用户名: 密码: 验证码:
不同稻作模式稻田碳固定、碳排放和土壤有机碳变化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以稻鸭复合种养(RD)、间歇灌溉(RW)、常规淹水灌溉(CK)3种不同的稻田生态系统为研究对象,于2007年和2008年通过大田试验和室内分析,系统研究了三种稻田生态系统植株碳固定、土壤碳排放、土壤有机碳库组分的动态特征,及其相互关系,明确了不同稻作模式下稻田碳过程的变化机制,初步认识了短时间尺度内土壤有机碳组分变化与水稻产量的关系,为认识和评价我国稻作模式的变化对碳循环造成的影响提供了依据,并为我国高产稻田的土壤碳管理积累了研究资料。主要研究结果如下:
     (1)不同稻作模式下水稻植株的碳固定
     2007年和2008年两年内CK、RD、RW地上部分净固碳量平均分别达到776.6g.m~(-2)、778.9 g.m~(-2)、705.5 g.m~(-2),RW分别比CK和RD显著低9.2%和9.4%;CK和RD间差异不显著。
     (2)不同稻作模式稻田CH_4排放
     2007年和2008年两年内RD的平均CH_4排放通量13.65 mg.m~(-2).h~(-1),累积排放量为34.15 g.m~(-2),分别比CK减少了19.15%、21.4%(P<0.01)。其甲烷减排效应主要发生在稻鸭共作期间。
     2007年和2008年两年内RW的平均CH_4排放通量为10.03 mg.m~(-2).h~(-1),累积排放量为25.49 g.m~(-2),分别比CK减少了36.9%、36.8%(P<0.01)。其甲烷减排效应可发生在水稻的各个生育阶段。
     与CH_4排放呈正相关的因素有TOC、DOC、MBC、土壤温度、过氧化氢酶活性、水稻植株固碳量的变化量、土壤pH:有负相关作用的因子有HA、FA、土壤NH_4~+。土壤DOC是影响甲烷排放的最主要的土壤有机碳组分。
     (3)不同稻作模式稻田CO_2排放
     2007年和2008年两年内RW的平均CO_2排放通量159.4 mg.m~(-2).h~(-1),累积排放量为385.4g.m~(-2),分别比CK和RD增加了29.4%、22.0%(P<0.01)。RD的CO_2排放通量和排放量与CK差异不显著。
     与CO_2排放呈正相关的因素有TOC、ROC、水稻植株固碳量;有负相关作用的因子有DOC、MBC、HA、FA、土壤pH、纤维素酶活性。
     (4)不同稻作模式稻田土壤有机碳组分数量特征和动态
     2007年和2008年两年内CK的平均TOC为11.64 g.kg~(-1),ROC、DOC、MBC、HA、FA含量分别为2.21 g.kg~(-1)、0.57 g.kg~(-1)、0.29 g.kg~(-1)、0.34 g.kg~(-1)、2.09 g.kg~(-1),其在TOC中的比例分别为22.31%、4.46%、2.38%、3.81%、19.88%。
     2007年和2008年两年内RD的平均TOC为11.05 g.kg~(-1),ROC、DOC、MBC、HA、FA含量分别为2.62 g.kg~(-1)、0.51 g.kg~(-1)、0.27 g.kg~(-1)、0.46 g.kg~(-1)、2.08 g.kg~(-1),其在TOC中的比例分别为24.14%、4.60%、2.46%、4.18%、19.02%。
     2007年和2008年两年内RW的平均TOC为10.79 g.kg~(-1),ROC、DOC、MBC、HA、FA含量分别为2.58 g.kg~(-1)、0.44 g.kg~(-1)、0.25 g.kg~(-1)、0.40 g.kg~(-1)、2.13 g.kg~(-1),其在TOC中的比例分别为24.27%、3.99%、2.24%、3.76%、20.16%。
     与CK相比,RD提高了土壤ROC、HA及其在TOC中的比例;RW减慢了土壤有机碳的积累速度,提高了ROC及其有效率,降低了DOC及其有效率,同时提高了FA在有机碳中的比例。
     (5)土壤有机碳组分的相关性和变化的敏感性
     ROC的绝对量及其ECRI与微生物量商有显著的正相关性,ROC的绝对量与其它有机碳组分间没有相关性,但其ECRI与DOC、DOC/TOC,与HA及其有效率有显著的负相关性。DOC、DOC/TOC的绝对量和ECRI与MBC、MBC/TOC、FA有正相关关系;与HA、HA/TOC、HA/FA间有显著的负相关关系。不同的稻作模式对有机碳组分之间的关系有影响。
     利用ECRI对土壤有机碳组分关系作分析与用绝对量作分析具有不同的作用。因为ECRI表征的是土壤有机碳的变化量,具有动态性,能显示出土壤有机碳组分之间变化的因果关系。在短时间尺度内,利用有机碳指标的ECRI和绝对量结合起来进行相关分析能比较全面地反应有机碳组分之间的关系。
     有机碳组分有效响应指数(ECRI)和有效变异系数法可有效分析土壤有机碳组分变化的敏感性。反应敏感性的大小为MBC、MBC/TOC、DOC/TOC、DOC、HA、FA、ROC、ROC/TOC、TOC、HA/TOC、FA/TOC、HA/FA。
     (6)稻田植株碳固定、土壤碳排放及有机碳组分之间的相关性
     稻田植株碳固定、土壤碳排放及土壤有机碳组分变化三个过程之间相互联系、相互影响。水稻植株的累积固碳量与土壤中变化较慢TOC、HA、HA/TOC、FA、FA/TOC等组分有显著的相关性,而与土壤中变化较快的活性碳部分没有显著的相关性。固碳量的变化量则与土壤中变化较快的ROC、MBC、MBC/TOC组分表现出极显著的正相关关系,说明了土壤中新鲜有机碳输入量的变化会引起土壤活性有机碳的敏感性变化。
     CH_4排放通量与水稻植株固碳量的变化呈极显著的正相关关系,而与累积固碳量没有显著关系。而CO_2排放通量与水稻植株的累积固碳量与固碳量的变化都有显著或极显著的相关关系。
     对于CK而言,CO_2排放通量与土壤TOC极显著正相关,而与DOC及其有效率、MBC及微生物量商呈显著或极显著的负相关性。对于RD而言,CO_2排放通量与土壤ROC与显著正相关,而与DOC及其有效率、HA呈显著负相关。对于RW而言,TOC含量越多、HA含量越低能明显促进CO2的排放。
     三处理中活性较高和活性较低的有机碳组分均与CH_4排放通量间有显著的相关性。其中DOC、DOC/TOC、MBC、MBC/TOC在三处理中均表现出与CH_4排放通量间显著或极显著的正相关关系。而HA、HA/TOC在三处理中表现出与CH_4排放通量间极显著的负相关性。对于RD、RW而言FA、FA/TOC也表现出与CH_4排放通量间的显著负相关性。对于CK和RD而言,土壤TOC与CH_4排放通量间有显著的正相关关系。可见在稻田土壤中,丰富的碳源是CH_4产生的前提条件,但CH_4排放量的多少则直接与MBC和DOC的多少有关。
     (7)土壤有机碳组分与水稻产量的关系
     水稻产量与TOC、DOC、DOC/TOC、MBC的绝对量有显著或极显著的正相关关系,与HA/TOC、FA/TOC、HA/FA、ROC/TOC的绝对量有显著或极显著的负相关关系。同时,DOC/TOC、MBC、MBC/TOC、ROC、ROC/TOC、FA/TOC的ECRI及CSI均与水稻产量有显著或极显著的负相关关系,HA、HA/TOC、TOC的ECRI与水稻产量有显著或极显著的正相关关系。说明要获得较高的水稻产量,稻田土壤要维持较高的总有机碳、可溶性有机碳和微生物量碳,同时要求ROC、DOC、MBC变化速度较慢,要有较快的有机碳的积累速率,较快的HA的变化速率。
     研究表明,与常规淹水稻田相比,稻田养鸭和间歇灌溉没有降低水稻产量。
This study selected three different paddy farming systems which are typical in southern regions of China,including rice-duck integrated farming system(RD), intermittent irrigation system(RW),and conventional flooded irrigation system(CK).In 2007 and 2008,dynamics of carbon sequestration by rice plants,soil carbon emissions, soil organic carbon components of three kind of paddy farming systems and their mutual relations were studied through field experiments and laboratory analysis.Mechanism of the three carbon cycle process were understood in different paddy farming systems,and the relationship between soil organic carbon components and rice yield was preliminarily affirmed during the short term scale of rice growth stage.Those studies would benefit to evaluate the impact of the changes of paddy farming systems on carbon cycling in the paddy ecosystem,and accumulate the data for soil carbon management in high-yielding rice fields in China.The main results are summarized as follows.
     (1)Carbon fixation by rice plant of different farming system
     In the two years of 2007 and 2008,average net carbon fixation by rice plants above ground of CK,RD and RW reached 776.6 g.m~(-2)、778.9 g.m~(-2)、705.5 g.m~(-2) respectively. Net carbon fixation of RW was significantly lower by 9.2%and 9.4%than that of CK and RD.There was no significant difference between CK and RD.
     (2) CH_4 emissions from paddy of different farming systems
     In the two years of 2007 and 2008,the average CH_4 emission flux of RD was 13.65 mg.m~(-2).h~(-1),Cumulative amount of CH_4 emissions reached 34.15 g.m~(-2),lower than that of CK by 19.15%and 21.4%(P<0.01) respectively.Compared with CK,RD primarily mitigated CH_4 emission during the period of coexisting of rice and duck.
