Bloom's syndrome: Ⅶ. Progress report for 1978. Clin Genet 15: 361-365, 1979
    26. Hook GJ: Kwok E: Heddle HA. Sensitivity of Bloom syndrome fihrohlasts to mitomycin C. Mutat Res. 131: 223-230, 1984
    27. Kurihara T; Inoue M: Tatstumi K. Hypersensitivity of Bloom's syndrome fibroblasts to N-ethyl-N-nitrosourea. Mutat Res 184: 147-151, 1987
    28. Chan JYH; Becket FF: German J: et al. Altered DNA ligase I activity in Bloom's syndrome cells. Nature 325: 357-359. 1987
    29. Willis AE; LindahlT. DNA ligase I deficiency in Bloom's syndrome. Nature 325: 355-357, 1987
    30. Barnes DE; Tomkinson AE; Lehmann AR; et al. Mutations in the DNA ligase I gene of an individual With immunodeficiencies and cellular hyupersensitivity to DNA-damaging agents. Cell 69: 495-503, 1992
    31. Swift M. Fanconi'sanemia in the genetics of neoptasia. Nature 230: 370-372, 1971
    32. Weksberg R: Buchwald M: Sargent P; et al. Specific cellular defects in patients with Fanconi anemia. J Cell Physiol. 101: 311-324, 1979
    33. Strathdee CA: Garish H: Shannon WR: et al. Cloning of cDNAs for??Fanconi's anemia by functional complementation. Nature. 365: 763-767, 1992
    34. Mckinnon PS. Ataxia telangiectasia: an inherited disorder of lonizlng radlation sensltivity in man. Hum Genel 75: 197-203, 1987
    35. Specler BD; Fitipovich AH; Perry GS; et al. Epidemiology of cnacer in ataxia telangiectasia. In; Bridges BA, Maruden DG, eds. Ataxia Telangiectasia: A Cettular Link Between Cancer. Neuropathology and Immunme Deficiency. New Tork, NY: John Wiley; pp103-138, 1982
    36. Kraemer KH. Progressive degenerative diseases associated with defective DNA repair: xeroderma pigmentosum and atmxia telangiectasia, In Nichols WW, Murphy D, eds. DNA Repair Processes and Cellylar Senescence. Miami, Fla: Symposium Specialists: pp37-71. 1997
    37. Jaspers NG: Gatti RA; Baan C; et al. Geneticic complementation analysis of ataxia telangectasia and Nijmegan breakgae syndrome: a survey of 50 patients. Cytogenet Cell Genet4g: 259-263, 1988
    38. Gatti RA; Berkel I; Boder E; et al. Locatization of an ataxia telangiectasia gene to chromosome 11q22-23, 1988
    39. Ziv Y; Rotman G; Frydman M; et al. The ataxia telangiectasia(group C) locus localizes to chromosome 11q22-q23. Genomics 9; 373-375, 1991
    40. Functional complementation of ataxia-telangiectasia group D(AT-D) cells by microcell-mediated chromosome transfer and mapping of the AT-D Locus to the region 11q22-23. PNAS USA 88: 5907-5011, 1991
    41. Alcalay J: Freeman SE; Goldberg LH et al. Excision repair of pyrimidine dimers induced by simulated solar radiation in the skin of patients with basal celt carcinoma. J Invest Dermatol. 95: 506-509, 1990
    42. Pero RW, Miller DG, Lipkln M: et al. Reduced capacity for DNA repair synthesis in patients with or geneticattypredisposed to colorectal cancer. JNCI 70: 867-875, 1983
    43. Kovacs E: Stucki D: Weber W: et al, Impaired DNA-repair synthesis in lymphocytes of breast cancer patients. Eur J Cancer Clin Oncol. 22: 863-869, 1986
    44. Kovacs D: Almendral A. Reduced DNA repair synthesis in healthy women having first-degree relatives with breast cancer. Eur J Cancer Clin Oncol. 23: 1051-1057, 1987
