用户名: 密码: 验证码:
高性能氟硅丙共聚乳液的合成、性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟硅丙共聚物具有优异耐候性、热稳定性和化学稳定性,尤其是其超低表面能特性,使其具有疏水疏油、耐沾污、自清洁等功能,在涂料、织物整理、皮革涂饰等领域有着广泛的应用。氟硅丙共聚物的合成研究具有非常重要的意义和应用价值。乳液聚合是合成氟硅丙共聚物的重要方法之一,以水作为分散介质,聚合速度快,安全环保。本论文使用不同的乳液聚合工艺,包括常规乳液聚合和细乳液聚合方法,合成了高性能的含氟丙烯酸酯、有机硅和丙烯酸酯的共聚物乳液,在分析研究共聚物乳液的结构、性能及其应用的基础上,进一步对细乳液聚合反应动力学及其成核机理进行了深入研究。主要工作包括:
     含氟丙烯酸酯核壳乳液的设计合成及具有高疏水性涂层的制备。
     高效发挥含氟单体在共聚物中的作用一直是合成氟硅丙共聚物的难题。本论文以甲基丙烯酸十二氟庚酯(DFMA)为含氟共聚单体,以乙烯基三(p-甲氧基乙氧基)硅烷(A-172)为交联功能单体,通过对粒子的结构和形态的设计,使用种子半连续乳液聚合法合成了含氟丙烯酸酯核壳乳液,合成的氟硅丙共聚物乳液具有内软外硬的核壳结构,含氟聚合物在粒子最外层。使用红外分析仪(FTIR)、透射电镜(TEM)、差示扫描量热仪(DSC),接触角、X射线光电子能谱(XPS)、原子力扫描电镜(AFM)等对共聚物乳液的性能和结构进行了表征。结果表明该乳液可以在使用极少量的含氟单体情况下,极大提高共聚物涂层的表面疏水性。使用合成的乳液制备了不同疏水性的涂层,对比分析了涂层的耐沾污性,研究表明涂层的疏水性的增加,可以显著提高涂层的耐沾污性。
     2.采用两步细乳液聚合法合成具有良好织物整理性能的含氟丙烯酸酯接枝改性有机硅乳液。
     含氟有机硅乳液是多功能的织物整理剂,既可赋予织物良好的柔软性和手感,又能使织物能够防水防油。但合成含氟有机硅乳液的环硅氧烷单体和含氟单体水溶性小,常规乳液聚合速度慢,乳液聚合不稳定,聚合物乳液常会出现漂油现象,影响织物整理效果。本论文采用两步细乳液聚合法合成了含氟丙烯酸酯接枝改性有机硅乳液:先通过八甲基环四硅氧烷(D4)/四甲基四乙烯基环四硅氧烷(D4V)的阳离子细乳液聚合成含乙烯基的有机硅聚合物,再通过自由基细乳液聚合使含氟丙烯酸酯接枝到有机硅链上,系统研究了D4v含量与含氟单体用量对乳胶粒子结构和性能影响,得到了既具有良好的柔软整理效果、又具有很好的防水整理效果的含氟有机硅乳液。通过D4/D4v的常规乳液聚合和细乳液聚合的对比,发现细乳液聚合法合成有机硅乳液,聚合速度快,乳化剂用量少,得到的乳液稳定性好。
     3.D4单体细乳液的制备方法和稳定性研究。
     单体细乳液的制备和单体细乳液稳定性是进行细乳液聚合的关键。本论文以D4作为模型单体,应用静态多重光散射(MLS)和动态激光光散射(DLS)技术对单体细乳液的制备方法进行了研究。从单体细乳液液滴稳定性角度,深入分析高速分散机、超声波仪和高压均质机三种分散设备对D4单体的细乳化作用。由于三种设备在细乳化过程中作用原理不同,所制备的单体细乳液稳定性也不相同,采用高压均质制备的单体细乳液粒径及粒径分布都较小,稳定性最好。进一步对高压均质制备单体细乳液过程中,影响单体细乳液粒径及粒径分布的工艺条件和乳液配方等因素进行了研究,并对单体细乳液的液滴大小及其分布、乳化剂含量和温度等因素对高压均质法制备的单体细乳液稳定性的影响进行了讨论。
     4.D4的阳离子细乳液聚合动力学研究
     D4的阳离子细乳液聚合具有其独特的动力学及热力学特征。本论文系统研究了单体细乳液粒径和引发/乳化剂十二烷基苯磺酸(DBSA)的用量对聚合反应速率的影响,确认了D4的阳离子开环聚合的主要场所应该在油/水的界面上,并提出DBSA对D4的开环聚合存在着体积效应和位阻效应。在此基础上本论文建立油/水界面的三层分子模型,根据界面模型和聚合机理推导了D4阳离子开环聚合速率方程,使用试验数据确定了聚合速率方程中的参数值。聚合速率方程表明聚合速率与单体起始浓度([D4]0)、单体细乳液的粒径(r)和DBSA分子在粒子表面的覆盖率(x)存在相关性。使用不同粒径、不同DBSA浓度、不同单体浓度的单体细乳液进行聚合,验证了聚合速率方程在本实验体系中的正确性。
     5.D4的阳离子细乳液聚合成核机理研究.
     应用动态激光光散射对D4的阳离子细乳液聚合过程的粒径变化进行跟踪,发现随聚合反应的进行,细乳液粒径不断减小。单体D4的密度与聚合物PDMS的密度接近,因此粒径的减小并不是聚合反应过程密度的变化所致,这意味着在D4细乳液聚合过程中除了单体液滴成核外还存在其他成核方式。鉴于低分子量的端羟基PDMS具有D4单体具有较大的亲水性,本论文提出在单体液滴成核的基础上,还存在部分均相成核:D4开环聚合生成的低分子量端羟基PDMS进入水相成核,并推导了乳液粒径与单体转化率间的关系式。该关系式表明转化率的自然对数和细乳液粒径的自然对数之间存在着线性关系,并通过不同条件下的细乳液聚合试验数据进行了验证。在此基础上,进一步分析了单体细乳液的粒径、乳化剂用量、温度对体系中均相成核过程的影响。
Fluorine-silicon-acrylate copolymers are one kind of materials with high performance including excellent weather resistance, thermal and chemical stability, and particularly the ultra-low surface free energy, which make the surface water-repellent, oil-repellent and self-cleaning. Fluorine-silicon-acrylate copolymers are widely used as coating, textile finishing, leather finishing and so on. The study on the preparation of fluorine-silicon-acrylate copolymers is remarkable and worthwhile. As an important method for the preparation of high performance fluorine-silicon-acrylate copolymers, emulsion polymerization has many advantages, such as the high polymerization rate, safety and no pollution. In present dissertation, high performance emulsions of polymers copolymerized by fluorinated-acrylate, silicone and acrylate were synthesized by different emulsion polymerization techniques including the seeded emulsion polymerization and the miniemulsion polymerization, and the structures, properties and the application behaviors of the emulsions were studied. Furthermore, the kinetics and the nucleation mechanism of the cationic ring-opening miniemulsion polymerization of D4 were systemically explored.
