用户名: 密码: 验证码:
3-甲氧基二苯胺的合成工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3-甲氧基二苯胺是生产阴图PS版感光剂、2-甲氧基吩噻嗪和荧烷类热敏染料的重要中间体,广泛应用于医药、染料、印刷等工业。
     本文在文献基础上采用一条新的合成路线:以间二硝基苯为原料,经过甲氧基化、加氢还原、N-酰化、Ullmann缩合再水解得到最终产物,总收率为70.2%。
     在甲氧基化反应中,用甲醇代替了高毒、价高、后处理困难的强极性溶剂。研究了影响反应的重要因素,优化的工艺条件为:甲醇作为溶剂,18-冠-6-醚作为相转移催化剂(用量为间二硝基苯质量的0.2%),反应时间6h,间二硝基苯与甲醇钠的摩尔比1∶1.2,反应温度120℃,反应压力0.65MPa,产品收率89.9%。
     在还原反应中,采用Pd/C作催化剂,使用催化加氢的方法合成3-甲氧基苯胺,工艺简单清洁,收率较高。较适宜的工艺条件为:甲醇作为溶剂,催化剂10%wtPd/C用量为原料3-甲氧基硝基苯质量的0.5%,反应温度80℃,反应压力2.0MPa,反应时间8h,收率93.5%。在每次反应后补加20%(质量分数)新鲜催化剂的条件下,催化剂至少可循环使用5次,产品收率变化不大,溶剂甲醇可套用。
     在N-酰化反应中,用三光气作为3-甲氧基苯胺的酰化剂,得到的3,3'-二甲氧基二苯脲可以在较温和的条件下与氯苯发生反应Ullmann缩合反应。并且酰化过程中没有水生成,避免了Ullmann缩合反应中的水解副反应。较适宜的工艺条件为:甲苯作为溶剂,3-甲氧基二苯胺与三光气的摩尔比为4.0∶1,反应温度30℃,催化剂三乙胺的用量为3-甲氧基苯胺质量的4.0%,反应时间7h,收率92.7%。
     在Ullmann缩合反应中,以碘化亚铜和N,N'-二甲基乙二胺的配合物作为催化剂,碳酸钾为缚酸剂,采用缩合后直接水解的方法,简化了操作步骤。合适的工艺条件为:氯苯与3,3'-二甲氧基二苯脲的摩尔比为3.0∶1,过量的氯苯在缩合后经水蒸汽蒸馏基本可以完全回收,碘化亚铜用量为3,3'-二甲氧基二苯脲质量的0.2%,N,N'-二甲基乙二胺用量为3,3'-二甲氧基二苯脲质量的2.0%,碳酸钾与3,3'-二甲氧基二苯脲的摩尔比为2.2∶1,反应温度130℃,反应时间4h,3,3'-二甲氧基二苯脲的转化率达98.7%,直接加入氢氧化钠(用量为3,3'-二甲氧基二苯脲摩尔量的2.5倍)溶液水解5h后,收率90.9%(以3-甲氧基苯胺计)。
     各步产品经熔点法、GC-MS、ESI-MS、IR、H-NMR等方法检测证明结构正确。
     新的生产工艺降低了生产成本,简化了操作过程,减少了污染产生量,易实现工业化生产。
3-Methoxy-N-phenyl-benzenamine is an important intermediate for producing negative PS photosensitizer,2-methoxylphenothiazine and fluorane heat sensitive dyes,and is widely used in medicine,dye and printing industry.
     3-Methoxy-N-phenyl-benzenamine was synthesized from the methoxylation of m-dinitrobenzene,followed by reduction,N-acylation,Ullmann condensation and hydrolysis. The overall yield was 70.2%.
     In the methoxylation of m-dinitrobenzene,methanol was used as solvent instead of the toxicant,expensive and polar ones.The optimized conditions were:the mole ratio of m-dinitrobenzene and sodium methoxide of 1:1.2,the 0.2%wt 18-crown-6-ether as the phase transfer catalyst to m-dinitrobenzene,reaction temperature of 120℃,reaction pressure of 0.65MPa,reaction time of 6h.With these conditions,the product was obtained with a yield of 89.9%.
     3-Methoxy-benzenamine was synthesized through the hydrogenation of m-nitroanisole obtained with palladium on carbon(10%wt)as catalyst in methanol solvent.Under the optimized conditions of:0.5%wt of catalyst to m-nitroanisole,reaction temperature of 80℃, pressure of 2.0MPa,reaction time of 8h,the yield for 3-methoxy-benzenamine was 93.5%.The catalyst can be reused for five times without big lose of the hydrogenation yield,i.e.addition 20%wt of the new catalyst after every reaction.The solvent can be used indiscriminately.