    45.胡楠.王秀琴 吴旻等.30例食管癌病人外周血淋巴细胞染色体脆性部位观察.中华医学杂志 65:404-407,1985
    46.胡楠 王秀琴 吴旻等.染色体脆性部位和肿瘤发生-70例肿瘤病人外周血染色体脆性部位的观察.遗传与疾病 2:135-138.1935
    47.胡楠 徐昕 王秀琴等.癌家族,染色体畸变和脆性部位.遗传与疾病 3:139-143, 1986
    48.胡楠 王秀琴 徐昕等.染色体畸变率和脆性部位.中华医学杂志 66:594-596, 198649.徐宁志 胡楠 王秀琴等.应用SCE率检测食管癌易感个体的试探.中华医学杂志66:733-735,1986
    50.胡楠 王秀琴 付明等.染色体畸变率.脆性部位和肿瘤遗传易感性的检测.遗传与疾病4:168-171,1987
    51.吴德丰 付明 王秀琴等.癌家族的DNA修复能力.染色体脆性部位及染色体畸变率的比较.中国医学科学院学报11:425-429,1989
    52.吴德丰 付明 王秀琴等.类核沉降技术检测DNA修复能力.中华医学杂志68:128-130,1988
    53.吴德丰 付明 王秀琴等.类核沉降法分析247例癌症病人和正常人的DNA修复能力.遗传学报16:238-243,1989
    54.丁家桓 吴旻 王秀琴等.林县食管癌的遗传易感性.中华医学杂志63:213-215.1983
    55. Hu N: Dawsey SM: Wu M: et al. Famity history of esophageal cancer in Shanxi Province. China. Eur. J Cancer 27: 1336, 1986
    56.胡楠 贺立绩 韩小友等:山西阳城622个食管癌阳性家族十年后随访.中华医学杂志70:679-681,1990
    57. Carter CL: Hu N; Wu M; et al. Segregation analysis of esophageal cancer in 221 high-risk Chinese families. JNCI 84: 771-776, 1992
    58. Hn N: Dawsey SM; Wu M: et al. Familial aggregation of oesophageal cancer in Yangcheng County. Shanxi Province, China. Int J Epidemiol 21, 877-882, 1992
    59. Takano T: Node M and Tamura T. Transfection of cells from a xeroderma pigmentosum patient with normal human DNA confers UV resistance. Nature 296: 269-270. 1982
    60. Rubin JS: Joyner AL: Bernstein A. Molecular identification of a human DNA repair gene following DNA-mediated gene transfer. Nature 306: 206-208, 1983
    61. Westerveld A; Hoeljmakers JHJ; van Duin M: et al. Molecular cloning of a human DNA repair gene. Nature 310: 425-123, 1984
    62. Liu P; Callen CF: Reeders ST: et al. Human DNA excision repair gene ERCC4 is located on chromosome 16 short arm 16p13-p13. 3. Cytogenet. Cell Genet. 51: 1025, 1989
    63. Thompson LH: Carrano AV: Sate K; et al. Identification of nucleotide-excision repair genes on human chromosomes 2 and 13 by functional complemantation in hamster human hybrids. Somat. Cell Mol. Genet. 13: 539-551, 1987
    64. Troelstra C: Odijk H; de Wit J; et al. Molecular cloning of the human DNA excision repair gene ERCC6. Mol. Cell Biol. 10: 5806-5813, 1990
    65. Siciliano MJ, Carrano AV and Thompson LH. Assignment of a human DNA repair gene associated with sister-chromatid exchange to??chromosome 19. Mutat. Res. 174: 303-308. 1986
    66. Chen DJ: Pare MS: Campbell E: et al. Assignment of a human DNA double-strand break repair gene (XRCC5) to chromosome 2. Genomics 13: 1088-1094, 1992
    67. Lehmann AR Hoeijmakers JHJ: et al. Workshop on DNA repair. Mutat Res 273: 1-28, 1992
    68. Hickson ID; Harris AI: Mammalian DNA repair-use of mutants hypersensitive to cytotoxic agents. Trends Genet 4: 101-106, 1933
    69. Thompson LH. Properties and Apptications of human DNA repair genes. Mutat Res 247: 213-219, 1991
    70. Flejter WL: McDaniel LD: Johns D: et al. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvemeut of the humman ERCC2 DNA repair gene. PANS U, S, A. 89: 261-255. 1992
    71. Jonson RT. Squires S. The XPD complementation group. Insights into xeroderma pigmentosum, cockaynes's syndrome and trichothiodystrophy. Mutat. Res 273: 97-118. 1992