     The main research works are as follows:
     1. The synthesis of fluorine-containing latex with core-shell structure and the preparation of coatings with high hydrophobic surfaces.
     A pivotal question in the synthesis of fluorine-silicon-acrylate copolymers is how to minimize the amount of fluorinate monomers. In this paper, the latex particles were designed with core-shell structures and synthesized by semi-continuous seeded emulsion polymerization. The latex core is composed with low Tg poly(methyl methylacrylate-butyl acrylate) (P(MMA-BA)). The latex shell is composed with high Tg P(MMA-BA) containing vinyl tris(β-methoxyethoxy) silane (A-172) and dodecafluroheptyl methacrylate(DFMA). A-172 is serving as the crosslinking monomer. DFMA is the functional monomer which provides the anti-water properties. The core-shell latex has been characterized by various methods, such as fourier-transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), the X-ray photoelectron spectroscopy (XPS), a video-based contact angle measuring device and atomic force microscope (AFM). The result shows that the surface hydrophobic property characterized by the values of advancing contact angle and receding contact angle for water, were dramatically improved with low amount of DFMA. Coatings prepared by the synthetic latex with different DFMA and A-172 content were compared and the antifouling capability of the coatings were analyzed. It was found that the anti-fouling capability was improved with the increase of hydrophobic property.
     2. The synthesis of polysiloxane latex grafted by F-containing acrylate via a two-step miniemulsion polymerization method.
     The fluorine-containing polysiloxane latex is used as multifunctional textile finishing, which provides the textile with pleasant softness and water-repelling properties. However, the low solubility of cyclosiloxanes and fluorinated monomer in water make them unstable in conventional emulsion polymerization. In this dissertation, a fluorine-containing polysiloxane latex were synthesized via two-step miniemulsion polymerization:vinyl groups were introduced into the polysiloxane by ring-opening copolymerization of octamethylcyclotetrasiloxane (D4) and tetravinyltetramethylcyclotetrasiloxane (D4V) in miniemulsion, then the fluorinated monomer(DFMA) were grafted onto polysiloxane by radical copolymerization. The effect of the content of D4V and DFMA on the structure and properties of the emulsion was investigated. The fluorine-containing polysiloxane latex, prepared with appropriate content of D4V and DFMA, is of high performance on the softening and water-repelling properties when it is utilized as a finishing of textile. A comparative study on the conventional emulsion polymerization and miniemulsion polymerization of the polymerization was also carried out. The result shows that the miniemulsion copolymerization of D4/D4V has many advantages, such as the higher polymerization rate, lower emulsifier concentration and better stability.
     3. The study on mini-emulsification method and the stability of the correspondingly miniemulsions.
     The preparation of monomer miniemulsion is the key step in the miniemulsion polymerization. In this dissertation, D4 was chosen as the model monomer and the effects of preparation methods were systemically studied by static multiple light scattering (MLS) and dynamic laser scattering (DLS) technique. Monomer miniemulsion of D4 were prepared by three different devices, rotor-stator system, sonifier and high-pressure homogenizer, respectively and the the stability of monomer miniemulsions were estimated. The results show that the monomer miniemulsion prepared by high-pressure homogenizer was most stable. Furthermore, the effect of homogenization condition and the recipes on the droplet size and distribution (DSD) of monomer miniemulsion were studied in detail. The influences of the droplet size of monomer miniemulsion, the concentration of DBSA and the temperature on the stability of monomer miniemulsion were also discussed.
     4. Kinetic study on the cationic polymerization of D4 in miniemulsion.
     The cationic polymerization of D4 in miniemulsion is of its unique kinetic and thermodynamic feasures. A kinetic study on the ring-opening polymerization (ROP) of D4 in miniemulsion is presented in this dissertation. The polymerization was initiated by dodecylbenzenesulfonic acid (DBSA) which also served as the surfactant (inisurf). The influence of the size of monomer droplet and the concentration of DBSA on the polymerization rate were studied. With the main place for the ROP of D4 confirmed at the oil/water interface, a three-layer interface model was proposed to analyze the distribution of molecules in the interface and the effects of the DBSA. A kinetic equation was then developed based on the interface model. In the equation, the polymerization rate (Rp) was related to the initial monomer concentration ([D4]0), the droplet radius (r), the coverage of DBSA on monomer droplets surface (χ). The polymerization rate can be predicted from the kinetic equation after all the parameters determined. Finally, the equation was verified by the good accordance of the predicted polymerization rate data with the experimental results under different polymerization conditions.
     5. The study on the nucleation mechanism in the cationic polymerization of D4 in miniemulsion.
     The miniemulsion polymerization of octamethylcyclotetrasiloxane (D4) was carried out and the particle sizes during polymerization were monitored by DLS technique. Although the monomer miniemulsion was homogenized very well by a high-pressure homogenizer, the particle sizes kept on decreasing with the increase of the monomer conversion in the polymerization, which indicated the occurrence of new particles. Considering the hydrophilicity of the components in the miniemulsion system, a homogenous nucleation of oligomers was likely to happen besides the primary droplet nucleation mechanism. The oligomers nucleation mechanism was justified by the linear relationship between the natural logarithm of the particles diameter (lnd(t)) and the natural logarithm of conversion of monomer(lnf(t)). In addition, the influence of the inisurf concentration and the polymerization temperature on the ratio of the oligomers entering water phase to all the polymers produced were discussed.