     In the two years of 2007 and 2008,the average CH_4 emission flux of RW was 10.03 mg.m~(-2).h~(-1),Cumulative amount of CH_4 emissions reached 25.49 g.m~(-2),lower than that of CK by 36.9%and36.8%(P<0.01) respectively.Compared with CK,RW could reduce CH_4 emission during the whole growth stage of rice.
     Factors of soil TOC,DOC,MBC,soil temperature,catalase activity,the changing amount of carbon fixation,soil pH positively correlated with CH_4 emission,while soil HA,FA and NH_4~+ negatively correlated with CH_4 emission.The one of important reasons for mitigating CH_4 emission of RW was that RW could effectively reduce soil DOC.
     (3) CO_2 emission from paddy soil of different farming system
     In the two years of 2007 and 2008,the average CO_2 emission flux of RW was 159.4 mg.m~(-2).h~(-1),Cumulative amount of CH_4 emissions reached 385.4 g.m~(-2),more than that of CK by 29.4%and 22.0%(P<0.01) respectively,while there was no significant difference between CK and RD.
     Factors of soil TOC,ROC,the changing amount of carbon fixation positively correlated with CO_2 emission,while soil HA,FA,DOC,MBC and soil pH negatively correlated with CH_4 emission.
     (4)Dynamics of soil organic carbon components in paddy of different farming systems
     In the two years of 2007 and 2008,the average soil TOC content of CK was 11.64 g.kg~(-1),and the content of soil ROC、DOC、MBC、HA、FA was 2.21 g.kg~(-1)、0.57 g.kg~(-1)、0.29 g.kg~(-1)、0.34 g.kg~(-1)、2.09 g.kg~(-1) respectively,while which proportion of TOC was 22.31%、4.46%、2.38%、3.81%、19.88%respectively.
     In the two years of 2007 and 2008,the average soil TOC content of RD was 11.05 g.kg~(-1),and the content of soil ROC、DOC、MBC、HA、FA was 2.62 g.kg~(-1)、0.51 g.kg~(-1)、0.27 g.kg~(-1)、0.46 g.kg~(-1)、2.08 g.kg~(-1) respectively,while which proportion of TOC was 24.14%、4.60%、2.46%、4.18%、19.02%respectively.
     In the two years of 2007 and 2008,the average soil TOC content of RD was 10.79g.kg~(-1),and the content of soil ROC、DOC、MBC、HA、FA was 2.58 g.kg~(-1)、0.44 g.kg~(-1)、0.25 g.kg~(-1)、0.40 g.kg~(-1)、2.13 g.kg~(-1) respectively,while which proportion of TOC was 24.27%、3.99%、2.24%、3.76%、20.16%respectively.
     Compared with CK,RD increased soil ROC,HA and its proportion in the TOC;RW slowed down the accumulation speed of soil organic carbon,improved ROC and its proportion in the TOC,and decreased DOC and its proportion in the TOC,also increased the proportion of FA in the TOC.
     (5) Relativity and sensitivity of soil organic carbon components
     The absolute amount of ROC had no correlations with other SOC components except positively with MBC/TOC,but its effective carbon response index(ECRI) showed significant positive correlation with DOC and DOC/TOC,while negative correlation with HA.DOC and its proportion in TOC had significant positive correlation with MBC, MBC/TOC,FA,while negatively correlated with HA,HA/TOC,HA/FA.Different farming systems of rice had different influence on the relationship among SOC components.
     ECRI of SOC components had different roles of their absolute amount for analysis of correlations between SOC components,because ECRI represented changing amount of SOC components,could dynamically reveal the causal relationship among SOC components.Combined use of ECRI and absolute amount of SOC components in correlation analysis could comprehensively reflect the relationship among SOC components at the short-term scale.
     ECRI of SOC components and their effective coefficient of variation(ECV) could be used to effectively analyze the changing sensitivity of SOC components.The sensitivity of MBC,MBC/TOC, DOC/TOC,DOC,HA,FA,ROC,ROC / TOC,TOC,HA/TOC,FA/TOC,HA/FA descended from strong to weak.
     (6) Correlations among rice carbon fixation,soil carbon emissions and organic carbon components
     The process of rice carbon fixation mutually interrelated to the process of soil carbon emission and the change of organic carbon components.Accumulative amount of carbon fixation by rice plants positively correlated with soil TOC、HA、HA/TOC、FA、FA/TOC which transformed rather slowly in the soil,while had no significant correlations with the active soil organic carbon which transformed faster in the soil.Contrarily,the changing amount of carbon fixation positively correlated with soil ROC、MBC、MBC/TOC,which proved that input of fresh organic carbon into the soil could cause the change of soil active organic carbon sensitively.
     CH_4 emission flux had significant positive correlation with the changing weight of carbon fixation,but no significant relationship with the accumulative of carbon fixation. While both of the two factors positively correlated with CO_2 emission flux.
     For CK,soil TOC was significantly positively correlated with CO_2 emission flux, while DOC,DOC/TOC,MBC and MBC/TOC showed significant negative correlations with it.In terms of RD,CO_2 emission flux positively correlated with soil ROC,while negatively correlated with DOC,DOC/TOC and HA.For RW,more TOC and less HA content in the soils would promote CO_2 emission.
     Both higher active and less active soil organic carbon components had significant correlations with CH4 emission flux for the three treatments.Among the indicators of soil organic carbon,DOC,DOC / TOC,MBC and MBC / TOC showed significant positive correlations with CH4 emission flux,while HA and HA / TOC significantly negatively correlated with it.FA and FA / TOC also showed negative correlations with CH4 emission flux for RD and RW.For CK and RD,there was a significant positive correlation between soil TOC and CH4 emission flux.In a word,the rich carbon source is the prerequisite for CH4 formation,but the amount of CH4 emissions are directly related to the amount of MBC and DOC in paddy soil.
     (7) Relationship of SOC components and rice grain yield
     In the terms of absolute amount of SOC components,soil TOC,DOC,DOC/TOC, MBC had significant positive correlations with rice yield,while HA/TOC,FA/TOC, HA/FA,ROC/TOC negatively correlated with the yield.In the terms of ECRI,DOC/TOC, MBC,MBC/TO,ROC,ROC/TOC,FA/TOC had significant negative correlations with rice yield,while HA,HA/TOC,TOC positively correlated with the rice yield.The results revealed higher content of soil TOC,DOC and MBC,slower changing rate of ROC,DOC and MBC,faster accumulative rate of TOC,and faster transferring rate of HA are the important conditions to gain higher rice yield.
     The results showed RD and RW did not decrease the rice grain yield compared with CK.
引文
1.Aerts R.,Toet S.Nutritional controls on carbon dioxide and methane emission from Carex-dominated peat soils.Soil Biology and Biochemistry,1997,29:1683-1690.
    2.Aulakh M S,Bodenbender J,Wassmann R,et al.Methane transport capacity of rice plants Ⅱ.Variations among differentrice cultivars and relationship with morphological characteristics..Nutr Cycling A groecosyst,2000,58:367-376.
    3.Bachelet D,Kern J,Tolg M.Balancing the rice carbon budget in China using a spatially-distributed data.Ecological Modeling,1995,79:167-177.
    4.Baggs E M,Blum H.CH4 oxidation and emissions of CH_4 and N_2O from Lolium perenne swards under elevated atmospheric CO_2.Soil Biology&Biochemistry,2004,36(4):713-723.
    5.Banerjee B,Aggarwal P K,Pathak H et al.Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in flee-wheat systems.Environmental Monitoring and Assessment,2006,119:173-189.
    6.Beldera P,Spiertza JHJ,Boumanb BAM,et al.Nitrogen economy and water productivity of lowland rice under water-saving irrigation[J].Field Crops Research,2005,93:169-185.
    7.Benbi D.K,Milap C.Quantifying the effect of soil organic matter on indigenous soil N supply and wheat productivity in semiarid subtropical India.Nutr Cycl Agroecosyst,2007,79:103-112
    8.Bender M and Conrad R.Kinetics of methane oxidation in oxic soils.Chemosphere,1993,26:687-696.
    9.Bhatia A.,Pathak H.,Jain N.,et al.Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains.Atmospheric Environment 2005,39:6976-6984.
    10.Black T.A,Chen J.M,Lee X et al.Characteristics of shortwave and longwave irradiances under a Douglas-fir forest stand.Can.J.For.Res,1991,12:1020-1028.
    11.Blair G J,Lefroy R.D.B.& Lisle L..Soil carbon fractions based on their degree of oxidation and the development of a carbon management index.Australian Journal of Agricultural Research,1995,46:1459-1466.
    12.Bond D R,Lovley D R.Reduction of Fe(Ⅲ) oxide by methanogens in the presence and absence of extracellular quinines.Environmental Microbiology,2002,4(2):115-124.
    13.Boschker HTS,Middelburg JJ..Stable isotopes and bio-markers inmicrobial ecology.FEMS Microbiology Ecology,2002,40:85-95.
    14.Bossio DA,Horwath WR,Mutters RG.et al.Methane pool and flux dynamics in a rice field following straw incorporation.Soil Biol.Biochem.,1999,31:1313-1322.
    15.Bowden R D,Rullo G,Stevens G.R,Steudler P.A.Soil fluxes of carbon dioxide,nitrous oxide,and methane at a productive temperate deciduous forest.J.Environ.Qual,2000,29:268-276.
    16.Bradford M A,Ineson P,Wookey P A,et al.Role of CH_4 oxidation,production and transport in forest soil CH_4 flux[J].Soil Biology Biochemistry,2001,33:1625-1631.
    17.Buchmann N.Biotic and abiotic factors controlling soil respiration rates in Picea abies stands.Soil Biology&Biochemistry,2000,,32:1625-1635.