    72. Strathdee CA: Duncan AMV; Buchwald M. Evidence fro at least four Fanconi anemia indcuding FACC on chromosome 9. Nature Genet 1: 196-198, 1992
    73. Cleaver JE; Kraemer KH: Xeroderma pigaentosum. In The Metabolic Basis of Inherited Disease, edn 6. Edited by Scriver CR et al. New York: McGraw-Hill: pp2949-2971, 1989
    74. Mamm WR: Venkatraj VS. Allen RG: et al. Fanconi anemia: evidence for rinkage heterogeneity on chromosome 20q. Genomics 9: 329-337, 1991
    75. Foroud T, Wei S. Ziv Y et al. Locatization of an ataxia telangiectasia locus to a 3-cM interval on chromosome 11q23: linkage analysis of 111 famities by an international consortium. Am J Hum Genet 49: 1263-1279, 1991
    76. Kapp LN: Painter RB; Yu LC et al. Cloning of a candidate gene for ataxia telangiectasin. Am J Hum Genet 51: 45-54. 1992
    77. Willis AE: Lindahl T: A DNA ligase I deficiency in Bloom's syndrome. Nature 325: 355-357, 1937
    78. Barnes DE: Johnston LH; Kodama KI et al. Human DNA ligase I cDNA: cloning and functional expression in saccharomyces cerevisiae. PNAS USA 87: 6679-6683. 1990
    79. Demple B: Herman T: Chen DS. Cloning and expression of APE. the cDNA encoding the mahor human apurinic endonuclease-definition of a family of DNA repair enzymes. PNAS USA 38: 11450-11454. 1991
    80. Alkatib HM; Chen D; Cherney B; et al. Cloning and expression of cDNA for human poly(ADP-ribose) polymerase. PNAS USA 84: 1224-1228, 198781. Hayakawa H; Koike G; and Sekiguchi M. Expression and cloning of complementary DNA for a human enzyme that repairs 06-methylguanine in DNA, J Mol Bial. 213: 739-747, 1990
    82. Rdberg B; Spurr N and Karran P. cDNA cloning and chromosomal assignment of the human 06-methylguanine-DNA metyltransferase. J Biol Chem. 25: 9563-9569, 1990
    83. Kano K: Shiota S; Collier J: et al. Isolation and structural characterization of a cDNA crone encoding the human DNA repair protein for 06-alkylguanine. PNAS USA 87: 686-690, 1990
    84. O'Conner TR: Laval J. Humann cDNA expressing a functional DNA glycosylase excising 3-methylademine and 7-methylguanine. Biochem. Biophys. Res. Commun. 176: 1170-1177. 1991
    85. Olsen LC; Aasland R; Krokan HE et al. Human uracil-DNA glycosylase complements E. coll. ung Mutants. Nucleic Acids Res 19: 4473-4478, 1991
    86. Koken MH; Reynolds P; Jaspers-deckers I; et al. Structural and functional conservation of two homologs of the yeast repair gene RAD6. PNAS USA 38: 8365-8369, 1991
    87. Koken MHM: Smit EME; Jaspers-Dekker I: et al. Localization of two human homologes. HHR6A and HHR6B. of the yeast DNA repair gene RAD6 to chromosomes Xq24-q25 and 5q23-q31. Geuomics 12: 447-453, 1992
    38. Service RF. Stalking the start of colon cnacer. Science 263: 1559 1560. 1994
    89. van Duin M: de Wit J: Odijk H: et al. Motecular characterization of the human excision repair gene ERCC-1: cDMA clonina and amino acid homology with the yeast repair gene RAD-10. Cell 44: 913-923, 1986
    90. Dabhotkar. M. ; Bostick-Bruton. F.; Weber, C. et al. ERCC1 and ERCC2 expression in malignent tissues from ovarian cancer patients. JNC1 84: 1512-1517, 1992
    91. Weeda G; Ma L; van Ham RCA; et al. Characterization of the mouse homolog of the XP3C, ERCC3 gene implecated in xeroderma pigmentosum and Cockayne's syndrome. Carcinogenesis 12: 2361-2363, 1991