引文
[1]吴仁洁.高聚物的表面与界面[M],北京:科学出版社,1998,P6-10
    [2]Blossey R. Self-cleaning surfaces-virtual realities[J]. Nature Materials,2003,2:301-306
    [3]McHale G, Newton MI, Shirtcliffe NJ. Water repellent soil and its relationship to texture and hydrophobicity[J]. European Journal of Soil Science,2005,56 (4):445-452
    [4]Lafumal A, Quere D. Surperhydrophobic states[J]. Nature Materials,2003,2:457-460
    [5]Feng L, Li S, Li Y. Super-hydrophobic surfaces:From natural to artificial. Advanced Materials, 2002,14:1857-1860
    [6]Jiang L, Wang R, Yang B. Binary cooperative complementary nanoscale interfacial materials[J], Pure and Applied chemistry,2000,72:73-81
    [7]Oner D, McCarthy TJ. Ultrahydrophobic surfaces. effects of topography length scales on wettability[J]. Langmuir,2000,16:7777-7782
    [8]Gudipati CS, Finlay JA, Callow JA. The antifouling and fouling-release performance of hyperbranched floropolymer(HBFP)-poly(ethylene glycol)(PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga ulva[J]. Langmuir,2005, 21:3044-3053
    [9]Ohsaki H, Tachibana Y. Low resistance AR stack including silver layer[J]. Thin Solid Film, 2003,442:153-157
    [10]Drobny JG. Fluoropolymers in automotive applications[J]. Polymer for Advanced Technologies, 2007,18:117-121
    [11]Takayanagi T, Yamabe M. Progress of fluoropolymers on coating applications:Development of mineral spirit soluble polymer and aqueous dispersion[J]. Progress in Organic Coating,2000, 40:185-190
    [12]Bierwagen G, Shedlosky TJ, Stanek K. Developing and testing a new generation of protective coatings for outdoor bronze sculpture[J]. Progress in Organic Coatings,2003,48:289-296
    [13]Shafrin EG, Zisman WA. Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers[J]. Journal of Physical Chemistry,1960, 64(5):519-524
    [14]Bernett MK, Zisman WA. Wetting properties of acrylic and methacrylic polymers containing fluorinated side chains[J]. Journal of Physical Chemistry,1962,66(6):1207-1208
    [15]Vecellio M. Opportunities and developments in fluoropolymeric coatings[J]. Progress in Organic Coatings,2000,40:225-242
    [16]崔学军.高性能含氟乳液的合成及水性含氟涂料耐沾污性建模[D].吉林:吉林大学,2008
    [17]Kang ET, Zhang Y. Surface Modification fo fluoropolymers via molecular design [J]. Advanced Materials,2000,20:1481-1494
    [18]Vaswani S, Koskinen J, Hess DW. Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films[J]. Surface & Coatings Technology,2005, 195:121-129
    [19]Ming W, Melis F, van de Grampel RD. Low surface energy films based on partially fluorinated isocyanates:the effects of curing temperature[J]. Progress in Organic Coating,2003,48:316-321
    [20]Coupe B, Chen W. A new approach to surface functionalization of fluoropolymers[J]. Macromolecules,2001,34(6):1533-1535
    [21]Anton D. Surface-fluorinated coatings[J]. Advanced Materials,1998,10(15):1197-1205
    [22]Sugama T, Gawlik K. Poly(tetrafluoroethylene)/(hexafluoropropylene) coatings for mitigating the corrosion of steel in a simulated geothermal environment[J]. Progress in Organic Coatings, 2001,42:202-208
    [23]孙继昌,姜洪武.含氟织物整理剂的制备与应用[J].染整技术,2005,27(12):28-29
    [24]Greenwood EJ, Lore AL. Oil-and water-repellent copolymer[P]. USA, US4742140,1988-05-03
    [25]Young T. The Bakerian Lecture:Experiments and Calculations Relative to Physical Optics[R]. Philosophical Transactions of the Royal Society of London,1804,94:1-16
    [26]Wenzel RN. Surface roughness and contact angle[J]. Journal of Physical Chemistry,1949, 53(9):1466-1467
    [27]Cassie ABD, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944,40:546-551
    [28]Cassie ABD. Contact angles[J]. Discussions of the Faraday Society,1948,3:11-16
    [29]Johnson RE, Dettre RH. Contact angle hysteresis.Ⅲ. Study of an idealized heterogeneous surface[J]. Journal of Physical Chemistry,1964,68(7):1744-1750
    [30]Johnson RE, Dettre RH, Brandreth DA. Dynamic contact angles and contact angle hysteresis. Journal of Colloid and Interface Science,1977,62(2):205-212
    [31]Dettre RH, Johnson RE. Contact angle hysteresis. Ⅳ. Contact angle measurements on heterogeneous surfaces[J]. Journal of Physical Chemistry,1965,69(5):1507-1515
    [32]Brandon S, Wachs A, Marmur A. Simulated Contact Angle Hysteresis of a Three-Dimensional Drop on a Chemically Heterogeneous Surface:A Numerical Example[J]. Journal of Colloid and Interface Science,1997,191(1):110-116
    [33]Extrand CW, Kumagai Y. An experimental study of contact angle hysteresis[J]. Journal of Colloid and Interface Science,1997,191(2):378-383
    [34]Wolansky G, Marmur A. The actual contact angle on a heterogeneous rough surface in three dimensions[J]. Langmuir,1998,14:5292-5297
    [35]Extrand CW, A thermodynamic model for contact angle hysteresis [J]. Journal of Colloid and Interface Science,1998,207:11-19
    [36]Li W, Amirfazli A. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces[J]. Journal of Colloid and Interface Science,2005,292:195-201
    [37]Tavana H, Jehnichen D, Grundke K. Contact angle hysteresis on fluoropolymer surfaces[J]. Advances in Colloid and Interface Science,2007,134:236-248
    [38]Kijlstra J, Reihs K, Klamt A. Roughness and topology of ultra-hydrophobic surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206(1):521-529
    [39]Furmidge CGL. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. Journal of Colloid Science,1962,17:309-324
    [40]Dinsmore RP. Synthetic rubber and method of making it[P]. USA, US patentl732795, 1929-10-22
    [41]Harkins WD. A general theory of the reaction loci in emulsion polymerization[J]. Journal of Chenical Physics,1945,13:381-381
    [42]Harkins WD. A general theory of the mechanism of emulsion polymerization[J]. Journal of the American Chemical Society,1947,69(6):1428-1444
    [43]Smith WV, Ewart RH. Kinetics of emulsion polymerization[J]. Journal Chemical Physics,1948, 16
    [44]Smith WV. Chain initiation in styrene emulsion polymerization[J]. Journal of the American Chemical Society,1949,71(12)4077-4082
    [45]Fikentscher H, Process of emulsion-polymerization[P]. USA, US Patent 2363951,1944-11-28
    [46]Harkins WD. General theory of mechanism of emulsion polymerization.Ⅱ[J]. Journal of Polymer science,1949,5(2):217-251
    [47]Harkins WD, Beeman N. Emulsions:stability, area per molecule in the interfacial film, distribution of sizes and the oriented wedge theory[J]. Journal of the American Chemical Society,1929,51(6):1674-1694
    [48]Smith WV. The kinetics of styrene emulsion polymerization[J].Journal of the American Chemical Society,1948,70(11)3695-3702
    [49]O'toole JT. Kinetics of emulsion polymerization[J].Journal of Applied polymer science,1964, 9(4):1291-1297.