    18.Butnor J.R,Johnsen K.H,Oren R.,Katul G.G.Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched of and reference 17-year-old loblolly pine stands.Global Change Biology,2003,9:849-861.
    19.ButterbachBah K,Papen H,Rennenberg H..Impact of gas transport through ricecultivars on methane emission from rice Paddy fields.Plant Cell Environ,1997,20:1175-1183.
    20.Buyanovsky GA,Aslam M,Wagner GH..Carbon turnover in soil physical fractions.Soil Sci.Soc.Am.J.,1994,58:1167-1173.
    21.Camberdella C A,Elliotte T.Methods for physical separation and characterization of soil organic fractions.Geoderma,1993,56:449-457.
    22.Chantigny M H.Dissolved and water-extractable organic matter in soils:A review on the influence of land use and management prac-tices.Geoderma,2003,113:357- 380.
    23.Chen J,Gu B H,Royerb R A.The roles of natural organic matter in chemical and microbial reduction of ferric iron.The Science of the Total Environment,2003,307(1):167-178.
    24.Chen J,Sylvain G.L,John R.M et al.Compact Airborne Spectrongraphic imager(CAS) used for mapping biophysical paramenters of boreal forests,Journal of Geophysical Research,1999,104(22):27945-27958
    25.Chen ZL and Li DB.Features of CH_4 emission from rice fields inBeijing and Nanjing.Chemophere,1993,26:239-245.
    26.Christensen B T.Physical fraction of soil an d organic matter in primary particle size and density separates.Advances in Soil Science,1992,20:1-9.
    27.Christine K,Klaus D,Xunhua Zh,Shan L,Hongbin T,Burkhard S.Fluxes of methane and nitrous oxide in water-saving rice production in north China.Nutrient Cycling in Agroecosystems,2007,77:293-304
    28.Christine K,Klaus D,Zheng X H et al.Fluxes of methane and nitrous oxide in water-saving rice production in north China.Nutr Cycl Agroecosyst,2007,77:293-304
    29.Dalai RC,Chan KY.Soil organic matter in rainfed cropping systems of the Australian cereal belt.Australian Joural of Soil Research,2001,39(3):435-464
    30.Dannenberg S,Conrad R..Effect of rice plants on methane production and rhizospheric metabolism in paddy soil.Biogeochemistry,1999,45:53-71.
    31.Defries R.S.,Fung C.B.,Field I.,et al.Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on C emissions and primary productivity.Global Biogeochemistry Cycles,1999,13:803-815
    32.Ekurem E,Ryohei Y.Comparative studies on behavior,weeding and pest control of duck free ranged in paddy fields.Jpn.Poult.Sci.,1996,33:261-267
    33.Franchini J C,Gonzalez Vila F J,Cabrera F,et al.Rapid transformations of plant water-soluble organic compounds in relation to cation mobilization in an acid-oxisol. PlantSoi,l 2001, 231: 55-63.
    
    34. Franzluebbers AJ, Arshad MA. Soil organic matter pools during early adoption of conservation tillage in north western Canada. Soil Sci Soc Am J, 1996, 60:1422-1427
    35. Franzluebbers AJ,Haney RL,Honeycutt CW, et al. Climatic influences on active fractions of soil organic matter. Soil Biology &Biochemistry,2001,33: 1103-1111.
    36. Friedl M.A, Mclver D.K, Hodges X.Y et al. Global land cover mapping from MODIS: algorithms and early results. Remote sensing of Environment, 2002,83(1-2):287-302
    37. Gough M, Seiler JR. The influence of environmental, soil carbon, root, and stand characteristics on soil CO_2efflux in loblolly pine (Pinus taedaL.) plantations located on the South Carolina Coastal Plain Christopher. Forest Ecology and Management, 2004,191: 353-363.
    38. Graham R J, Haynes J, Meyer H. Soil organic matter content and quality: Effects of fertilizer applications, burning and trash retention on a long-term ugarcane experiment in South Africa. Soil Biology and Biochemistry, 2002, 34: 93-102.
    39. Gregory PJ, Atwell BJ.. The fate of carbon in pulse labeled crops of barley and wheat.Plant and Soil, 1991, 136:205-213.
    40. Guo L B, Gifford R M.Soil carbon stocks and land use change:A meta analysis.Global Change Biology,2002,8:345-360.
    41. Guo LP, Lin ED.Carbon sink in cropland soils and emission of greenhouse gases from paddy soils:a review of work in China. Chemosphere-Global Change Science,2001,(3):413-418
    42. Han GX, Zhou GS, Xu ZZ, et al. Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea maysL.) agricultural ecosystem. Plant and Soil, 2007,10.
    43. Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 2007,39: 418-425.
    44. Hanson PJ, EdwardsNT, Garten CT, et al...Sopa-rating root and soilmicrobial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 2000,48:115-146.
    45. Haynes RJ. Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand. Soil Biol Biochem, 2000, 32: 211-219
    46. Huang Y, Wang H, Huang H, et al.Characteristics of methane emission from wetland rice-duck complex ecosystem. Agr. Ecosyst Environ, 2005,105:181-193
    47. IPCC. Climate Change 1995: The science of climate change (Report of Working Group I). New York: Cambridge University Press, 1996,4.
    48. IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group to the Third Assessment Report of the Intergovernmental Panel on Climate Change(IPCC). UK,Cambridge University Press, 2001
    49. Jacobson, M.Z., Atmospheric Pollution: History, Science, & Regulation. Cambridge University Press,New York,2005
    50.Jeffrey M,Novak I,Paulm MB.The influence of topography on the nature of humic substances in soil organic matter at a site in the Atlantic Coastal Plain of South Carolina.Biogeochemistrv,1991,15:111-126
    51.Jin J,Wang GH,Liu XB,et al.Phosphorus regulates root traits and phosphorus uptake to improve soybean adaptability to water deficit at initial flowering and full pod stage in a pot experiment.Soil Science and Plant Nutrition,2005,51:953-960.
    52.Johnson D.,Geisinger D.,Walker R.,et al.Soil p CO_2,soil respiration,and root activity in CO_2-fumigated and nitrogen-fertilized pondersa pine.Plant soil 1994,165:129-138
    53.Jones SK,Rees R M,Skiba UM,et al.Greenhouse gas emissions from a managed grassland.Global and Planetary Change,2005,47(2-4):201-211.
    54.Kalbitz K,Schmerwitz J,Schwesig D,et al.Biodegradation of soil-derived dissolved organic matter as related to its properties.Geoderma,2003,113:273-291.
    55.Kalbitz K,Solinger S,Park JH,et al.Controls on the dynamics of dissolved organic matter in soils:A review.Soil Science,2000,165(4):277-304
    56.Kammann C,Grunhage L,Jager H J,et al.Methane fluxes from differentially managed grassland study plots:the important role of CH_4 oxidation in grassland with a high potential for CH_4production.Environmental Pollution,2001,115:261-273.
    57.Kazunori M.,Naoki S..The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan.Agriculture,Ecosystems and Environment,2006,(116):181-188
    58.Keith,H.,Oades,J.M.,Martin,J.K.,Input of carbon to soil from wheat plants.Soil Biology &Biochemistry,1986,18:445-449.
    59.Khalida M.,Solemana N,Jones DL.Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil[J].Soil Biology & Biochemistry,2007,39:378-381
    60.Kieft TL,Sorofer E,FirestoneMK.Microbial biomass response to a rapid increase in water potential when dry soil is wetted.Soil Biol.Biochem.,1987,19:119-126.
    61.Kimura M,Murase J,Lu Y.Carbon cycling in rice field ecosystems in the context of input,decomposition and translocation of organic materials and the fates of their end products(CO_2 and CH_4).Soil Biology and Biochemistry,2004,36:1399-1416.
    62.Kuzyakov,Y.,Ehrensberger,H.,Stahr,K..Carbon partitioning and below-ground translocation by Lolium perenne.Soil Biology & Biochemistry,2001,33:61-74.
    63.KuzyakovY,Domanski G..Carbon input by plants into the soil.Review.Journal of Plant Nutrition and Soil Science,2000,163:421-431.
    64.KuzyakovY,Kretzschmar A,Stahr K.Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil.Plant and Soil,1999,213:127-136
    65.Lal R..Soil carbon sequestration to mitigate climate change.Geoderma,2004,123:1-22
    66.Lauren J G,Pettygrove G S,Duxbury J M.Methane emissions associated with a green manure amendment to flooded rice in California.Biogeochemistry,1994,24:53-65.
    67.Lee KE,Pankhurst CE..Soil organisms and sustainable productivity.Australian Journal of Soil,1992,30:855-892.
    68.Leenheer J A.Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters.Environmental Sciences and Technology,1981,15(5):578-587
    69.Li C S,Mosier A,Wassmann R,et al.Modeling greenhouse gas emissions from rice-based production systems:Sensitivity and upscaling.Global Biogeochem Cycles,2004,18.
    70.Liang B.C.,Mackenize A.F.,Schnitzer M.et al.Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils.Biol.Fert.Soils,1998,26:88-94
    71.Lin XQ,Zhou WJ,Zhu DF,Zhang YB.Effect of SWD irrigation on photosynthesis and grain yield of rice(Oryza sativa L.).Field Crops Research,2005,94:67-75
    72.Liu S L,Su Y R,Huang D Y,et al.Response of Cmic-to-Corgto land use and fertilization in subtropical region of China.Scientia Agricultura Sinica,2006,39(7):1411-1418.
    73.Loginow,WW.Wisniewski,S.S.Gonet & B.Ciescinska..Fractionation of organic carbon based on susceptibility to oxidation.Polish Journal of Soil Science,1987,20:47-52.