    92. Barrows LR; Paxton MB; Kenneky KA and Thompson, LH. Characterization of revertants of the CHO EM9 mutant arising during DNA transfection. Carcinogenesis 12: 805-811, 1991
    93. Tanaka K: Satokata I: Ogita Z. et al. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. PNAS U. S. A. 86: 5512-5516, 198994. Noguiez P; Barnes DE; Mohrernweiser HW and Lindahl, T. Structure of the human DNA ligase I gene. Nucleic Acid Res. 20: 3845-3850, 1992
    96. Wang WSF. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 60: 513-552, 1991
    96. Wang LM; Patel U; Ghosh L; et al. DNA polymerase β mutation in human colorertal cancer. Cancer Res. 52: 4824-4827, 1992
    97. Nakatsu Y: Hattori K; Hayakawa H; et al. Organization and expression of the human gene for O~6-methylguanine-DNA methyltransferase. Mutat. Res. 293: 119132, 1993
    98. Natarajan AT: Vermeulen S: Darroudi F: et al. Chromosomal tocalization of human O~6-methylguanine-DNA methyltransferase(MGMT) gene by in situ hybridization: Mutagenesis 7: 83-85. 1992
    99. Pegg AE. Mammalian O~6-alkylguanine-DNA alkyltransferase regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 50: 6119-6129. 1990
    100. Wani G: Wani AA and D'Ambrosio SM. In situ hybridization of human kidney tissue reveals cell-type-specific expression of the O~6-methylguanine-DNA methyltransferase gene. Careinogenesis 13: 463-463, 1992
    101. Dumenco LL; Allay E: Nirtin K: et al. Transgenic expression of human O~6-alkylguanine-DNA alkyltransferase preveats nitrosourea-induced lymphoma in mice. Proc. Annu. Meet. Am. Assoc. Cancer Res. 33: A1092, 1992
    102. Aquilina G: Biondo R: Dogliotti E. Expression of the endogenous O~6-methylguanine-DNA methyltransferase protects chinese hamster ovary cells from spontaneous G: C To A: T transitions. Cancer Res 52: 6471-6475, 1992
    103. Karran P and Bignami M. Self-destruction and toterance in resistance of mmammatian cells to alkylation damage. Nucleic Acids Res. 20: 2933-2940, 1992
    104. Ling-Ling C: Nakamura T: Nalatsu Y. et al. Specific amino acid sequences required for O~6-MGMT activity: anatyses of three rosidues at or near the methyl acceptor site. Carcinogenesis 13: 837-843, 1992
    105. Fritz G and Kaina B. Genomic differences between O~6-methylguanine-DNA methyltransferase proficient (Mer+) and defcient (Mer-) cell lines: possible role of genetic and epigenetic changes in conversion of Mer+ into Mer-. Biochem. Biophysi. Res. Communi. 183: 1184-1190, 1992
    106. Shiraishi A: SakumiK: Nakatsu Y: et al. Isolation and characterization of cDNA and genomic sequences for mouse O~6-methylguanine-DNA methyltransferase. Carcinogenesis 13: 289-296, 1992
    107. Citron M; Graver M; Schoenhaus M; et al. Detection of messenger RNA from O~6-methylguanine-DNA Methyltransferase gene MGMT in human normal and tissne. J. Natl. Cancer Inst. 84: 337-340, 1992
    108. Wang Y; Kato T; Ayaki H; et al. Correlation between DNA??methylation and expression of O~6-methylguanine-DNA methyltransferase gene in clutured humn tumor cells. Mutat. Res. 273: 221-230, 1992