    [50]Hansen FK, Ugelstad J. Particle nucleation in emulsion polymerization. I. A theory for
    homogeneous nucleation[J]. Journal of Polymer science:Polymer Chemistry Edition,1978, 16(8):1983-1979
    [51]Weyenberg DR, Finalay DE, Cecapa JR, Anionic emulsion polymerization of siloxanes[J]. Journal of Polymer Science Part C:Polymer Symposia,1969,27(1):27-34
    [52]Hyde JF, Wehrly JR. Polymerization of Organopolysiloxanes in aqueous emulsion[P]. USA, US Patent 2891920,1959-6-23
    [53]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997.18-25
    [54]Ugelstad J, El-Aasser MS, Vanderhoff JW. Emulsion polymerization:initiation of polymerization in monomer droplets[J]. Journal of Polymer Science:Polymer Letters Edition, 1973,11:503-513
    [55]Bechthold N, Landfester K. Kinetic of miniemulsion as revealed by calorimetry[J]. Macromolecules,2000,33(13):4682-4689
    [56]Goodall AR, Wilkinson MC, Hearn J. Mechanism of emulsion of styrene in soap-free systems[J]. Journal of Polymer science:Polymer Chemistry Edition,1977,15(9):2193-2218
    [57]Chiu WY, Shih CC. A study of the soap-free emulsion polymerization of styrene[J]. Journal of Applied Polymer Science,1986,31(7):2117-2128
    [58]Leong YS, Candau F. Inverse microemulsion polymerization[J]. Journal of Physical Chemistry, 1982,86(13):2269-2271
    [59]Morgan JD, Lusvardi KM, Kaler EW. Kinetic and mechanism of microemulsion polymerization of hexyl methacrylate[J]. Macromolecules,1997,30:1897-1905
    [60]Sacanna S, Koenderink GH, Philipse AP. Microemulsion synthesis of fluorinated latex spheres[J]. Langmuir,2004,20:8398-8400
    [61]Okubo M, Kanaida K, Matsumoto T. Production of anomalously shaped carboxylated polymer particles by seeded emulsion polymerization [J]. Colloid & Polymer Science,1987, 265(10):876-881
    [62]Hergeth WD, Starre P, Schmutzler K. Polymerizations in the presence of seeds:3. Emulsion polymerization of vinyl acetate in the presence of quartz powder[J]. Polymer, 1988,29(7):1323-1328
    [63]Min TI, Klein A, El-Aasser MS. Morphology and grafting in polybutylacrylate-polystyrene core-shell emulsion polymerization[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1983,21(10):2845-2861
    [64]El-Aasser MS, Makgawinata T, Vanderhoff JW. Batch and semicontinuous emulsion copolymerization of vinyl acetate-butyl acrylate. I. Bulk, surface and colloidal properties of copolymer latexes[J]. Journal of Polymer Science:Polymer Chemistry Edition,1983, 21(8):2363-2382
    [65]Hughes WB, Groves W, Stromberg VL. Polymeric partial esters of hydrocarbon-diimidazolinylalkanols and dicarboxylic acids[P]. USA, US Patent 2987521,
    1961-06-06
    [66]Stutman DR, Klein A, El-Aasser MS. Mechanism of core/shell emulsion polymerization[J]. Industrial & Engineering Chemistry Product Research and Development,1985,24(3):404-412
    [67]Dimonie V, El-Aasser MS, Klein A. Core-shell emulsion copolymerization of styrene and acrylonitrile on polystyrene seed particles [J]. Journal of Polymer Science:Polymer Chemistry Edition,1984,22(9):2197-2215
    [68]Cheng CM, Canderhoff JW, El-Aasser MS. Monodisperse porous polymer particles:Formation of the porous structure[J]. Journal of Polymer Science:Polymer Chemistry Edition,1992, 30(2):245-256
    [69]McDonald CJ, Bouck KJ, Chaput AB. Emulsion polymerization of voided particles by encapsulation of a nonsolvent[J]. Macromolecules,2000,33(15):1593-1605
    [70]Kim JW, Joe YG, Suh KD. Poly(methyl methacrylate) hollow particles by water-in-oil-in-water emulsion polymerization[J]. Colloid & Polymer Science,1999,277(3)252-256
    [71]Ugelstad J, Mork PC, Kaggerud KH. Swelling of oligomer-polymer particles. New methods of preparation[J]. Advances in Colloid and Interface Science,1980,13(1):101-140
    [72]Segall I, Dimonie VL, El-Aasser MS. Core-shell structured partiles.Ⅰ. Copolymerization of styrene/benzyl methacrylate as a choice for shell material and characteriazation of poly(n-butyl acrylate) core latex particles[J]. Journal of Applied Polymer Science,1995,58(2)385-399
    [73]Segall I, Dimonie VL, El-Aasser MS. Core-shell structured partiles.Ⅱ. Synthesis and characterization of poly(n-butyl acrylater)/poly(benzyl methacrylate-styrene) structured latex particles[J]. Journal of Applied Polymer Science,1995,58(2):401-417
    [74]Segall I, Dimonie VL, El-Aasser MS. Core-shell structured partiles.Ⅲ. Structure-properties relationship in toughening of polycarbonate with poly((n-butyl acrylater)/poly(benzyl methacrylate-styrene) structured latex particles[J]. Journal of Applied Polymer Science,1995, 58(2):419425
    [75]Asua JM. Miniemulsion polymerization[J]. Progress in Polymer Science,2002,27:1283-1346
    [76]Ugelstad J, Hansen FK, Lange S. Emulsion polymerization of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monomer droplets[J]. Macromolecular Chemistry and Physics,1974,175(2):507-521
    [77]Tang PL, Sudol ED, Silebi CA. Miniemulsion polymerization-a comparative study of preparative variables[J]. Journal of Applied Polymer Science,1991,43(6):1059-1066
    [78]Rodriguez V, El-Aasser MS, Asua JM. Miniemulsion copolymerization of styrene-methyl methacrylate[J]. Journal of Polymer Science:Polymer Chemistry Edition,1989,27:3659-3671
    [79]Wang CC, Yu NS, Chen CY. Miniemulsion polymerization of styrene.I. Preparation by redox initiator and new agitation mixer. Journal of Applied Polymer Science,1996,60:493-501
    [80]Mason TJ, Lorimer JP. Sonometry:theory, applications and uses of ultrasound in chemistry[M]. Chichester, Ellis Horwood,1988, p27
    [81]Lander R. Manger W, Scouloudis M. Gaulin homogenization:a mechanistic study[J].