    74.Lohila A,Aurela M,Regina K,Laurila T.Soil and total ecosystem respiration in agricultural fields:effect of soil and crop type.Plant and Soil,2003,251:303-317.
    75.Lovley DR,Fraga JL,Blunt-harris EL,et al.Humic substances as amediator formicrobially catalyzedmetal reduction.Acta Hydrochimica et Hydrobiologica,1998,26(3):152-157.
    76.Lu,Y.,Watanabe,A.,Kimura,M.,Contribution of plant photosynthates to dissolved organic carbon in a flooded rice soil.Biogeochemistry,2004,71:1-15
    77.Lu,Y.,Watanabe,A.,Kimura,M..Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm.Biology and Fertility of Soils,2002,36:136-142.
    78.Lu,Y.,Watanabe,A.,Kimura,M..Input and distribution of photosynthesized carbon in a flooded rice soil.Global Biogeochemical Cycles,2002,16:1085.
    79.Lu YH,Watanabe A,Kimura M..Input and distribution of photosynthesized carbon in a flooded rice soil.Global Biogeochemical Cycles,2002,16:321-328.
    80.Ma J,Ma ED,Xu H et al.Wheat straw management affects CH_4 and N_2O emissions from rice fields.Soil Biology & Biochemistry,2009.doi:10.1016/j.soilbio.2009.01.024
    81.Mahmood T,Azam F,Hussain F,Malik K A.Carbon availability and microbial biomass in soil under an irrigated wheat-maize cropping system receiving different fertilizer treatments.Biol.Fertil.Soil,1997,25:63-68
    82.Makoto K,Jun M,Yahai L.Carbon cycling in rice field ecosystems in the context of input,decomposition and translocation of organic materials and the fates of their end products(CO_2 and CH_4).Soil Biology & Biochemistry,2004,36:1399-1416
    83.Mandal B,Majumder B,Bandopadhyay PK,et al.The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India.Global Change Biol,2007,13:357-369
    84.Manjaiah K M,Voroney R P,Utpal S.Soil organic carbon stocks,storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem.Biol.Fertil.Soils,2000,31:273-278.
    85.Marschner B.,Kalbitz K.Controls of bioavailability and biodegradability of dissolved organic matter in soils.Geoderma,2003,113:211-235
    86.Masahara M.."Aigamo"(Crossbred Duck) rice farming in Asia.Farming Japan,1996,30:1-4.
    87.McDowell WH,Kalbitz K,Kaiser K.Dissolved organic matter in soils - future directions and unanswered questions.Geodemra,2003,113:179-186.
    88.Meharg AA,Killham K..Carbon distribution within the plant and rhizosphere in laboratory and field-grown Lolium perenne at different stages of development.Soil Biology and Biochemistry,1990,22:471-477
    89.Metzger R.B,Benford G.Sequestration of atmospheric carbon through permanent disposal of crop residue.Climate Change,2001,49:11-19
    90.Milkha S A,Reiner W,Bueno 1 C.et al.Impact of root exudates of different cultivars and plant development stages of rice(Oryza sativa L.) on methane production in a paddy soil.Plant and Soil,2001,230:77-86
    91.Minamikawa K,Sakai N,Hayashi H.The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in Japan.Agriculture,Ecosystems and Environment,2005,107:371-379
    92.Minamikawa K,Sakai N,Hayashi H.The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in Japan.Agriculture,Ecosystems and Environment,2005,107:371-379
    93.Minoda,T.,Kimura,M..Contribution of photosynthesized carbon to the methane emitted from paddy fields.Geophysical Research Letters,1994,21:2007-2010.
    94.Mitra A P,Prabhat K.Gupta & C.Sharma.Refinement in methodologies for methane budget estimation from rice paddies.Nutrient Cycling in Agroecosystems 2002,64:147-155.
    95.Mitra S,Jain M C,Kumar S,Bandyopadhya S K et al.Effect of rice cultivars on methane emission.Agri.Ecosyst.Environ.1999,73,177-183.
    96.Miyata A,Leuning R,Denmead O T,et al.Carbon dioxide and methane fluxes from an intermittently flooded paddy field.Agric For Meteorol,2000,102:287-303
    97.Murty D,Kirschbaum M U F,Mcmurtrie R E et al.Does conversion of forest to agricultural land change soil carbon and nitrogen:a review of the literature.Global Change Biology,2002,8:105-123.
    98.Omonode RA,Vyn TJ,Smith DR et al.Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations.SOIL & TILLAGE RESEARCH,2007,95(1-2):182-195
    99.Palta JA,Gregory PJ.Drought affects the fluxes of carbon to roots and soil in C pulse-labeled plants of wheat.Soil Biology andBiochemistry,1997,29:1395-1403.
    100.Pan G X,Li L Q,Wu L S,Zhang X H.Storage and sequestration potential of topsoil organic carbon in China's paddy soils.Global Change Biology,2003,10:79-92
    101.Pangle RE,Seiler JR.Influence of seedling roots,environmental factors and soil characteristics on soil CO_2efflux rates in a2-year-old loblolly pine(Pinus taedaL.) plantation on the Virginia Piedmont.Environment Pollution,2002,116:B85-B96.
    102.Patrick H M,Ronald D D and William H P.Methane and nitrous oxide emission from laboratory measurements of rice soil suspension:effect of soil oxidation-reduction status.Chemosphere,1993,26:251-260.
    103.Paustian K,Six J,Elliott E T,Hunt H W.Management options for reducing CO_2emissions from agricultural soils.Biogeochemistry,2000,48:147-163
    104.Peng SZ,Hao SR,Liu Q.Study on the mechanics of yield-raising and quality-improving for paddy rice under water-saving irrigation.Irrigation and Drainage,2000,19(3):3-7.
    105.Piao H.C.,Hong Y.T.,Yuan Z.Y.Seasonal changes of microbial biomass carbon related to climatic factors in soils from Karst areas of southwest China.Biol.Fertil.Soils,2000,30:294-297
    106.Powlson D S,Brookes P C,Christensen B T.Measurement of soil microbial biomass provides an early indication ofchanges in total soil organic matter due to straw incorporation.Soil Biol.Biochem.,1987,19(2):159-164.
    107.Qian JH,Doran JW,WaltersDT.Maize plant contributions to rootzone available carbon and microbial transformation of nitrogen.Soil Biology and Biochemistry,1997,29:1451-1462.
    108.Qualls RG.Biodegradability of humus substances and other fractions of decomposing leaf litter.Soil Science Society of America Journal,2004,68:1705-1712
    109.Quiroga A,Funaro D,Noellemeyer E et al.Barley yield response to soil organic matter and texture in the Pampas of Argentina.Soil & Tillage Research,2006,90:63-68
    110.Raich JW,Poter CS.Global patterns of carbon dioxide emissions from soils.Global Biogeochemical Cycles,1995,9:23-36.
    111.Rattray,E.A.,Paterson,E.,Killham,K..Characterisation of the dynamics of C-partitioning within Lolium perenne and to the rhizosphere microbial biomass using 14C pulse chase.Biology and Fertility of Soils,1995,19:280-286.
    112.Richard D.Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest Bowden.Forest Ecology and Management,2004,196:43-56.
    113.Rochette P,Flanagan LB.Quantifying rhizosphere respiration in a corn crop under field conditions.Soil Science Society of America Journal,199 7,61:466-474.
    114.Rochette P,van Bochove E,Prevost D,et al..Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year.Ⅱ.Nitrous oxide fluxes and mineral nitrogen.Soil Sci Soc Am J,2000,64:1396-1403
    115.Rudrappa L,Purakayestha TJ,Singh D,Bhadraray S.Long-term manuring and fertilization effects on soil organic carbon pools in a typic haplustept of semi-arid sub tropical India.Soil Till Res,2005,88:180-192
    116.Towprayoon S.,Smakgahn K.,Poonkaew S..Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields.Chemosphere,2005,59 1547-1556
    117.Sakai H M,Yagi K Y,kubayashi K H,Shigeto K.Rice carbon balance under elevated CO_2.New Phytologist,2001,150:241-249.
    118.Sanchez JE,Paul EA,W illson TC,et al.Corn root effects on the nitrogen-supplying capacity of a conditioned soil.Agronomy Journal,2002,94:391-396.
    119.Sanchez ML,Ozores MI,Lopez MJ,et al.Soil CO_2fluxes beneath barley on the central Spanish plateau.Agricultural and Forest Meteorology,2003,118:85-95.
    120.Sarah E.Johnson B,Olivyn R.A,Maria C.R.A,Roland J.B.Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants.Geoderma,2009,149:45-53
    121.Sass R L,Fisher F M and Tumer F T et al.Methane Emission from rice fields as influenced by solar radiation,temperture,and straw incorporation.Global Biogeochem.Cycle,1991,5(4):335-350.
    122.Sass R L,Fisher FM,Lewis S T,Jund M F,Turner F T.Methane emission from rice fields:effect of soil properties.Global Biogeochemical Cycles,1994,8:135-140
    123.Sato A.,Seto M.Relationship between rate of carbon dioxide evolution,microbial biomass carbon,and amount of dissolved organic carbon as affected by temperature and water content of a forest and an arable soil.Commun.Soil Sci.Plant Anal.1999,30:2593-2605
    124.Schlesinger WH,Andrews JA.Soil respiration and the global carbon cycle.Biogeochemistry,2000,48:7-20.
    125.Schutx H,Holzapfel P..A three-year continuous record on the influence of daytime,season,and fertilizer treatment on methane emission rates from an Italian ice paddy.Geophy Res.,1989,94:405-416.