    109. von Wronski MA: Harris LC; Tano K; et al. Cytosine methylation and supression of O~6-methylgunine-DNA methyltransferase expression in human rhabdomyosarcoma cell lines and xenograft. Oncology Res 4: 167-174. 1992
    110. Isowa G; Ishizaki K; Sadamoto T: et al. O~6-methyluanine-DNA methyltransferase activity in human liver tumors. Carcinogenesis 12: 1313-1317, 1991
    111. He X: Ostrowski LE: von Wronski MA. Experssion of O~6-methvlyaunine-DNA methyltransferase ub sux gynab nedykucguastima cell lines. Cancer Res. 52: (?)44-11(?), 1992
    112. Godbout R: Miyakishi J: Dobier KD; et al. (?)uk of expression of tumor-supressor qeues in human maliquant glioma cell lines. Oncogene 7: 1389-184, 1992
    113. Loeb, LA. Mulator phenotype be required for multistage carcubigebusus. Cancer Res. 51: 3074-3079. 1991
    114.冯骆 陆士新.甲基苄基亚硝胺对人胎儿食管上皮DNA修饰的研究.中华肿瘤杂志9:245-247,1987
    115.陆士新 张明书 罗风歧 冯骆 田园.林县人胎儿食管癌旁上皮DNA中O~6-甲基脱氧鸟嘌呤核苷的研究.中华肿瘤杂志8:328-330,1986
    116. Kolberg R. DNA microsatellite instability is suspect in still more cancers. The J of NIH Res 6: 37-40, 1994
    117. Bodmer W; Bishop T and Karran P. Genetic steps in cotorectal cancer. Nature Genet 6: 217-219, 1994
    118. Shibata D; Peinado MA; Ionov Y; et al. Genetic instability in repeated sequences iS an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet 6: 237-281, 1994
    119. Fishel R; Lescoe MK: Rao MRS: et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell75: 1027-1038, 1993
    120. Leach FS; NIcotaides NC; Paoadipoilos N; et al. Mutation of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215-1225, 1993
    121. Brenner CE; Baker SM; Morrison PT; et al. Mutation in the DNA mismatch repair gene homolog hMLH_1 is associated with hereditary nonpolyposis colon cancer. Nature 368: 258-261, 1994
    122. Papadopoutos N; Nicoiaides NC; Wei YF: et al. Mutation of a mutL homolog in hereditary colon cancer. Science263: 1625-1629, 1994
    123. Nicolaides NC: Papadopoulos N: Liu B: et al. Mutations of the PMS homologues in heredilary nonpotyposis colon cancer. Nature 371: 75-80, 1994
    124. Paltomaki P; Aaltonen LA; Sistonen P: et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 260: 810-812, 1993125. Lindhlom A: Tannergard P: Werelius B: et al. Genetic mapping of a second locus predisposing to hereditary nonpolyposis colon cancer. Nature Genet 5: 297-232, 1991
    126. Cooper DL; Lahue RS and Modrich P. Methyl-directed mismatch repair is bidirectional. J Blol Chem 268: 11823-11829, 1993
    127. Strand M; Prolla TA Liskay RM; et al. Destabilizatioa of tracts of smple repetitive DNA in yeast by mutations aggecting DNA mismatch repair. Nature 365: 274-276, 1993
    128. Aaltonen LA: Peltomki P; Leach FS; et al. Clues to the pathogeaesis of familial colorectal cancer. Science 260: 812-816, 1093
    129. Thibodeau SN: Bren GB: and Schaid D. Microsatellite instability in cancer of the proximal colon. Science 260: 816-819, 1993
    130. Ioaov Y Peiaodo MA: Malkhosyan S: et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 553-556. 1993
    131. Shridhar V; Siegfried J; Hunt J et al. Genetic instability of microsatellite sequences in many non-small cell lung carcinoma. Cancer Res 54: 2084-2087, 1994