    Biotechnology Progress,2000,16:80-85
    [82]Oh JK, Tang CB, Gao HF. Inverse miniemulsion ATRP:A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles[J], Journal of the American Chemical Society,2006,128(16):5578-5584
    [83]Ouzineb K, Graillat C, Mckenna T. Continuous tubular reactors for latex production: conventional emulsion and miniemulsion polymerizations[J]. Journal of Applied Polymer science,2004,91:2195-2207
    [84]Schork FJ, Guo JC. Continuous miniemulsion polymerization[J]. Macromolecular Reaction Engineering,2008,2:287-303
    [85]Goodall AR, Wilkinson MC, Hearn J. Mechanism of emulsion polymerization of styrene in soap-free systems. Journal of Polymer Science:Polymer Chenistry Edition,1977, 15(9):2193-2218
    [86]黄宏志,沈玲,熊娉婷等.可聚合乳化剂对丙烯酸乳液性能的影响.涂料工业,2006,36(12):28-30
    [87]秦总根,夏正斌,涂伟萍.水性有机氟涂料的研制及应用[J].合成材料老化与应用,2004,3:34-38
    [88]李学燕.氟树脂改性丙烯酸树脂的研究[J].涂料工业,2004,(12):24-28
    [89]李同信,于永君,刘非.转向乳化法制备水性氟树脂涂料[J].涂料技术文摘,2002,(4):18-21
    [90]李同信,刘非,于永军.水性氟树脂、制法及含有水性氟树脂的水性氟涂料[P].中国专利,CN1322775A,2001-11-21
    [91]林宗仁,蔡明生,林德镜等.有机氟丙烯酸水性树脂[P].中国专利,CN1510062A,2004-7-7
    [92]大连明辰振邦氟涂料股份有限公司,水性氟树脂、制法及其应用[P].中国专利,CN1362422A,2002-8-7
    [93]唐黎明,张侃,潘志存等.一种聚偏氟乙稀改性丙烯酸酯乳液的制备方法[P].中国专利,CN1337415,2002-2-27
    [94]Brady RF. Studying application for fluorinated polyurethanes[J]. Journal of Protective Coatings and Linings,1998,35(3):83
    [95]Park SY, Chvalun SN, Blackwell J. Structure of a Ring-Containing fluoropolymer[J]. Macromolecules,1997,30:6814-6818
    [96]Tomoya Kitazume. Green chemistry development in fluorine science[J]. Journal of Fluorine Chemistry,2000,105:265-278
    [97]赵瑞年,路之康.含氟高聚物的发展[J].科学通报,1959,3:68-70
    [98]Chen S, Sheu YL, Lee CT. Journal of applied polymer science,1999,63:903-910
    [99]程时远,陈艳军,陈沛智.氟涂料研究新进展.上海涂料,2001,(5)15-18
    [100]Marion P,Beinert G,JuhueD,Lang J,Core-shell latex particles containing a fluorinated polymer in the shell.1.Film formation studied by fluorescence nonradiative energy transfer.Journal of Applied Polymer Science,1996.64(12):2409-2419
    [101]Marion P,Beinert G,JuhueD,Lang J,Core-shell latex particles containing a fluorinated polymer in
    the shell.2.Internal structure studied by fluorescence nonradiative energy transfer,Macromolecules,1996,30:123-129
    [102]Ha JW, Park IJ,Lee SB,Kim DK.Preparation and characterization of core-shell particles containing perfluoroalkyl acrylate in the shell,Macromolecules,2002,35:6811-6818.
    [103]Ha J W,Park I J,Kim D-K,Kim J-H,Lee S B.Surface properties of core-shell particles containing perfluoroalkyl acrylate in shell [J]. Surface Science,2003,532-535:328-333
    [104]瞿金东,彭家惠,陈明凤,张华洁,黄新丽,徐丽娜,核壳乳液的制备及其在耐沾污外墙涂料中的应用,东南大学学报(自然科学版),2005,35:162-166
    [105]C. C. Zhang, Y. J. Chen, Investigation of fluorinated polyacrylate latex with core-shell structure,Polym.Int.54(2005) 1027.
    [106]Cheng S, Chen Y,Chen Z, Core-shell latex fluorinated polymer rich in shell, J. Appl.Polym.Sci.2002,85:1147-1153
    [107]Akihiko Asakawa, Masao Unoki,Takao Hirono,Takashi Takayanagi.Waterborne fluoropolymers for paint use. Journal of Fluorine Chemistry,2000,104:47-51.
    [108]秦总根,涂伟萍,自交联含氟乳胶膜耐介质性能的研究,涂料工业,2005,35:9-12
    [109]和玲,梁军艳,高敏,朱江安,徐岩,水性核壳结构型含氟丙烯酸酯乳液的合成及性能,高分子材料科学与工程,2007,23:120-124
    [110]W. Minga, F. Melis, R.D. van de Grampel, L. van Ravenstein, M. Tian b, R. van der Linde. Low surface energy films based on partially fluorinated isocyanates:the effects of curing temperature. Progress in Organic Coatings 2003,48:316-321
    [111]Landfester K, Rothe R, Antonietti M. Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization[J]. Macromolecules,2002,35:1658-1662
    [112]张珍英,管蓉,含氟乳化剂FC80含量对丙烯酸酯乳液共聚性能的影响,胶体与聚合物,2001,4,14-17
    [113]Suzuki Y, Oil-and water-repellent fluoropolymer dispersions with good mechanical stability, 日本专利, JP04164990,1992-6-10
    [114]Giannetti E, Visca M. Process for the polymerization in aqueous dispersion of fluorinated monomers [P]. USA, US 4864006,1989
    [115]Degiorgio V, Piazza R, Bellini T. Static and dynamic light scattering study of fluorinated polymer colloids with a crystalline internal structre[J]. Advances in Colloid and Interface Science,1994,48:61-91
    [116]Kurt Wood. The effect of fluoropolymer architecture on the exterior weathering of coatings[J]. Macromolecules symposium,2002,187:469-479
    [117]Stephen Matuszczak, W. James Feast. An approach to fluorinated surface coatings via photoinitiated cationic cross-linking of mixed epoxy and fluoroepoxy systems[J]. Journal of Fluorine Chemistry,2000,102:269-277
    [118]Chakravarthy S. Gudipati, John A. Finlay, James A. Callow, Maureen E. Callow, Karen L. Wooley. The antifouling and fouling-release performance of Hyperbranched fluoropolymer (HBFP)-Poly(etju;eme glycol) (PEG) composite coatings evaluated by adsorption of
    biomacromolecules and the green fouling alga ulva[J]. Langmuir,2005,21:3044-3053.
    [119]张华洁,陈明凤,瞿金东,黄新丽.氟聚合物在丙烯酸酯核壳乳液及耐沾污外墙涂料中的应用[J].化工建材,2007,(2):11-12
    [120]Robert F, Brady J. Properties which influence marine fouling resistance in polymers containing silicon and fluorine[J]. Progress of Organic Coating,1999,35:31-35
    [121]Ciardelli F, Aglietto M, Mirabello LM. New fluorinated polymers for improving weatherability of building stone materials[J]. Progress in Organic Coatings,1997,32:43-47
    [122]Ono I, Isobe K, Tsukada H. Agent for water-repellent treatment of fibers[P]. USA, US patent 5612433,1997-5-18
    [123]Masahipo M, Tsukasa A, Fukumori M. Aqueous Water and Oil Repellent Dispersion[P].US 6753376,2004
    [124]李小东,杨原梅,黄飞.有机硅微乳液的制备技术[J].印染助剂,2008,25(1):9-12
    [125]Jang KO, Yeh K. Effects of silicone softeners and silane coupling angents on the performance properties of cotton fabrics[J]. Textile Research Journal,1993,63:557-565
    [126]Passino HJ, Englewood, Rubin LC. Organosilicon compounds [P]. USA, US Patent 2686194, 1954-8-10
    [127]梁石.氨基硅油的合成及其微乳化研究[D].四川:四川大学,2003
    [128]刘云.含氟有机硅整理剂的合成与性能研究[D].天津:天津工业大学,2003
    [129]Hyde JF, Wehrly JR. Polymerization of Organopolysiloxanes in aqueous emulsion[P]. USA, US Patent 2891920,1959-6-23
    [130]Gunzbourg DA, Favier JC, Hemery P. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion I:Preliminary results and kinetic study[J]. Polymer International,1994, 35:179-188
    [131]Liu SF, Li P. Emulsion polymerization of octamethylcyclotertrasiloxane in the presence of a cationic emulsifer[J]. Polymer Communication (China),1981, (4):257-262.