     Triphosgene was used as the acylating agent of 3-methoxy-benzenamine in N-acylation to obtain 3,3'-dimethoxy-diphenyl urea which could reacted with chlorobenzene under the mild conditions.At the same time,there was not water produced in N-acylation,so it could avoid the hydrolysis reaction in the Ullmann condensation.Under the optimized conditions,4 fold moles of 3-methoxy-benzenamine to triphosgene,4.0%wt of triethylamine to 3-methoxy-benzenamine as catalyst,reaction temperature of 30℃,reaction time of 7h,the yield of 92.7%for the objective product was obtained.
     In Ullmann condensation,the coupled compound of iodide copper and N,N'-dimethyl ethylene diamine was employed as the catalyst and potassium carbonate as acid-reacted agent. The effects of various factors were investigated.The optimized conditions were:the mole ratio of chlorobenzene and 3,3'-dimethoxy-carbanilide was 3.0:1,the excess chlorobenzene was recovered by steam distillation after the condensation reaction,reaction temperature of 130℃, the 0.2%wt iodide copper and 2.0%N,N'-dimethyl ethylene diamine to 3,3'-dimethoxy-carbanilide,the mole ratio of potassium carbonate and 3,3'-dimethoxy-carbanilide was 2.2:1,reaction time of 4h.With the conditions above,the conversion of 3,3'-dimethoxy-carbanilide was 98.7%.The solution of sodium hydrate was directly used for hydrolysis.With the mole ratio of sodium hydrate and 3,3'-dimethoxy-carbanilide was 2.5:1,reaction time of 5h,the yield was 90.9%.
     The structure of the product and the relative intermediates were confirmed with the melting point,GC-MS,ESI-MS,IR,H-NMR.
     The paper successfully got a new route for the synthesis of 3-methoxy-N-phenyl-benzenamine characterized by cheaper and more readily obtainable raw materials,more convenient operation and less pollution.
引文
[1]张春承.谈谈丝网印刷[J].印染世界,1999,4,16-19.
    [2]叶洪勋.网印制版用感光胶及其进步[J].印刷电路信息,2003,4,60-62.
    [3]朱建华,吴建平,陈达斌.JF202A型平网制版感光胶的研制与应用[J].印染,2002,325-27.
    [4]唐克光,染料影像重氮盐感光纸制备的研究[J].中华纸业,22(3),18-20.
    [5]张然,刘杰,杨建军等.重氮树脂感光胶的国内外研究进展[J].网印工业,2007,4,134-136.
    [6]赵超,曹维孝.3-甲氧基二苯胺-4-重氮盐的制备及其光、热分解性质[J].高等学校化学学报,1998,19(10),1697-1699.
    [7]Nakanum M,Ashigra G.Fluorane compounds and their preparation[P].GB 1273454,1972.
    [8]姚建文.3-甲氧基二苯胺合成工艺研究[J].烟台大学学报(自然科学与工程版),2007,20(3),30-32.
    [9]Przhevalskii N M,Grandberg I,Mosk S A,et al.Mono-m-substituted (chloroacetyl)diarylamines in a Stolle reaction[J].Khim.Geterotsikl.Soedin.,1982,7,940-943.
    [10]Ullmann,Dtsch F B.A new path for preparing diphenylamine derivatives[J].Ber.Dtsch.Chem.Ges.,1903,36,2382-2384.
    [11]Hassan J,Penaka V.Catalytic Altemative of the Ullmann reaction[J].Tetrahedron,1998,54,13793-13804.
    [12]Kidwai M,Mishra N K,Bansal V.,et al.Cu-nanoparticle catalyzed o-arylation of phenols with aryl halides via Ullmann coupling[J].Tetrahedron Lett.,2007,48,8883-8887.
    [13]Liu Y,Bao W L.A new method for the synthesis of dithiocarbamates by CuI-catalyzed coupling reaction[J].Tetrahedron Lett.,2007,48,4785-4788.
    [14]潘元佳.铜催化的Ullmann反应研究进展评介[J].化工之友,2007,3,44-45.
    [15]刘蒲,李三华,李利民.钯催化卤代芳烃的胺化反应研究[J].化学进展,2005,17(2),286-292.