    126.Sch(u|¨)tz H,Holzapfel-Pschorn A and Conrad R,et al.A 3-yearcontinuous record on the influence of daytime,season and fertilizertreatment on methane emission rate from an Italian rice paddy.J.Geophys Res.,1989,94:16406-16416.
    127.Shalini S,Kumar S and Jain M C.Methane emission from two Indian soils planted with different rice cultivars.Biol.Fertil.Soils,1997,25,285-289.
    128.Sheppard S K,Lloyd D.Diurnal oscillations in gas production(O-2,CO_2,CH_4,and N-2) in soil monoliths.Biological Rhythm Research,2002,33(5):577-591.
    129.Sherrod LA,Peterson GA,Westfall DG,Ahuja LR.Soil organic carbon pools after 12 years in no-till dryland agroecosystems.Soil Sci Soc Am J,2005,67:1533-1543
    130.Sigren L K,Byrd G T,Fisher F M and Sass R L.Comparison of soil acetate concentrations and methane production,transport and emission in two rice cultivars.Global Biochem.Cycles,1997,11,1-14.
    131.Singh S,Kashyap,Singh JS..Methane flux in relation to growth and phenology of a high yielding rice variety as affected by fertilization.Plant Soil,1998,201:157-161.
    132.Sitaula B.K,Bakken L.R,Abrahamsen G.Nitrgen fertilization and soil acidification effects on nitrous oxide and carbon dioxide emission from temperate pine fores soil.Soil Biology and Biochemistry,1995,27:1401-1408
    133.Six J,Elliot E T,Paustian K,et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soils.Soil Sci.Soc.Am.J.,1998,62:1 367-1 377
    134.Sparling G P.Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of change in soil organicmatter.Australia Journal of Soil Research,1992,30:195-207.
    135.Stewart PDC,MetherellAK.Carbon(13C) uptake and allocation in pasture plants following field pulse-labelling.Plant and Soil,1999,210:61-63.
    136.StewartPDC,MetherellAK.Carbon(13C) uptake and allocation in pasture plants following field pulse-labelling.Plant and Soil,1999,210:61-63.
    137.Svensson B H.Different temperature optima in methane formation when enrichments from acid peat are supplemented with acetate or hydrogen.Appl.Envron.Microbiol.,1984,48:394-398.
    138.Swinnen,J.,van Veen,J.A.,Merckx,R..14C pulse-labeling of field growth spring wheat:an evaluation of its use in rhizosphere carbon budget estimations.Soil Biology & Biochemistry,1994,26:161-170.
    139.Swinnen,J.,van Veen,J.A.,Merckx,R..Rhizosphere carbon fluxes in field-growth spring wheat:model calculations based on 14C portioning after pulse-labeling.Soil Biology & Biochemistry,1994b,26:161-170.
    140.Thurman EM.Organic geochemistry of natural water.Soil Biol Biochem,1985,7:389-394
    141.Tilman D,Cassman KG;Matson P A,et al.Agricultural sustainability and intensive production practices.Nature,2000,418:671-677.
    142.Towprayoon S,Smakgahn K,Poonkaew S.Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields.Chemosphere,2005,59:1547-1556.
    143.Trumbore S.E.Potential responses of soil organic carbon to global environmental change.Proceedings of the National Academy of Sciences of the United States of America,1997,94:8284-8291.
    144.Valentini R.,Mattenucci G.,Dolman A.J.,et al.Respiration as the main determinant of carbon balance in European forest.Nature,2000,404:862-864
    145.van Veen JA,Liljemth E,Lekkerkerk LJA,et al.Carbon fluxes in plant-soil systems:At elevated atmospheric CO_2 levels.Ecological Applications,1991,1:175-181.
    146.Wang FL,Bettany J R.Influence of Freeze-thawand floodingon the loss of soluble organic carbon and carbon dioxide from soil.J.Environ.Qual.,1993,22:709-714
    147.Wang M X,Shangguan X,J and ShenR X,et al.Methane production,emission and possible control measures in the rice agriculture.Advances in Atmospheric Sciences,1993,10(30):307-314.
    148.Wang Z P,Delaune R D,Masscheleyn P H,et al.Soil redox and pH effects on methane reduction in a flooded rice soil.SoilSci.Soc.Am.J.,1993,57:382-385.
    149.Wang Z,Kludze C R and Patrick W H et al.Soil characteristics affecting methane production and emission in flooded rice.In:Peng S et al(ed.),Climate Change and Rice.Springer-VerlagBerlin Heidelberg,1995.81-90.
    150.Wang Z P,Delaue RD.Methane production from an aerobic soil amended with rice straw and nitrogen fertilizer.Fertil Res.,1992,33:115-121.
    151.Wassmann R and Aulakh M S.The role of rice plants in regulating mechanisms of methane emission.Biol.Fertil.Soils,2000,31,
    152.Watanabe A,Kajiwara M,Tashiro T and Kimura M.Influence of rice cultivar on methane emission from paddy fields.Plant Soil,1995,17,51-56.
    153.Watanabe,A.,Machida,M.,Takahashi,K.,Kitamura,S.,Kimura,M..Flow of photosynthesized carbon of rice plants to the paddy soil ecosystem at different stages of rice growth.Plant and Soil,2004,258(1):151-160
    154.Whipps,J.M.Carbon economy.In:J.M.Lynch,Editor,The Rhizosphere,John Wiley,New York,1990,pp.59-97.
    155.Wood S,Sebastian K,Scherr S.Pilot analysis of global ecosystems:agroecosystems technical report.Washington,D.C.World Resources Institute and International Food Policy Research Institute,2000,20-29.
    156.Wu H.B.,Guo Z.T.,Peng C.H.Distribution and storage of soil organic carbon in China.Global Biochemical Cycles,2003,17:1048-1058.
    157.Wu J,Brookes P C.The proportional mineralisztion of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil.Soil Biol.Biochem.,2005,37:507-515.
    158.Wu T,Schoenau JJ,Li F,Qian P,Malhi SS,Shi Y.Effect of tillage and rotation on organic carbon forms of chernozemic soils in Saskatchewan.J Plant Nutri Soil Sci,2003,166:328-335.
    159.Xu H,Cai Z U,Li X P,et al.Effect of antecendent soil water regime and rice straw application time on CH_4 emission from rice cultivation.Aust.J.Soil.Res.,2000,38:1-12.
    160.Yagi K,Tsuruta H,Kanda K,et al.Effect of water management on methane emission from a Japanese rice paddy field:Automated methane monitoring.Global Biogeochem Cycle,1996,10,255-267.
    161.Yahi K,Minami K.Effects of organic matter application on methane emission from some Japanese paddy fields.Soil Sci.Plant Nutr.,1990,36:559-610.
    162.Yang J C,Zhang J H,Wang Z Q,Zhu Q S,Wang W.Remobilization of carbon reserves in response to water deficit during grain filling of rice.Field Crops Research,2001,71(1):47-55.
    163.Yao H,Conrad R.Thermodynamics of methane production in different rice paddy soils from China,the Philippines and Italy.Soil Biology and Biochemistry,1999,31:463-473.
    164.Huang Y,Jiao Y,Zong L G et al.Quantitative dependence of methane emission on soil properties.Nutrient Cycling in Agroecosystems,2002,64:157-167.
    165.Yu K W,Chen G X,Xu H et al.Rice yield reduction by chamber enclosure:a possible effect on enhancing methane production.Biology and Fertility of Soils,2006,43(2):257-261.
    166.Zhang W J,Xu MG,Wang BR.Soil organic carbon,total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China.Nutr Cycl Agroecosyst,2009,84:59-69.
    167.Zhang X H,Li L Q,Pan G X.Topsoil organic carbon mineralization and CO_2 evolution of three paddy soils from South China and the temperature dependence.Journal of Environmental Sciences,2007,19:319-326.
    168.Zhou Cunyu.Diurnal variations of greenhouse gas fluxes from mixed broad-leaved and coniferous forest soil in Dinghushan.China Forestry Science and Technology,2005,4(2):1-7.
    169.蔡晓红,杨京平,马维娜等.稻田根际微生物生物量碳与水分、氮素影响效应分析.浙江大学学报(农业与生命科学版),2008,34(6):662-668.
    170.蔡祖聪,Mosier Arivn R.土壤水分状况对CH_4氧化,N2O和CO_2排放的影响.土壤,1999,31(6):289-294,298.
    171.蔡祖聪,沈光裕,颜晓元.土壤质地、温度和Eh对稻田甲烷排放的影响.土壤学报.1998,35(2):145-154.
    172.蔡祖聪.中国稻田甲烷排放研究进展.土壤,1999,(5):266-269.
    173.曹云英,朱庆森,郎有忠等.水稻品种及栽培措施对稻田甲烷排放的影响.江苏农业研究,2000,21(3):22-27.
    174.陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响.农业环境科学学报,2005,24(6):1094-1099
    175.陈华癸,樊庆笙.微生物学.北京:农业出版社,1980.
    176.陈全胜,李凌浩,韩兴国,等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系.生态学报,2004,24(4):831-836.
    177.陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用.植物生态学报,2002,26(5):549-560.
    178.陈述悦,李俊,陆佩玲等.华北平原麦田土壤呼吸特征.应用生态学报,2004,15(9):1552-1560.
    179.陈涛,郝晓晖,杜丽君等.长期施肥对水稻土土壤有机碳矿化的影响.应用生态学报,2008,19(7):1494-1500
    180.陈苇,卢婉芳.稻草还田对晚稻稻田甲烷排放的影响.土壤学报,2002,39(2):170-176。
    181.陈宗良,邵可声,李德波等.控制稻田甲烷排放的农业管理措施研究.环境科学研究,1994,7(1):1-10.