    [132]Saam JC, Huebner DJ. Condensation polymerization of oligomeric polydimethylsiloxanols in aqueous emulsion[J]. Journal of Polymer Science:polymer Chemistry Edition,1982, 20:3351-3368
    [133]Zhang XH, Yang YJ, Liu SF. Studies on emulsion polymerization of polysiloxanes II. Mechanism of cationic emulsion polymerization of octamethylcyclotertrasiloxane [J]. Polymer Communication (China),1982, (4):266-270
    [134]Liu SF, Li P. Emulsion polymerization of octamethylcyclotertrasiloxane in the presence of a cationic emulsifer[J]. Polymer Communication (China),1981, (4):257-262.
    [135]穆森昌.八甲基环四硅氧烷阴离子乳液聚合反应的研究[J].高分子通讯,1983,(6):20-26
    [136]Gunzbourg DA, Maisonnier S, Favier JC. Ionic polymerization in aqueous emulsion[J]. Macromolecules Symposium,1998,132:359-370
    [137]Barrere M, Ganachaud F, Bendejacq D. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion II. Molar mass analyses and mechanism scheme[J]. Polymer,2001, 42:7239-7246
    [1]翟金东,彭家惠,陈明凤,自清洁外墙涂料的研究与应用[J].涂料工业,2006,36(1):43-47
    [2]周海鸥,孙梅.自清洁涂料的研究思路与现状[J].中国涂料,2006,2(5):34-35
    [3]Minglin M, Randal MH. Superhydrophobic surfaces[J]. Current Opinion in Colloid & Interface Science,2006,11:193-202
    [4]郭志光,刘维民.仿生超疏水性表面的研究进展[J].化学进展,2006,18(6):721-726
    [5]汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社,2006,P5-10
    [6]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997,18-25
    [7]Toniolo L, Poli T, Castelvetro V. Tailoring new fluorinated acrylic copolymers as protective coatings for marble[J]. Journal of Cultural Heritage,2002,3(4):309-316
    [8]Lindner E. A low surface free energy approach in the control of marine biofouling[J]. Biofuouling,1992,6(2):193-205
    [9]于良民,王强,高红秋.有机氟低表面能涂料的研究进展.有机氟工业,2008,(04):21-26
    [10]Malshe VC, Sangaj NS. Fluorinated acrylic copolymers:Part Ⅰ:Study of clear coatings[J]. Progress in Organic Coatings,2005,53(3):207-211
    [11]Castelvetro V, Aglietto M, Ciardelli F. Structure control, coating properties, and durability of fluorinated acrylic-based polymers[J]. Journal of Coatings Technology,2002,74:57-66
    [12]Thomas RR, Lloyd KG, Stika KM. Low free energy surfaces using blends of fluorinated acrylic copolymer and hydrocarbon acrylic copolymer latexes[J]. Macromolecules, 2000,33(23):8828-8841.
    [13]Linemann RF, Malner TE, Brandsch R. Latex blends of fluorinated and fluorine-free acrylates:Emulsion polymerization and Tapping Mode Atomic Force Microscopy of film formation[J]. Macromolecules,1999,32(6):1715-1721
    [14]Ha JW, Park IJ, Lee SB. Preparation and characterization of core-shell partiles containing perfluoroalkyl acrylate in the shell[J]. Macromolecules,2002,35(18):6811-6818
    [15]和玲,徐岩,朱江安.含氟/硅丙烯酸酯核壳型乳液的合成及性能[J].高等学校化学学报,2008,29:187-192
    [16]Landfester K, Rothe R, Antonietti M. Convenient Synthesis of Fluorinated Latexes and Core-Shell Structures by Miniemulsion Polymerization[J]. Macromolecules,2002, 35(5):1658-1662
    [17]林宣益。建筑涂料耐沾污性测试方法探讨。现代涂料与涂装,2004,(6):17-18
    [18]Doug Anton. Surface-Fluorinated Coatings. Advanced Materials,1998,10 (15): 1197-1205。
    [19]杨婷婷,彭慧,姚丽.自交联型含氟丙烯酸酯共聚乳液的合成与表征[J].应用化学,2006,23(11):
    [20]Marcu I, Daniels ES. Incorporation of Alkoxysilanes into Model Latex Systems: Vinyl Copolymerization of Vinyltriethoxysilane and n-Butyl Acrylate[J]. Macromolecules,2003,36:328-332
    [21]Zhang SW, Liu R, Jiang JQ. Film formation and mechanical properties of the alkoxysilane-functionalized poly(styrene-co-butyl acrylate) latex prepared by miniemulsion copolymerization[J]. Progress in Organic Coatings,2009, 65:56-61
    [22]Castelvetro V, Vita CD, Giannini G. Alkoxysilane functional Acrylic latexes: Influence of copolymer composition on self-curing Behavior and film properties[J]. Macromolecular symposium,2005,226:289-302
    [23]Luo YW, Xu HJ, Zhu B. The influence of monomer types on the colloidal stability in the miniemulsion copolymerization involving alkoxysilane monomer[J]. Polymer,2006,47:4959-4966
    [24]崔学军.高性能含氟乳液的合成及水性含氟涂料耐沾污性建模[D].吉林大学,2008。
    [25]徐龙贵,袁培福,赵德华,陈剑.亲水耐沾污户外涂料研究[J]。涂料工业,2006,36(12):45-48。
    [1]Castelvetro V. Evaluationg fluorinated acrylic lattices as textile water ans oil repellent finishes[J]. Textile Research Journal,2001,71(5):399-406
    [2]Johnson RD, Township L, County M. Silicone emulsion which provides an elastomeric product and methods for preparation[P]. USA, US Patatent 4221688,1980-9-9
    [3]Holme I. New development in the chemical finishing of textiles[J]. The Journal of the Textile Institute,1993,84:520-533
    [4]梁石.氨基硅油的合成及其微乳化研究[D].四川:四川大学,2003
    [5]李小东,杨原梅,黄飞.有机硅微乳液的制备技术[J].印染助剂,2008,25(1):9-12
    [6]Jang KO, Yeh K. Effects of silicone softeners and silane coupling angents on the performance properties of cotton fabrics[J]. Textile Research Journal,1993,63:557-565
    [7]Passino HJ, Englewood, Rubin LC. Organosilicon compounds[P]. USA, US Patent 2686194,1954-8-10
    [8]Grajeck EJ, Petersen WH. Oil and water repellent fluorochemical finishes[J]. Textile Research Journal,1962,34(4):320-331
    [9]Cerne L. Influence of repellent finishing on the surface free energy of celluosic textile sbstrates[J]. Textile Research Journal,2004,74(5):426-432
    [10]潘文艳.黄德志,孙祥山等.含氟织物整理剂发展概括[J].化工新型材料,2007,35(4):20-21
    [11]刘云.含氟有机硅整理剂的合成与性能研究[D].天津:天津工业大学,2003
    [12]Huang P, Chao YC, Liao YT. Preparation of fluoroacrylate nanocopolymer by miniemulsion polymerization used in textile finishing[J]. Journal of Applied Polymer Science,2004,94:1466-1472