    132. Merlo A; Mabry M: Fabrielson E et al. Frequent microsatellite instabitity in premary cell lung cancer. Cancer Res 54: 2089-2101, 1994
    133. Kunkel TA. Stippery DNA and Diseases. Nature 365: 207-203, 1993
    134. Matise TC; Perlin M and Chakravati A. Automated constrtruction of genetic linkage maps using an expert system(Multimap): a human nenome linkage map. Nature Genet 6: 384-300. 1904
    135. Buetow KH: Meber JL: Ludwigsen S et al. Integrated human genomewide maps constructed using the CEPH reference panel. Nature Genet 6: 391-393, 1994
    136. Lander ES and Schork NJ. Genetic Dissection of complex traits. Science 265: 2037-2048, 1994
    137. Murray JC: Buetow KH; Weber JL; et al. A comprehensive human rivage map with centimorgan density. Science 265: 2049-2054. 1994
    138. Yee CJ; Roodi N; Verrier CS; et al. Microsatellite instability and loss of heteroztgisity in breast cancer. Cancer Res 54: 1641-1644, 1994
    139. Lathrop GM. Computin9 the genetic map. Nature Genet 6: 326-328, 1994
    140. Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 54: 5059-5063, 1994
    141. Risinger JI; Berchuck A; Kohler MF; et al. Genetic instability of microsatellites in endometrial carcinoma. Gancer Res 53: 5100-5103, 1993
    143. Han HJ: Yanagisawa A: Kato Y et al. Genetic instability in??pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res 53: 5087-5089. 1993
    143. Honchel R; Halling KC: Schaid DJ: et al. Microsatellite instahility in Muir-Torre syndrome. Cancer Res 54: 1159-1163, 1994
    144. Wooster R; Cleton-Jansen AM; Collins N; et al. Instability of short tandem repeats(microsatellites) in human cancers. Nature Genet 6: 152-156, 1994
    145. Parsons R; Li GM: Longley MJ et al. Hypermutability and mismatch repair deficience in PER+ tumor cells. Cell 75: 1227-1236, 1993
    146. Renan MJ. How many mutations are required for tumorigenesis?: implications from human cancer data. Mol Carcinogen 7: 139-146, 1993
    147. Richards RI & Sutherland GR. Simple repeat DNA is not replicated simply. Nature Genet 6: 114-116, 1994
    148. Dabholkar M: Bostick-Bruton F: Bohr VA and Reed E. Patterns of expression of ERCC1, ERCC2 and ERCC6 in bone marrow samples from 52 patients with cancer. Proc. Annu. Meet. Am. Assoc. Cancer Res 32: 111, 1991
    149. Chen JM: Zhang YP: Wang, C. et al. O~6-methylguanine-DNA methyltrandferase activity in human tumors. Carcinogenesis 13: 1503-1507, 1992
    150. Kemper RR; Ahn ER; Zhang P: Lee MYWF and Rabin M. Human DNA polymerase δ gene maps to regions 19q13.3-q13.4 by in situ hybridization. Genomics 14: 205-206, 1992
    151. Hartwell LH and Weinert, TA. Checkpoint: controls that ensure the order of cell cycle events. Science 246: 629-634, 1989
    152. Kastan MB: Onyekwere O: Sidransky D. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6104-6311, 1991
    153. Kastan MB; Zhan QM; El-Deiry WS. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and gadd45 is defective in ataxia-tetangiectasia. Cell 71: 587-597, 1992
    154. Hoeijmakers JHJ and Bootsma. D. DNA repair: two pieces of the puzzle. Nature Genetics 1(5): 313-314. 1992.
    155.卫生部肿瘤防治研究办公室.中国恶性肿瘤死亡调查研究.人民卫生出版社.北京,pp73-103,1979.
    156.陆建帮等.林县食管癌流行趋势(1959-1983)的研究.中华肿瘤学杂志7(增):45,1985.
