用户名: 密码: 验证码:
稻田生态系统消解沼液的潜力及风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农业产业结构调整、畜禽养殖业规模化发展,畜禽粪尿和冲洗用水过度集中并大量无序排放,不仅严重污染临近水体和周边环境,还直接影响畜禽养殖的防疫卫生,制约畜牧业的持续健康发展。在目前的畜禽养殖废弃物的处理途径中,特别是在循环经济的倡导和各级政府的支持下,利用沼气发酵工艺将畜禽粪污进行生物质能转化,已经成为最具经济、社会和环境效益的方法之一。但是,沼气工程大发展带来的突出问题就是沼气发酵的尾产物沼液的处置问题,因为沼液是富含COD、BOD、SS、总氮、氨氮、总磷等的有机污染物质,而仅作为当地肥料使用远不能满足对源源不断并且日益增加的沼液的处理需求。特别是对于规模化畜禽养殖场的日产沼液达一、二百吨的情况,如何处置沼液已经成为亟待解决的重大环境问题。因此,本研究根据我国南方稻田遍布的现实条件,试图在维持和促进水稻优质高产和确保土壤质量健康的前提下,尽可能地充分利用稻田湿地生态系统和水稻生产对沼液的消解和净化能力,建设和开发水稻粮食生产和沼液处理相结合的人工湿地生态系统。然而,水稻作为我国最重要的粮食作物之一,大量沼液投入到稻田,到底会不会给水稻生产带来风险,并给水环境、土壤肥力、土壤环境质量健康、土壤微生物生态等带来怎样的影响,是必须回答的问题。本文以养猪场沼液为研究对象,通过室内模拟和大田试验,探讨了沼液的自净及其在稻田生态系统消解净化过程中对水稻生产和环境的影响,研究了沼液淹灌过程中土壤肥力和土壤微生态的变化规律;分析和监测了稻田消解沼液过程对水稻产量和品质安全以及土壤环境质量的影响。为全面了解水稻生长和稻田生态系统对沼液的响应规律,分析稻田生态系统消解沼液的潜力,优化沼液排放模式提供理论与技术依据。主要结论有:
     1、沼液自净过程的研究表明,静置条件下沼液自身的生境条件对微生物生存不利,严重抑制了微生物的活动,削弱了微生物的自净能力。沼液的自净作用主要依赖于物理和物理化学过程、化学过程。施灌到稻田以后,在微生物、作物等生物因子的参与下,大大强化了沼液的消解、净化过程;在沼液灌后12天内,田面水N、P、CODMn浓度基本可达到空白对照田的水平。在本试验的传统水稻种植区,由于稻田犁底层发育良好,施灌沼液引起的地下水铵态氮污染风险不大,4倍N沼液处理田块(2400 t ha-1的沼液用量)的地下水NH4+-N浓度小于常规化肥N用量的田块。施灌沼液不会导致当季地下水硝态氮浓度超标(生活饮用水卫生标准GB/5749-2006)。施灌沼液对当季地下水CODMn的浓度的影响不显著。
     2、大量施灌沼液使土壤氮、磷含量提高,土壤氮、磷含量与沼液施灌量呈显著正相关;土壤有机质含量及其腐殖化强度无明显增强;所用沼液没有对土壤过氧化氢酶与蔗糖转化酶活性产生明显影响;土壤pH、水溶性盐电导率与沼液施灌量显著正相关,施灌沼液在一定程度上影响土壤的酸碱性,但还远不足产生盐害。
     3、沼液淹灌室内培养试验结果表明,土壤微生物种群数量增加,而PLFA总量有下降趋势;细菌、真菌、好氧菌的特征脂肪酸总量所占比例基本保持不变。土壤中放线菌、甲烷氧化菌、硫酸盐还原菌的特征脂肪酸总量和所占比例均有显著下降;土著优势种群结构长时间保持稳定,表明稻田土壤微生态具有较强的调整内部种群结构的能力,较快适应沼液淹灌环境;水稻土微生态区系中共有的优势特征脂肪酸总量的判别分析结果表明,0.5倍N至等N沼液灌溉量对土壤优势微生物的影响最小,1.5倍N沼液灌溉量尚不会破坏稻田土壤微生物的区系构成。
     4、现有沼液施灌水平下(最大沼液灌溉量为2400 t ha-1),土壤重金属含量未因施灌沼液有显著提高,土壤中重金属均符合保障农业生产,维护人体健康的国家土壤环境质量标准(GB/15618-1995)。
     5、水稻田间试验结果表明,2倍N沼液处理的产量最高,当沼液用量达到4倍N处理时出现倒伏等现象,虽然产量较常规化肥处理没有下降,但边际增产效应下降;施灌沼液处理的稻谷中重金属含量与空白处理以及正常化肥处理之间没有显著差异。沼液施灌量的增大未对稻谷中重金属含量产生显著影响。稻谷中重金属含量未超出国家食品中污染物限量标准(GB/2762-2005)。随沼液用量增加,稻谷胶稠度、赖氨酸含量下降,直链淀粉含量、粗蛋白含量影响效果不明显。
     6、做为处理废水为目的的稻田湿地生态系统,要解决的关键问题是在确保水稻安全生产的基础上尽可能增加单位面积的沼液负荷量,而且不仅要保证水稻的产量和品质安全,还应该避免土壤退化,防止土壤生态遭到破坏以及土水环境遭到污染,保障稻田生态系统的健康运转。但在稻田生态系统中,针对沼液的粮食产量、微生态承载量和环境承载量三者并不完全一致;如何确保水稻持续高产和品质稳定的条件下,尽可能地协调三个目标优化组合,构成了稻田湿地生态系统消解沼液的多目标优化问题。本研究对试验地区沼液的施灌量的优化做了初步探讨,提出两种优化方案:方案1,以水稻产量最大为优先目标,环境安全最大承载量为第二目标,生态安全最大承载量为第三目标。产量最高的2倍N沼液处理为最优,既能保障水稻产量、品质安全,又不对稻田生态、环境产生破坏,水稻种植期的沼液总共承载量折算为1200 t·ha-1;方案2,以环境安全最大承载量为第一目标,粮食安全最大承载量为第二目标,生态安全最大承载量为第三目标。则4倍N沼液处理为最优,既能维持粮食稳定高产,又满足消解容量最大化的沼液处理目标,水稻种植期的总承载量折算为2400 t·ha-1。
With the adjustment of agricultural structure and the development of livestock and poultry breeding, excessively centralized and the massive disorderly emissions of livestock manure and flushing water not only polluted the adjacent water body and the surrounding environment, but also hindered epidemic prevention of poultry cultivation. Under the guidance of "recycle economy" and supported by the government, the biogas fermentation engineering was rapid developed in Chinese rural region as an economic, social and environment-friendly method for the organic wastewater treatment. However, the knotty problem of biogas project is how