    [13]Li YY, Fang JZ, Zheng G Study on preparation and properties of pseudoperfluoroalkyl polysiloxanes[J]. New Chemical Materials,2006,6:22-26
    [14]Karydas A, Rodgers J. Fluorinated silicon polymers[P]. USA, US Patent 5057377, 1991-10-15
    [15]Owen MJ, Groh JL. Fluorosilicone antifoams[J]. Journal of Applied Polymer Science, 1990,40:789-797
    [16]王昌尧,李战雄,林锐彬.3,5-双(三氟甲基)苯基硅油的合成及性能研究[J].有机硅材料,2009,23(2):69-72
    [17]Marabittu L, Morelli A, Orsini LM. Fluorinated/siloxane copolymer blends for fouling release:chemical characterization and biological evaluation with algae and barnacles[J]. Biofouling,2009,25(6):481-493
    [18]Ono I, Isobe K, Tsukada H. Agent for water-repellent treatment of fibers[P]. USA, US patent 5612433,1997-5-18
    [19]罗军,伍青,黄恒超.一种用于纺织品防水防油、柔软透气整理的含氟硅整理剂及其合成方法[P].中国专利,CN1924184A,
    [20]罗军,武青,陈建军等.含氟多功能织物整理剂的最新研究进展[J].现代化工,2007,27(6):37-42
    [21]Gunzbourg DA, Favier JC, H e mery P. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion I:Preliminary results and kinetic study[J]. Polymer International,1994,35:179-188
    [22]Barr e re M, Ganachaud F, Bendejacq D. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion Ⅱ. Molar mass analyses and mechanism scheme[J]. Polymer,2001,42:7239-7246
    [23]Gunzbourg DA, Maisonnier S, Favier JC. Ionic polymerization in aqueous emulsion[J]. Macromolecules Symposium,1998,132:359-370
    [1]Ugelstad J, El-Aasser MS, Vanderhoff JW. Emulsion polymerization:initiation of polymerization in monomer droplets [J]. Journal of Polymer Science:Polymer Letters Edition,1973,11:503-513
    [2]Tang PL, Sudol ED, Silebi CA. Miniemulsion polymerization-a comparative study of preparative variables[J]. Journal of Applied Polymer Science,1991,43(6):1059-1066
    [3]Ugelstad J, Hansen FK, Lange S. Emulsion polymerization of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monomer droplets[J]. Macromolecular Chemistry and Physics,1974,175(2):507-521
    [4]Asua JM. Miniemulsion polymerization [J]. Progress in Polymer Science,2002, 27:1283-1346
    [5]Anderson CD, Sudol ED, El-Aasser MS. Elucidation of the miniemulsion stabilization mechanism and polymerization kinetics
    [6]Landfester K, Bechthold N, Tiarks F. Formulation and stability mechanism of polymerizable miniemulsions[J]. Macromolecules,1999,32:5222-5228
    [7]Capek I. Degradation of kinetically-stable O/W emulsions[J]. Advances in Colloid and Interface Science,2004,107:125-155
    [8]Webster AJ, Cates ME. Stabilization of emulsions by trapped species[J]. Langmuir,1998,14:2068-2079
    [9]Rodriguez VS, Delgado J, Silebi CA. Interparticle monomer Transport in miniemulsions[J]. Industrial & Engineering Chemistry Research,1989,28:65-74
    [10]Fontenot K, Schork FJ. Sensitivities of droplet size and stability in monomeric emulsions[J]. Industrial & Engineering Chemistry Research,1993,32:373-385
    [11]Miller CM, Blythe PJ, Sudol ED. Effect of the presence of polymer in miniemulison droplets on kinetic of polymerization[J]. Journal of Polymer Science:Polymer Chemistry Edition,1994,32:2365-2375
    [12]Reimers J, Shork FJ. Robust nucleation in polymer-stabilized miniemulsion polymerization[J]. Journal of Applied Polymer Science,1996,59:1833-1841
    [13]Chern CS, Chen TJ. Miniemulsion copolymerization of styrene using alkyl methacrylates as reative cosurfactants[J]. Colloid Polymer Science,1997,175:546-554
    [14]Chern CS, Chen TJ. Effect of Ostwald ripening on styrene miniemulsion stabilized by reactive cosurfactants[J]. Colloid Surface A,1998,138:65-74
    [15]Barrere M, Maitre C, Dourges MA.Anionic polymerization of 1,3,5-tri(trifluoropropylmethyl)cyclotrisiloxane(F3) in miniemuslion[J]. Macromolecules, 2001,34:7276-7280
    [16]Gunzbourg DA, Favier JC, H e mery P. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion I:Preliminary results and kinetic study[J]. Polymer International,1994,35:179-188
    [17]Jeong P, Dimonie VL, Daniels ES. Direct miniemulsification of kraton rubber/styrene solution.I. Effect of Manton-Gaulin homogenizer, Sonifier, and Membrane filtration [J]. Journal of Applied polymer science,2003,89:451-464
    [18]Lopez A, Chemtob A, Milton JL. Miniemulsification of monomer-resin hybrid system[J]. Industrial & Engineering Chemistry Research,2008,47:6287-6297
    [19]Ouzineb K, Lord C, Lesauze N. Homogenisation devices for the production of miniemulsions[J]. Chemical Engineering Science,2006,61:2994-3000
    [20]Lee SH, Lefevre T, Subirade M. Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion[J]. Food Chemistry,2009,113:191-195
    [21]Tornberg E. Functional characteristics of protein stabilized emulsions:Emulsifying behavior of proteins in a sonifier[J]. Journal of Food Science,1980,45(6):1662-1668
    [22]Rodriguez R, Barandiaran MJ, Asua JM. Particle nucleation in high solids miniemulsion polymerization [J]. Macromolecules,2007,40:5735-5742
    [1]Hyde JF, Wehrly JR. Polymerization of Organopolysiloxanes in aqueous emulsion[P]. USA, US Patent 2891920,1959-6-23
    [2]Weyenberg DR, Finalay DE, Cecapa JR, Anionic emulsion polymerization of siloxanes[J]. Journal of Polymer Science Part C:Polymer Symposia,1969,27(1):27-34
    [3]Liu SF, Li P. Emulsion polymerization of octamethylcyclotertrasiloxane in the presence of a cationic emulsifer[J]. Polymer Communication (China),1981, (4):257-262.