    157.季川 李铭新 李金兰等.林县食物中的挥发性亚硝胺.中华肿瘤学杂志7(增):25-29.1985
    158.李素芳 刘新伏 李辉等.食管癌高发区河南林县人群维生素的营养状况.中华肿瘤杂志7(增):49-53.1985
    159. Li JY. Epidemiology of esophageal cancer in China. Natl. Gancer Inst. Monogr. 62: 113-120, 1982
    160. Yang CS. Research on esophageal cancer ia China: a review. Cancer Res. 40: 2633-2644, 1980
    161. Loveless A. Possible relevance of 06alkylation of deoxyguanine to??the mutagenicity and carcinogenicity of mitrosamines and nitrosamides. Nature 223: 206-207, 1969
    162. Snow EF. Foote RS and Mitra S. Base pairing properties of O~6-methylguanine in template DNA during in vitro DNA replication. J Biol. Chem. 259: 3095-3100, 1934
    163. Greenblall MS; Bennett WP: Hottstein M; et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4565-4578. 1994
    164.高燕宁 王秀琴 吴旻.化学致癌剂诱发患者食管癌成纤维细胞体外恶性转化的研究.中国医学科学院学报8:171-174,1986
    165. Wu M; Hu N; Wang XQ, in Familial Cancer. (eds. Muller HJ, Weber W), Karge Basel, pp52-54, 1985
    166. Knudson AJ, Jr. Cancer Res 45: 1437-1443. 1985
    167. Bishop JM. The molecular genetics of cancer. Science 235: 305-309. 1987
    168.宿远 王秀琴 吴旻等.食管癌癌旁上皮细胞的G显带染色体分析-出现某种规律性改变.中国科学(B辑):10:1091-1098,1987
    169. Su Y; Wang XQ; Hu N: et al. Comparison of chromosomal aberrations in epithelium adjacent to esophageal cancer and in esophageal cancer cell line EC8501. Proc. CAMS & PUMC 3: 84-89, 1988
    170. Wang-peng J: Banks-Schlegel SP: Lee EC. Cytogenetic studies of esophageal carcinomas. Cancer Genet Cytogenet 45: 101-120, 1990
    171.肖广惠 李万波 黄建华等.食管癌的杂合性丢失.科学通报36:1856-1859,1991
    172.李万波 王秀琴 吴旻.食管癌第3号和第9号染色体上频发的等位基因丢失.自然科学进展—国家重点实验室通迅4:461-465,1994
    173.朱丹 王亮 吴旻.应用PCR-SSCP银染技术检测食管癌P53基因突变.中华医学遗传学杂志.11:354-355,1994
    174.王亮 张金三 朱丹 等.快速可靠的双链PCR产物直接测序法.生物化学与生物物理进展.21:458-459,1994
    175. Mitra S and Kaina B. Regulation of repair of alkylation damage in mammalian genomes. Prog. Nucl. Acids Res. Mol. Biol. 44: 109-141, 1993
    176. Myrnes B. Giercksky K and Krokan H. Interindividual variation in the activity of O~6-methylguanine-DNA methyltransferase and uracil-DNA glycosylase in human organs. Carcinogenesis 4: 1565-1568, 1983
    177. Gerson SL; Trey JE; Miller K; et al. Comparison of O~6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human. rat and mouse tissues. Carcinogenesis 7: 745-749. 1986
    178. Day RS Ⅲ; Ziolkowski CH: Scudiero DA; et al. Defective repair of alkylated DNA by human tumor and V40-transformed human cell strains. Nature 233: 724-727, 1980179. Citron M; Decker R; Chen S; et al. O~6-methylguanine-DNA methyltransferase in human normal and tumor tissue from brain, lung and ovary. Cancer Res 51: 4131-4134, 1991
    180.朱丹.食管癌遗传易感性及癌变分子基础的探索.博士研究生毕业论文.中国协和医科大学研究生院1994
    181. Harris LC: Potter P: Tano K; et al. Charaterization of the promoter region of the human O~6-methylguanine-DNA methyltransferase gene. Nucl. Acids Res 19: 6163-6167, 1991.