    182.程建平,曹凑贵,蔡明历,汪金平,原保忠,王建漳,郑传举.不同灌溉方式对水稻生物学特性与水分利用效率的影响.应用生态学报,2006,17(10):1859-1865
    183.程励励,文启孝,吴顺令,徐宁.植物物料的化学组成和腐解条件对新形成腐殖质的影响.土壤学报,1981,18(4):360-367.
    184.程兆伟,邹应斌,刘武.水稻根系研究进展.作物研究,2006,(5):504-508.
    185.褚金翔,张小全.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分.生态学报,2006,26:1963-1700.
    186.崔玉亭,韩纯儒,卢进登.集约高产农业生态系统有机物分解及土壤呼吸动态研究.应用生态学报,1997,8:59-60.
    187.代静玉,秦淑平,周江敏.土壤中溶解性有机质分组组分的结构特征研究.土壤学报,2004,41(5):721-727.
    188.戴万宏,王益权,黄耀等.农田生态系统土壤CO_2释放研究.西北农林科技大学学报(自然科学版),2004,32(12):1-7.
    189.单正军,蔡道基,任阵海.土壤有机碳矿化与温室气体释放初探.环境科学学报,1996,16(2):150-154.
    190.邓晓,廖晓兰,黄璜.稻-鸭复合生态系统产甲烷细菌数量.生态学报,2004,24(8):1696-1700.
    191.丁维新,蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响.生态学报,2002,22(10):1672-1679
    192.丁维新,蔡祖聪.土壤甲烷氧化菌及水分状况对其活性的影响.中国生态农业学报,2003,11(1):94-97.
    193.杜丽君,金涛,阮雷雷等.鄂南4种典型土地利用方式红壤CO_2排放及其影响因素.环境科学,2007,28(7):1607-1613.
    194.段彬伍,卢婉芳,陈苇等.种植杂交稻对甲烷排放的影响及评价.中国环境科学,1999,19(5):397-401.
    195.段学军,闵航.胁迫下稻田土壤生物活性与酶活性综合研究.农业环境科学学报,2004,23(3):422-427.
    196.方华军,杨学明,张晓平.农田土壤有机碳动态研究进展.土壤通报,2003,34(6):562-567.
    197.冯虎元,程国栋,安黎哲.微生物介导的土壤甲烷循环及全球变化研究.冰川冻土,2004,26(4):411-419.
    198.冯险峰,刘高焕,陈述彭等.陆地生态系统净第一性生产力过程模型研究综述.自然资源学报,2004,19(3):369-378.
    199.傅声雷,FerrisH.植物种类、大气二氧化碳和土壤氮素的交互作用或累加效应控制“植物-土壤”系统的碳分配.中国科学(C),2006,36:273-282.
    200.甘德欣,黄璜,蒋廷杰.免耕稻.鸭复合系统减少甲烷排放及其机理研究.农村生态环境2005,21(2):1-6.
    201.甘德欣,黄璜,黄梅.稻鸭共栖高产高效的原因与配套技术.湖南农业科学,2003,(5):31-32,36.
    202.甘德欣,黄璜,蒋廷杰.免耕稻鸭复合系统生态学特性研究Ⅱ.土壤生物学特性.湖南农业大学 学报(自然科学版),2005,31(1):35-38.
    203.甘德欣,黄璜,蒋廷杰等.免耕稻-鸭复合系统减少甲烷排放及其机理研究.农村生态环境2005,21(2):1-6.
    204.耿远波,章申,董云社等.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,2001,56(1):44-53.
    205.龚伟,胡庭兴,王景燕等.川南天然常绿阔叶林人工更新后枯落物对土壤的影响.林业科学,2007,43(4):112-119.
    206.龚子同,张甘霖,骆国保等.规范我国土壤分类.土壤通报,1999,30:1-9.
    207.关松萌编著.土壤酶及其研究法.北京:农业出版社,1986.7
    208.郭景恒;朴河春;刘启明.碳水化合物在土壤中的分布特征及其环境意义.地质地球化学,2000,28(2):59-64
    209.韩成卫,李忠佩,刘丽等.溶解性有机质在红壤水稻土碳氮转化中的作用.生态环境2006,15(6):1300-1304.
    210.韩广轩,朱波,江长胜.川中丘陵区水稻田土壤呼吸及其影响因素.植物生态学报,2006,30:450-456.
    211.韩广轩,朱波,张中杰等.水旱轮作土壤-小麦系统CO_2排放及其影响因素.生态环境,2004,13(2):182-185.
    212.侯爱新,陈冠雄,吴杰,王正平.稻田CH_4和N_2O排放关系及其微生物学机理和一些影响因子.应用生态学报,1997,8(3):270-274.
    213.胡诚,曹志平,叶钟年等.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响.生态学报,2006,26(3):808-814.
    214.胡立峰,李琳,陈阜等.不同耕作制度对南方稻田甲烷排放的影响.生态环境2006,15(6):1216-1219.
    215.胡荣桂.氮肥对旱地土壤甲烷氧化能力的影响.生态环境,2004,13(1):74-77.
    216.黄斌,王敬国,龚元石等.冬小麦夏玉米农田土壤呼吸与碳平衡的研究.农业环境科学学报2006,25(1):156-160.
    217.黄国宏,肖笃宁,李玉祥等.芦苇湿地温室气体甲烷(CH_4)排放研究.生态学报,2001,21(9):1494-1497.
    218.黄璜,杨志辉,王华等.湿地稻-鸭复合系统的CH_4排放规律.生态学报,2003,23(5):929-934.
    219.黄靖宇,长春,金波等.凋落物输入对三江平原弃耕农田土壤基础呼吸和活性碳组分的影响.生态学报,2008,28(7):3417-3424.
    220.黄伟生,佩钦,苏以荣等.洞庭湖区耕地利用方式对土壤活性有机碳的影响.农业环境科学学报,2006,25(3):756-760.
    221.黄耀,孙文娟.近20年来中国农田表土有机碳含量的变化趋势.科学通报,2006,51(7):750-763.
    222.黄耀,张稳,郑循华等.基于模型和GIS技术的中国稻田甲烷排放估计.生态学报,2006,26(4):980-988.
    223.黄耀.地气系统碳氮交换-从实验到模型.北京:气象出版社,2003.
    224.江长胜,王跃思,郑循华等.稻田甲烷排放影响因素及其研究进展.土壤通报,2004,35(5):663-669.
    225.焦坤,李忠佩.红壤稻田土壤溶解有机碳含量动态及其生物降解特征.土壤,2005,37(3):272-276.
    226.焦燕,黄耀,宗良纲等.土壤理化特性对稻田CH_4排放的影响.环境科学,2002,23(5):1-7.
    227.金剑,王光华,刘晓冰等.作物生育期内光合碳在地下部的分配及转化.生态学杂志,2008,27(8):1393-1399.
    228.金千瑜,禹盛苗,欧阳由男等.中国稻-鸭农作系统发展概况与稻鸭共育技术研究.赵振祥主编.第四届亚洲稻鸭共作研讨会论文集.镇江:镇江市科技局,2004,1-6.
    229.李长生,向明,Frolking等.中国农田的温室气体排放.第四纪研究,2003,23:493-503.
    230.李海防,夏汉平,熊燕梅等.土壤温室气体产生与排放影响因素研究进展.生态环境2007,16(6):1781-1788
    231.李江涛,张斌,彭新华等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响.土壤学报,41(6):912-917
    232.李娟,赵秉强,李秀英等.长期有机无机肥料配施对土壤微生物学特性.中国农业科学2008,41(1):144-152.
    233.李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社,2002。4
    234.李琳,李素娟,张海林等.保护性耕作下土壤碳库管理指数的研究.水土保持学报,2006,20(3):106-109.
    235.李琳,张海林,陈阜等.不同耕作措施下冬小麦生长季农四二氧化碳排放通量及其与土壤温度的关系.应用生态学报,2007,18(12):2765-2770.
    236.李明峰,董云社,耿元波等.草原土壤的碳氮分布与CO_2排放通量的相关性分析.环境科学,2004,25(2):7-11.
    237.李淑芬,俞无春,何晟.土壤溶解有机碳的研究进展.土壤与环境,2002,11(4):422-429.
    238.李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系.浙江林学院学报,2003,20(2):119-123.
    239.李伟群,王爽,王英等.不同施肥处理对大豆生育期内土壤微生物的影响.大豆科学,2007,26(6):922-925.
    240.李香兰,徐华,曹金柳,等.水分管理对水稻生长期CH_4排放的影响.土壤,2007,39(2):238-242.
    241.李学垣.土坡化学及实验指导.北京:中国农业出版社,1997.
    242.李杨,黄国宏,史奕.大气CO_2浓度升高对农田土壤微生物及其相关因素的影响.应用生态学报,2003,14(12):2321-2325.
    243.李忠佩,程励励,林心雄.红壤腐殖质组成变化特点及其与肥力演变的关系.土壤,2002,(1):9-15.
    244.李忠佩,吴大付.红壤性水稻土有机碳库的平衡值确定及固碳潜力分析.土壤学报,2006,43(1):46-51.
    245.李忠佩,吴晓晨,陈碧云.不同利用方式下土壤有机碳转化及微生物群落功能多样性变化.中国农业科学,2007,40(8):1712-1721.
    246.李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,2004,41(4):544-552.
    247.梁巍,岳进,史奕等.微生物生物量C、土壤呼吸的季节性变化与黑土稻田甲烷排放.应用生态学报,2003,14:2278-2280.
    248.梁巍,岳进,吴吉力等.微生物生物量C、土壤呼吸的季节性变化与黑土稻田甲烷排放.应用生态学报,2003,14(12):2278-2280.