    [16]张贞发,周伟澄.钯等过渡金属催化的卤代芳烃和胺的偶联反应[J].有机化学,2002,22(10),685-693.
    [17]Tsuji J, Manda T. Palladium-catalyzed hydrogenolysis of allylic and propargylic compounds with various hydrides[J]. Synthesis, 1996,1,1.
    [18] Anderson K W, Mendez M. Palladium-catalyzed amination of aryl nonaflates[J]. J. Org. Chem., 2003, 68(25), 9563-9573.
    [19]Lowie J, Hartwing J F. Palladium-catalyzed synthesis of arylamines from aryl halides mechanistic studies lead to coupling in the absence of tin reagents [J]. Tetrahedron Lett., 1995, 36,3609.
    [20] Wolfe J P, Wagaw S, Buchwald S L, et al. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation[J]. Acc. Chem. Res., 1998, 31(12), 805-818.
    [21]Hartwig J F. Transition metal catalyzed synthesis of arylamines and arylethers from arylhalides and triflates: seope and mechanism[J]. Angew. Chem. Int. Ed., 1998, 37(15), 2046-2067
    [22]Hamann B C, Hartwig J F. A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature suzuki couplings and amination of unactived aryl chlorides[J]. J. Am. Chem. Soc, 1998,120, 9722.
    [23] Wolfe J P, Rennels R A, Buchwald S L. Intramolecular palladium-catalyzed aryl amination and aryl amidation[J]. Tetrahedron, 1996, 52, 7525.
    [24]Urgaonkar S, Nagarajan M, Verkade J G. P(i-BuNCH_2CH_2)_3N: An versatile ligand for the Pd-Catalyzed amination of aryl chlorides[J]. Org. Lett., 2003, 5(6), 815-818.
    [25] Cohen T, Wood J, Dietz A G. Organocopper intermediates in the exchange-reaction of aryl halides with salts of copper(I). The possible role of copper(III)[J]. Tetrahedron Lett., 1974,15,3555-3558.
    [26] Hassan J, Sevignon M, Gozzi C, et al. Aryl-Aryl bond formation one century after the discovery of the ullmann reaction[J]. Chem. Rev., 2002,102, 1359-1470.
    [27]Kunz K, Scholz U, Ganzer D. Renaissance of Ullmann and Goldberg reactions-Progress in copper catalyzed C-N-, C-O- and C-S-coupling[J]. Synlett, 2003, (15), 2428-2439.
    [28]Gajare A S, Toyota K, Ozawa F, et al. Application of a diphosphini denecyclobutene ligand in the solvent-free copper-catalyzed amination reactions of aryl halides[J]. Chem. Commun., 2004, 1994-1995.
    [29]Klapars A, Antilla J C, Buchwald S L, et al. A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles[J].J.Am.Chem.Soc.,2001,123,7727-7729.
    [30]Kiyomori A,Marcoux J,Buchwald S L.An effieient copper-catalyzed coupling of aryl halides with imidazoles[J].Tetrahedron Lett.,1999,40,2657-2660.
    [31]马大为.氨基酸促进的Ullamann反应[J].精细化工原料及中间体,2006,(4),5-6.
    [32]Jiang L,Job G E,Buchwald S L,et al.Copper-catalyzed coupling of amides and carbamates with vinyl halides[J].Org.Lett.,2003,5(20),3667-3669.
    [33]Cohen T,Wood J,Dietz J A G.Organocopper intermediates in the exchange of aryl halides with salts of copper(Ⅰ).Role of copper(Ⅲ)[J].Tetrahedron Lett.,1974,15(40),3555-3558.
    [34]Lindlery J.Copper assisted nucleophilic substitution of aryl halogen[J].Tetrahedron,1984,40(9),1433-1456.
    [35]Paine A J.Mechanisms and models for copper mediated nucleophilic aromatic substitution.2.Single catalytic species from three different oxidation states of copper in an Ullmann synthesis of triarylamines[J].J.Am.Chem.Soc.,1987,109(5),1496-1502.
    [36]张慧,马大为.氨基酸促进的铜(Ⅰ)催化的乌尔曼反应的研究[博士学位论文][D].复旦大学,2005.
    [37]周勇,张海荣,张双泉,宋国强.3-甲氧基二苯胺合成工艺改进及条件优化[J].江苏工业学院学报,2004,16(4),30-32.
    [38]Massah A R,Mosharafian M,Momeni A R,et al.Solvent-free Williamson synthesis:An efficient,simple,and convenient method for chemoselective etherification of phenols and bisphenols[J].Synth.Commun.,2007,37(11),1807-1815.