    182. Diaz MO; Rubin CD; Harden A, et al. Deletions of interferon genes in acute lymphoblastic leukemia. N. Engl. J. Med. 322: 77-82, 1990
    183. Keen AJ and Knowles MA. Definition of two rgions of deletion on chromosome 9 in carcinoma of the bladder. Oncogene 9: 2083-2088. 1994
    184. Cairns P: Shaw ME and Knowles MA. Initiation of bladder cancer may involve deletion of a tumor supressor gene on crhomosome 9. Oncogene 3: 1083-1085. 1993
    185. Giani C and Finocchiaro G. Mutation rate of the CDKN2 gene in malignant glioms. Cancer Res 54: 6338-6339. 1991
    186. Cheng JQ; Jhanawar SC; Lu YY, et al. Homozygous deletions within 9p21-22 identify a small and critical region of chromosome loss in human malignant mesotheliomas. Cancer Res 53, 4761-4763. 1993
    187. Coleman A: Foutain JW: Nobori T: et al. Distinct deletions of chromosome 9p associated with melanoma versus glioma, lung cancer and leukemia. Cancer Res 54: 144-348, 1994
    188. van der Riet P; nawroz H; Hrubran RH: et al. Frequent loss of chromosome 9p21-22 early in head and neck cancer grogression. Caacer Res 54: 1156-1158, 1994
    189. Merlo A; Gabrielson E: Askin F: et al. Frequent loss of chromosome 9 in human premary non-smarl cell lung cancer. Cancer Res 54: 640-642, 1994
    190. Olopade OI; Buchagen DL; Makik K: et al. Homozygous loss of interferon genes defines the critical region on 9p that is deleted in lung cancers. Cancer Res 53, 2410-2415, 1993
    191. Kamb A; Gruis NA; Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 236-440, 1994
    192 Nobori T; Miura K; Wu DJ: et al. deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753-756. 1994
    193. Serrano M; Hannon GJ and Beach DA. A new regulatorg motif in cell cycle control causing specific inhibition of cyclin CDK4. Nature 366: 704-704, 1991194. Cairns P: Mao L: Merlo A et al. Rates of p16(MTS1) mutations in primary tumors with 9p loss. Science 265: 415-416, 1994
    195. Spruck CH. Ⅲ: Gonzalez-Zulueta M: Shibata A: et al. p16 gene in uncultured tumors Nature 370: 183-184, 1994
    196. Mori T; Miura K; Takahisa A; et al. Frequent somatic mutation of the MTS1 COK41(multiple tumor suppressor cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Cancer Res 54: 3396-3397, 1994.
    197. Tarmin L: Yin J; Zhou X; et al. Frequent loss of heterozygosity on chromosome 9 in adenocarcinoma snd squamous cell carcinoma of the esphagus. Cancer Res 54: 6094-6096, 1994
    198. Yokoyama S: Yamakawa k: Tsuchiya E: et al. Deletion mapping on the short arm of chromosome 3 in wquamous cell carcinoma and adenocarcinoma of the lung. Cancer Res 52: 873-877, 1992
    199. Hibi K: Takahashi T: Yamkawa K: et al. Three distinct regions involved in 3p deletion in human lung cancer. 7: 445-449, 1992,
    200. Tsuchiya E; Nakamura Y; Weng SY; et al. Allelotype of non-small cell lung carcinoma-comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. Cancer Res 52: 2478-2481, 1992.
    201. Ogawa O; Habuchi T; Kakehi M: et al. Allelic losses at chromosome 17p in human renal cell carcinoma are inversely related to allelic lossesat chromosome 3p. Cancer Res 52: 1881-1885, 1992
    202. Morita R; Ishikawa J: Tsutsumi M: et al. Allelotypo of renal cell carcinoma. Cancer Res 51: 820-823, 1991.
    203. Jones MH and Nakamura Y. Deletion mapping of chromosome 3p in female genital tract malignities using microsatellite polymorphisms. Oncogene 7: 1631-1634, 1991.
    204. Lo KW; Tsao SW and Huang DP. Detailed deletion mapping on the short arm of chromosome 3 in nasopharyngeal carcinomas. Proc. Am. Assoc. Cancer Res 35: 571, 1994
    205. Shibagaki I: Shimada Y: Wagata T; et al. Allelotype Analysisof esophageal squamous cell carcinoma. Cancer Res 54: 2996-3000, 1994.
    206. Aoki T; Mori T; Du XQ; et al. Allelotype study of esophageal carcinoma. Genes, Chromosom Cancer 10: 177-182, 1994
    207. Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 54: 5059-5063. 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700