    249.林大仪主编.土壤学.北京:中国林业出版社,2002.10.
    250.林而达.气候变化与农业可持续发展.北京:北京出版社,2001:1-32.
    251.林匡飞,项雅玲,姜达炳等.湖北地区稻田甲烷排放量及控制措施的研究.农业环境保护,2000,19(5):267-270.
    252.林敏,尤崇杓.水稻根分泌物及其与类产碱菌的相互作用.中国农业科学,1989,22(5):6-12.
    253.林瑞余,蔡碧琼,柯庆明等.不同水稻品种产量形成过程的固碳特性研究.中国农业科学2006,39(12):2441-2448
    254.刘德燕,宋长春,王丽等.外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响.环境科学,2008,29(12):3525-3530.
    255.刘巧辉,黄耀,郑循华.基于BaPS系统的旱地土壤呼吸作用及其分量确定探讨.环境科学学报,2005,25:1105-1111.
    256.刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸.植物生态学报,1998,22(2):119-126.
    257.刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17:469-476.
    258.刘小燕,杨治平,黄璜等.湿地稻-鸭复合系统中田间杂草的变化规律.湖南农业大学学报,2004,30(3):292-294.
    259.刘允芬.西藏高原农田土壤CO_2排放研究初报.自然资源学报,1998,13:181-186.
    260.刘允芬.农业生态系统碳循环研究.自然资源学报,1995,10(1):1-8.
    261.柳敏,宇万太,姜子绍等.土壤活性有机碳.生态学杂志,2006,25(11):1412-1417.
    262.卢维盛,廖宗文,张建国等.不同水旱轮作方式对稻田甲烷排放影响的研究.农业环境保护,1999,18(5):200-202.
    263.罗金耀.节水灌溉理论与技术.武汉:武汉大学出版社,2003.16-19,30-31.
    264.马国强,庄雅津,周铭成.稻鸭共作无公害水稻生产技术初探.农业装备技术,2002,(2):20-21.
    265.马力,杨林章,慈恩等.长期施肥条件下水稻土腐殖质组成及稳定性碳同位素特性.应用生态学报,2008,19(9):1951-1958.
    266.孟凡乔,关桂红,张庆忠等.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报,2006,26:992-999.
    267.孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响.土壤学报,2005,42(5):769-776.
    268.孟磊,丁维新,蔡祖聪等.长期定量施肥对土壤有机碳储量和土壤呼吸影响.地球科学进 展,2005,20:687-692.
    269.莫彬,曹建华,徐祥明等.岩溶山区不同土地利用方式对土壤活性有机碳动态的影响.生态环境2006,15(6):1224-1230
    270.倪进治,徐建民,谢正苗.土壤轻组有机质.环境污染治理技术与设备,2000,1(2):58-64.
    271.欧阳学军,周国逸,黄忠良等.土壤酸化对温室气体排放影响的培育实验研究.中国环境科学,2005,25(4):465-470.
    272.潘根兴,李恋卿,张旭辉等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.
    273.潘根兴,李恋卿,郑聚锋等.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题。土壤学报,2008,45(5):901-911.
    274.潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全.地球科学进展,2005,20(4):384-393.
    275.潘根兴,周萍,李恋卿等.固碳土壤学的核心科学问题与研究进展.土壤学报,2007,44(2):327-336.
    276.潘根兴,周萍,张旭辉等.不同施肥对水稻土作物碳同化与土壤碳固定的影响--以太湖地区黄泥土肥料长期试验为例.生态学报,2006(1):3704-3710.
    277.潘根兴.地球表层系统土壤学[M].北京:地质出版社,2000.
    278.彭凤梅,戴志明,万田正治.云南稻鸭共生模式效益的研究及综合评价(1).中国农学通报,2002,18(3):34-36.
    279.彭世彰,李道西,徐俊增等.节水灌溉模式对稻田CH_4排放规律的影响.环境科学,2007,28(1):9-13.
    280.彭世彰,俞双恩,张汉松等.水稻节水灌溉技术.北京:中国水利水电出版社,1998.
    281.齐玉春,董云社,章申.华北平原典型农业区土壤甲烷通量研究[J].农村生态环境,2002,18(3):56-58.
    282.钱晓晴,沈其荣,柏彦超,王娟娟,杨建昌,周明耀.旱作条件下不同水稻品种的响应特征.作物学报,2004,30(6):555-562.
    283.强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO_2释放和土壤微生物量的影响.应用生态学报,2004,15:469-472.
    284.秦晓波,李玉娥,刘克樱等.Methane and nitrous oxide emission from paddy field under different fertilization treatments.Transactions of the CSAE,2006,22(7):143-148(in Chinese).
    285.邱建军,王立刚,李虎.农田土壤有机碳含量对作物产量影响的模拟研究.中国农业科学2009,42(1):154-161.
    286.全国明,章家恩,滕丽丽等.稻鸭共作对水稻根系生长的影响.华南农业大学学报,2008,29(3):1-4.
    287.任丽新;王庚辰;张仁健等.成都平原稻田甲烷排放的实验研究.大气科学,2002,26(6):731-743
    288.上官行建,王明星.稻田土壤中甲烷的产生.地球科学进展,1993,8(5):1-12.
    289.邵月红,潘剑君,孙波.长期施肥对红壤不同形态碳的影响.中国生态农业学报,2006,14(1):125-127.
    290.邵月红,潘剑君,孙波等.农田土壤有机碳库大小及周转.生态学杂志,2006,25(1):19-23.
    291.申建波,张福锁,毛达如.根际微生态系统中的碳循环.植物营养与肥料学报,2001,7(2):232-240.
    292.沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报,2000,37(2):166-173.
    293.沈宏;曹志洪;胡正义.土壤活性有机碳的表征及其生态效应。生态学杂志,1999,18(3):32-38
    294.沈润平,王海辉,连楚楚等.稻田土壤有机质氧化稳定性与土壤肥力关系的研究.江西农业大学学报,1997,19(1):1-4
    295.衰可能,张友全.土壤腐殖质氧化稳定性的研究.浙江农业科学,1964,7:345-349
    296.宋长春,王毅勇,王跃思等.季节性冻融期沼泽湿地CO_2、CH_4和N_2O排放动态.环境科学,2005,26(4):7-12.
    297.隋跃宇,张兴义,焦晓光.不同施肥制度对玉米生育期土壤微生物量的影响.中国生态农业学报,2007,15(3):52-54.
    298.孙文娟,黄耀,张稳等.农田土壤固碳潜力研究的关键科学问题.地球科学进展,2008,23(9):996-1003.
    299.孙彦坤,曹印龙,付强,顾春梅.寒地井灌稻区节水灌溉条件下土壤温度变化及水稻产量效应.灌溉排水学报,2008,(6):67-74.
    300.唐国勇,黄道友,童成立等.红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征.应用生态学报,2006,17(3):429-433.
    301.唐国勇,彭佩钦,苏以荣等.洞庭湖区不同利用方式下农田土壤有机碳含量特征.长江流域资源与环境,2006,15(2):219-222.
    302.陶波,葛全胜,李克让等.陆地生态系统碳循环研究进展.地理研究,2001,20(5):564-575.
    303.童泽霞.稻田养鸭与稻田生物种群的关系初探.中国稻米,2002,(1):33-34.
    304.万忠梅,宋长春,郭跃东等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应.生态学报.2008,28(12):5980-5986.
    305.万忠梅,宋长春,杨桂生等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系.环境科学学报,2009,29(2):406-412.
    306.汪金平,曹凑贵,金晖等.稻鸭共育对稻田水生生物群体的影响.中国农业科学,2006,39(10):2001-2008.
    307.王步军,过益先.稻田甲烷排放研究进展与成果.作物杂志,1996,(6):3-6.
    308.王冬梅,王春枝,韩晓日,张旭东,邹德乙,刘小虎.长期施肥对棕壤主要酶活性的影响.土壤通报,2006,37(2):263-267.
    309.王华,黄璜,杨志辉,等.湿地稻-鸭复合生态系统综合效益研究.农村生态环境,2003,3:23-26,44.
    310.王继红,刘景双,于君宝等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳氮的影响.水土保持学报,2004,18(1):35-38.
    311.王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995:39-60.
    312.王俊华,尹睿,张华勇等.长期定位施肥对农田土壤酶活性及其相关因素的影响.生态环境,2007,16(1):191-196.
    313.王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究.土壤肥料,2002,(6):13-17.
    314.王玲莉,娄翼来,石元亮等.长期施肥对土壤活性有机碳指标的影响.土壤通报,2008,39(4):752-755.
    315.王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理.大气科学,1998,22(4):600-612.
    316.王明星著.中国稻田甲烷排放.北京:科学出版社,2001:83-172.
    317.王强盛,黄丕生,甄若宏等.稻鸭共作对稻田营养生态及稻米品质的影响.应用生态学报,2004,15(4):639-645.
    318.王清奎,汪思龙,高洪等.杉木人工林土壤活性有机质变化特征.应用生态学报,2005,16(7):1270-1274.
    319.王树涛,门明新,刘微等.农田土壤固碳作用对温室气体减排的影响.生态环境2007,16(6):1775-1780.
    320.王卫东,谢小立,上官行健等.我国南方红壤丘岗区稻田CH_4产生规率.农村生态环境,1995,11(3):11-14.
    321.王熹,陶龙兴,谈惠娟,程式华.革新稻作技术维护粮食安全与生态安全.中国农业科学2006,39(10):1984-1991.
    322.王小利,苏以荣,黄道友等.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响.中国农业科学,2006,39(4):750-757.
    323.王效科,李长生,欧阳志云.温室气体排放与中国粮食生产.生态环境,2003,12(4):379-383.