    [4]Saam JC, Huebner DJ. Condensation polymerization of oligomeric polydimethylsiloxanols in aqueous emulsion[J]. Journal of Polymer Science:polymer Chemistry Edition,1982, 20:3351-3368
    [5]Zhang XH, Yang YJ, Liu SF. Studies on emulsion polymerization of polysiloxanes II. Mechanism of cationic emulsion polymerization of octamethylcyclotertrasiloxane [J]. Polymer Communication (China),1982, (4):266-270
    [6]Gunzbourg DA, Maisonnier S, Favier JC. Ionic polymerization in aqueous emulsion[J]. Macromolecules Symposium,1998,132:359-370
    [7]Barrere M, Maitre C, Ganachaud F. Kinetic study ofa,ω-dihydroxylated polydimethylsiloxane condensation in aqueous emulsion [J]. Macromolecules Symposium,2000,151:359-364
    [8]Sheng JY, Shan GR.Kinetics of cationic miniemulsion ring-opening polymerization for octamethyl cyclotertrasiloxane[J]. ACTA Polymer Sinica. (China),2008, (1):13-17
    [9]Maisonnier S, Favier JC, Masure M. Cationic polymerization of 1,3,5,7-tetramethylcyclotetrasiloxane in aqueous emulsion. Part I. Preliminary results [J]. Polymer International,1999,48:159-164
    [10]Palaprat G, Ganachaud F, Mauzac M. Cationic polymerization of 2,4,6,8-tetramethylcyclotetrasiloxane processed by tuning the pH of the miniemulsion[J]. Polymer,2005,46:11213-11218
    [11]Maitre C, Ganachaud F, Ferreiar O. Anionic polymerization of phenyl glycidyl ether in miniemuslion[J]. Macromolecules,2000,33:7730-7736
    [12]Barrere M, Maitre C, Dourges MA. Anionic polymerization of 1,3,5-tri(trifluoropropylmethyl)cyclotrisiloxane(F3) in miniemuslion[J]. Macromolecules,2001, 34:7276-7280
    [13]Claverie JP, Viala S, Maurel V.Ring-opening methathesis polymerization in emulsion[J]. Macromolecules,2001,34:382-388
    [14]Cauvin S, Sadoun A, Santos RD. Cationic polymerization of p-methoxystyrene in miniemulsion[J]. Macromolecules,2002,35:7919-7927
    [15]Limouzin C, Caviggia A, Ganachaud F. Anionic polymerization of n-butyl cyanoacrylate in emulsion and miniemulsion[J]. Macromolecules,2003,36:667-674
    [16]Cauvin S, Ganachaud F, Touchard V. Cationic polymerization of p-methoxystyrene in water with dodecylbenzenesulfonic acid and ytterbium triflate:Evidence for an inverse emulsion process[J]. Macromolecules,2004,37:3214-3221
    [17]Touchard V, Graillat C, Boisson C. Use of a lewis acid surfactant combined catalyst in cationic polymrization in miniemulsion:Apparent and hidden initiators[J]. Macromolecules,2004,37: 3136-3142
    [18]Crespy D, Landfester K. Anionic polymerization of ε-caprolactam in miniemulsion:Synthesis and characterization of polyamide-6 nanoparticles[J]. Macromolecules,2005,38:6882-6887
    [19]Kostjuk SV, Radchenko AV, Ganachaud F. Controlled/Living cationic polymerization of p-methoxystyrene in solution and aqueous dispersion using tri(pentafluorophenyl)borane as a lewis acid:Acetonitrile does the job[J]. Macromolecules,2007,40:482-490
    [20]Gunzbourg DA, Favier JC, Hemery P. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion I:Preliminary results and kinetic study[J]. Polymer International,1994, 35:179-188
    [21]Barr e re M, Ganachaud F, Bendejacq D. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion II. Molar mass analyses and mechanism scheme[J]. Polymer,2001,42:7239-7246
    [22]Ugelstad J, El-Aasser MS, Vanderhoff JW. Emulsion polymerization:initiation of polymerization in monomer droplets[J]. Journal of Polymer Science:Polymer Letters Edition, 1973,11:503-513
    [23]Landfester K, Bechthold N, Tiarks F. Miniemulsion polymerization with cationic and nonionic surfactants:A very efficient use of surfactants for heterophase polymerization[J], Macromolecules,1999,32:2679-2683
    [24]Eaborn C, Stanczyk WA. Base cleavage of R-Si-bonds of silanols RsiMe2OH. A proposed new mechanism of substitution at silicon[J]. Journal Chemical Society, Perkin Transactions 2 1984; 2099-2103
    [1]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997,18-25
    [2]Harkins WD. A general theory of the mechanism of emulsion polymerization[J]. Journal of the American Chemical Society,1947,69(6):1428-1444
    [3]Hansen FK, Ugelstad J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation[J]. Journal of Polymer science:Polymer Chemistry Edition,1978, 16(8):1983-1979
    [4]Ugelstad J, El-Aasser MS, Vanderhoff JW. Emulsion polymerization:initiation of polymerization in monomer droplets[J]. Journal of Polymer Science:Polymer Letters Edition, 1973,11:503-513
    [5]Landfester K, Bechthold N, Foster S. Evidence for the preservation of the particle indentity in miniemulsion polymerization[J]. Macromolecular rapid communications,1999,20:81-84
    [6]Choi YT, El-Aasser MS, Sudol ED. Polymerization of styrene miniemulsions[J]. Journal of Polymer Science:Polymer Chemistry Edition,1985,23(12):2973-2987
    [7]Delgado J, El-Aasser MS, Vanderhoff JW. Miniemulsion copolymerization of vinyl acetate and butyl acrylate.I. Differences between the miniemulsion copolymerization and the emulsion copolymerization processes[J]. Journal of Polymer Science:Polymer Chemistry Edition,1986, 34:861-874
    [8]Barrere M, Maitre C, Dourges MA. Anionic polymerization of 1,3,5-tri(trifluoropropylmethyl)cyclotrisiloxane(F3) in miniemuslion[J]. Macromolecules,2001, 34:7276-7280.
    [9]Gunzbourg AD, Favier JC, Hemery P. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion I:Preliminary results and kinetic study [J]. Polymer International,1994, 35:179-188
    [10]Palaprat G, Ganachaud F, Mauzac M. Cationic polymerization of 2,4,6,8-tetramethylcyclotetrasiloxane processed by tuning the pH of the miniemulsion[J]. Polymer,2005,46:11213-11218
    [11]张兴华,刘香鸾,戴道荣.硅氧烷乳液聚合的研究Ⅲ.八甲基环四硅氧烷在阳离子乳液聚合过程中乳液颗粒的形成[J].高分子通讯,1983,(2):104-109
    [12]Miller CM, Blythe PJ, Sudol ED. Effect of the presence of polymer in miniemulison droplets on kinetic of polymerization [J]. Journal of Polymer Science:Polymer Chemistry Edition, 1994,32:2365-2375
    [13]Reimers JL, Skelland AHP, Schork FJ. Monomer droplet stability in emulsion-polymerized latexes. Polymer Reaction Engineering,1995,3:235-260
    [14]Webster AJ, Cates ME. Stabilization of emulsions by trapped species[J]. Langmuir,1998,14: 2068-2079
    [15]Hansen FK, Ugelstad J. Particle nucleation in emulsion polymerization. Ⅳ. Nucleation in monomer droplets[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1979,17:3069-3082
    [16]Barr e re M, Ganachaud F, Bendejacq D. Anionic polymerization of Octamethylcyclotetrasiloxane in aqueous emulsion II. Molar mass analyses and mechanism scheme[J]. Polymer,2001,42:7239-7246
    [17]Jalbert C, Koberstein JT, Yilgor I. Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane)[J]. Macromolecules,1993,26(12):3069-3074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700