    [39]Semen V Z,Anna N G.Method of preparing 3-trifluoromethyldiphenylamine[P].GB1218965A,1971.
    [40]吕康乐,余卫国,吴崖迪.4-氨基二苯胺的合成方法综述[J].浙江化工,2003,34(3),21-23.
    [41]安孟学,樊云峰.4-氨基二苯胺合成新工艺[J].精细与专用化学品,2000,(15),19-20.
    [42]李付刚,陈昌荣.2-甲基- 4-甲氧基二苯胺合成路线[J].辽宁化工,1998,27(3),1962-1964.
    [43]Gamble A B,Garner J,Gordon C P,et al.Aryl nitro reduction with iron powder or stannous chloride under ultrasonic irradiation[J].Synth.Commun.,2007,37(16), 2777-2786.
    [44]Yadav G D,Lande S V.Liquid-liquid-liquid phase transfer catalysis:A novel and green concept for selective reduction of substituted nitroaromatics[J].Adv.Synth.Catal.,2005,347(9),1235-1241.
    [45]张杰,魏安强.2,2-二硝基联苄的铁粉还原新工艺研究[J].化学世界,2000,41(5),245-248.
    [46]马淳安,葛小芳,朱英红等.芳族硝基化合物的电还原反应性能及其机理研究[J].高校化学工程学报,2006,20(5),728-733.
    [47]高全昌,陈栓虎.电化学法还原对硝基氯代苯[J].西北大学学报:自然科学版,1995,25(2),107-108.
    [48]Xi X,Liu Y,Shi J,et al.Palladium complex of poly(4-vinylpyridine-co-acrylic acid)for homogeneous hydrogenation of aromatic nitro compounds[J].J.Mol.Catal.A:Chem.,2003,192(1-2),1-7.
    [49]徐善利,陈宏博,李树德.催化加氢还原芳香硝基化合物制备芳胺的技术进展[J].精细石油化工,2006,23(4),58-61.
    [50]Beck J R.Nucleophilic displacement of aromatic nitro groups[J].Tetrahedron,1978,34(14),2057-2068.
    [51]Gallardo I,Guirado G,Marquet J.Nucleophilic Aromatic Substitution for Heteroatoms:An Oxidative Electrochemical Approach[J].J.Org.Chem.,2002,67(8),2548-2555.
    [52]Massah A R,Mosharafian M,Momeni A R,et al.Solvent-free Williamson synthesis:An efficient,simple,and convenient method for chemoselective etherification of phenols and bisphenols[J].Synth.Commun.,2007,37(11),1807-1815.
    [53]吴秋业,潘涛,金永生等.4-羟基吲哚和 4-甲氧基吲哚的合成[J].中国药物化学杂志,2003,13(1),25-27.
    [54]Cao Y Q,Pei B G.Etherification of phenols catalysed by solid-liquid phase transfer catalyst PEG400 without solvent[J].Synth.Commun.,2000,30(10),1759-1766.
    [55]户业丽,管春生,陈芬儿等.相转移催化法合成间硝基苯甲醚[J].中南民族学院学报(自然科学版),1998 17(3),17-19.
    [56]王正平,刘天才.三光气的合成及应用[J].化工进展,2002,21(3),172-175.
    [57]王正平,刘天才.三光气的合成及应用[J].哈尔滨工程大学学报,2001,22(2),74-79.
    [58]彭孝军,张蓉.C.I.直接黄50非光气法合成研究[J].染料工业,1998,35(2),12-14.
    [59]辛成伟,刘涛,李茂林等.非光气法合成C.I.直接黄107[J].染料与染色,2005,42(5),21-22.
    [60]邢凤兰,徐群,徐孙见.三光气代替光气合成系列化合物的研究和应用[J].精细与专用化学品,2006,14(21),11-15.
    [61]Bacherikov V A,Wang M J,Cheng S Y,et al.Ethyl acetate as a pro-reducing agent in an one-pot reductive deamination of nitroanilines[J].Bull.Chem.Soc.Japan.,2004,77(5),1027-1028.
    [62]Kornblum N,Cheng L,Kerber R C,et al.Displacement of the nitro group of substituted nitrobenzenes-a synthetically useful process[J].J.Org.Chem.,1976,41(9),1560-1564.
    [63]Pasha M A,Jayashankara V P.A comparative study and development of an improved method for the reduction of nitroarenes to arylamines[J].Ultrason.Sonochem.,2006,13(1),42-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700