    324.王修兰.全球农作物对大气CO_2及其倍增的吸收量估算.气象学报,1996,54:466-426.
    325.王旭,周广胜,蒋延玲等.长白山红松针阔混交林与开垦农田土壤呼吸作用比较.植物生态学报,2006,30:887-893.
    326.王延军,宗良纲,李锐.有机栽培和常规栽培水稻体系土壤酶及微生物量的比较研究.中国生态农业学报,2008,16(1):47-51.
    327.王燕,王小彬,刘爽等.保护性耕作及其对土壤有机碳的影响.中国生态农业学报,2008,16(3):766-771
    328.王有芬,闵忠鹏,侯守贵,于广星,代贵金,王一凡,薛德志.水稻高产节水栽培技术研究与展望.作物杂志,2005,5:58-59.
    329.王彧,黄耀,张稳等.中国农业植被净初级生产力模拟-模型的验证与净初级生产力估算.自然资源学报,2006,21(6):916-925.
    330.王芸,李增嘉,韩宾等.保护性耕作对土壤微生物量及活性的影响.生态学报,2007.27(8):3384-3390.
    331.王增远,徐雨昌,李震,等.稻田甲烷排放及其控制.作物杂志,1998,(3):10-11.
    332.王智平,陈全胜.植物近期光合碳分配及转化.植物生态学报,2005,29(5):845-850.
    333.王子芳,高明,秦建成.稻田长期水旱轮作对土壤肥力的影响研究.西南农业大学学(自然科学版),2003,25,514-521
    334.魏朝富,高明,黄勤等.耕种制度对西南地区甲烷排放规律的研究.土壤学报,2000,37(2):157-165.
    335.吴金水.土壤有机质及其周转动力学.//何电源.中国南方土壤肥力与栽培作物施肥.北京:科学出版社,1994:37-461.
    336.武春媛,李芳柏,周顺桂.腐殖质呼吸作用及其生态学意义.生态学报,2009,29(3):1535-1542.
    337.肖复明,范少辉,汪思龙等.毛竹林土壤有机碳及微生物量碳特征研究.水土保持学报,2008,26(6):128-131.
    338.肖和善.植被净初级生产力模型研究.亚热带水土保持,2007,19(4):24-28.
    339.谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展.中国农业气象,2002,23(4):47-52.
    340.徐芬芬,曾晓春,石庆华等.不同灌溉方式对水稻根系生长的影响.干旱地区农业研究,2007,25(1):102-104.
    341.徐华,蔡祖聪,八木一行.水稻土CH_4产生潜力及其影响因素.土壤学报,2008,45(1):98-104.
    342.徐华,蔡祖聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响.农业环境保护,1999,18(4):145-149.
    343.徐明岗,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化.土壤学报,2006,43(5):723-729
    344.徐明岗;于荣;王伯仁.土壤活性有机质的研究进展.土壤肥料,2000,56(6),3-7。
    345.徐琪,杨林章,董元华等.中国稻田生态系统.北京:中国农业出版社,1998,3.
    346.徐琪等.中国稻田生态系统.北京:中国农业出版社.1998,140-146.
    347.许炳雄,卢巨祥,傅桂芬等.广州地区稻田甲烷排放通量研究.环境科学研究,1997,10(4):10-14.
    348.薛石玉,张柏华.推广水旱兼用抗旱杂交稻促进南方稻区粮食生产的可持续发展.作物杂志,2005,(6):3-4.
    349.杨华松,戴志明,万田正治等.云南稻-鸭共生模式效益的研究与综合评价(二).中国农学通报,2002,18(5):23-24.
    350.杨劲峰,韩晓日,阴红彬等.不同施肥条件对玉米生长季耕层土壤微生物量碳的影响.中国农学通报,2006,26(1):173-175
    351.杨景成,韩兴国,黄建辉等.土壤有机质对农田管理措施的动态响应.生态学报,2003,23(4):787-796
    352.杨兰芳,蔡祖聪.不同生长期盆栽大豆的土壤呼吸昼夜变化及其影响因子.生态学报,2004,24:2955-2960.
    353.杨士红,彭世彰,徐俊增.控制灌溉稻田部分土壤环境因子变化规律.节水灌溉,2008,12:1-4.
    354.杨玉盛,谢锦升,盛浩等.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响.地理学报,2007,62(11):1123-1130
    355.杨志辉,黄璜,王华等.稻-鸭复合生态系统稻田土壤质量研究.土壤通报,2004,35(2):117-121.
    356.殷士华.土壤微生物量及其与养分循环的关系研究进展.土壤学进展,1993,(4):1-8.
    357.于贵瑞.全球变化与陆地生态系统碳循和碳蓄积.北京:气象出版社,2003
    358.余贵芬,蒋新,赵振华,卞永荣.腐殖酸存在下镐和铅对土壤脱氢酶活性的影响.环境化学,2006,25(2):168-170.
    359.宇万太,柳敏,赵鑫等.不同有机物料及其配施对潮棕壤轻组有机碳的动态影响.土壤通报,2008,39(6):1307-1310
    360.宇万太,赵鑫,马强等.长期定位试验下施肥对潮棕壤活性碳库及碳库管理指数的影响.土壤通报,2008,39(3):539-544.
    361.禹盛苗,欧阳由男,张秋英等.稻鸭共育复合系统对水稻生长与产量的影响.应用生态学报,2005,16(7):1252-1256.
    362.袁颖红,李辉信,黄欠如等.长期施肥对红壤性水稻土活性碳的影响.生态环境2007,16(2):554-559
    363.苑学霞,褚海燕,林先贵.土壤微生物生物量和呼吸强度大气CO_2浓度升高的响应.植物营养与肥料学报,2005,11(4):564-567.
    364.岳进,黄国宏,梁巍,等.不同水分管理下稻田土壤CH_4和N_2O排放与微生物菌群的关系.应用生态学报,2003,14(12):2273-2277.
    365.展茗,曹凑贵,汪金平等.稻鸭、稻鱼复合生态系统土壤微生物多样性特征分析.土壤学报,2008,45(6):1179-1183
    366.张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展,2005,20(7):778-785.
    367.张帆,黄凤球,肖小平等.冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响.生态学报,2009,29(2):734-738.
    368.张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展.生态学报,2005,25(2):351-357.
    369.张剑,汪思龙,王清奎等.不同森林植被下土壤活性有机碳含量及其季节变化.中国生态农业学报,2009,17(1):41-47.
    370.张琪,李恋卿,潘根兴等.近20年来宜兴市域水稻土有机碳动态及其驱动因素.第四纪研究.2004,24(2):236-242.
    371.张庆忠,吴文良,王明新等.秸秆还田和施氮对农田土壤呼吸的影响.生态学报,2005,25:2883-2887.
    372.张宪洲,刘允芬,钟华平等.西藏高原农田生态系统土壤呼吸的日变化和季节变化特征.资源科学,2003,25(5):103-107.
    373.章家恩,陆敬雄,张光辉等.鸭稻共作生态农业模式的功能与效益分析.生态科学,2002,21(1):6-10.
    374.赵明东,罗晓红,刘淑霞.土壤活性有机碳养分有效性与作物产量的关系.安徽农业科学,2006,34(4):732-733,748。
    375.赵其国,龚子同,徐琪等编.中国土壤资源.南京:南京大学出版社,1991,561.
    376.赵先丽,程海涛,吕国红.土壤微生物生物量研究进展.气象与环境学报,2006,22(4):68-71.
    377.郑建初,芮雯奕,冯金侠等.南方水田土壤有机碳动态研究的重要意义及其前沿领域.农业环境科学学报2006,25(增刊):334-338.
    378.郑聚锋,张平究,潘根兴等.长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化.生态学报,2008,28(10):4864-4872.
    379.郑循华,王明星,王跃思,等.华东稻田CH_4和N_2O排放.大气科学,1997,21(2):231-237.
    380.郑永华,邓国彬,卢光敏.稻鱼鸭复合生态经济效益的初步研究.应用生态学,1997,8(4):431-434.
    381.周广胜,王玉辉,许振柱等.中国东北样带碳循环研究进展.自然科学进展,2003,13(9):917-922.
    382.周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展.地球科学进展,2005,20(1):99-105.
    383.周玮,周运超,李进.喀斯特地区土壤有机碳及其碳转化酶研究.水土保持研究,2009,16(1):84-89.
    384.周卫军,曾希柏,张杨珠等.施肥措施对不同母质发育的稻田生态系统土壤微生物量碳、氮的影响.应用生态学报,2007,18(5):1043-1048.
    385.周运超,潘根兴,李恋卿,张旭辉,张平究.太湖地区3种水稻土不同温度培养中有机碳库变化及其对升温的响应.环境科学,2003,24(1):46-51.
    386.周志田,成升魁,刘允芬.中国亚热带红壤丘陵区不同土地利用方式下土壤CO_2排放规律初探.资源科学,2002,24(2):83-87.
    387.朱波,胡跃高,肖小平等.冬种黑麦草对六种稻田土壤微生物量碳、氮的影响.中国农学通报2009,25(03):225-229.
    388.朱咏莉,吴金水,朱博宇等.排水措施对稻田CO_2通量的影响.农业环境科学学报,2007,26(6):2206-2210.
    389.邹桂花,梅捍卫,余新桥,刘鸿艳,刘国兰,李名寿,罗利军.不同灌水量对水、旱稻营养生长和光合特性及其产量的影响.作物学报,2006,32(8):1179-1183.
    390.邹建文,黄耀,宗良纲等.稻田CO2、CH4和N2O排放及其影响因素.环境科学学报,2003,23(6):758-764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700