to dispose massive biogas slurry, because there are still very high contents of DOM, SS, N, P and nutrients in biogas slurry. Just treating biogas slurry with local fertilizing can't use up so much and continuously increasing biogas slurry, especially for the livestock and poultry breeding in large scale. Paddy field ecosystem is a typical constructed wetland ecosystem and it has a very wide distribution in south and east China. Therefore, the subject of this study aims to build the paddy field as an artificial wetland ecosystem with both functions of rice production and organic wastewater treatment under the premise of rice production and soil quality safety assurances. Accordingly, our research activities focus on how to support and improve rice production and soil quality under high concentration of organic wastewater conditions, how to increase the decontamination potentials of the paddy field ecosystem, and how to prevent risks resulted from the high discharge of wastewater in the field. In this study, field and laboratory experiments were conducted with the heavy irrigation of biogas slurry to investigate the purification process of the slurry and its influences on the rice production and the environment of paddy field ecosystem. The results provide theoretical basis and technical guidance for comprehensive understanding the response of paddy field ecosystem to the heavy irrigation of biogas slurry, exploring the potential capacity of paddy field to decontaminate biogas slurry and optimizing discharge mode for the heavy irrigation of biogas slurry. The main results are summarized as follows:
     1. Self-purification of biogas slurry mainly depends on physical and physicochemical processes, but not on microbial activities because microbial activities were strong limited under the conditions of biogas slurry itself. After discharging biogas slurry into paddy field, paddy ecosystem plays a leading role in decontaminating and purifying biogas slurry. With the participation of micro-organisms, plants and other biological processes, the abilities of decontamination and purification of biogas slurry significantly increased. Up to 12 days after biogas slurry irrigation, the concentration of N, P, CODMn in surface water basically reached to CK level. Under 4N biogas slurry irrigation treatment (2400 t-ha-1), NH4+-N concentration in the ground water is smaller than 1N chemical fertilizer treatment, and biogas slurry irrigation will not cause NO3--N pollution in the ground water in current season. The CODMn concentration of groundwater had not varied significantly.
     2. After irrigation of biogas slurry, soil N and P content was significantly increased, and were positively related to the quantity of biogas slurry irrigation. Soil organic matter content and its metabolic processes had no significant enhancement in short term. There were no obvious adverse effects on soil catalase and invertase activities; Soil pH and the electric conductivity of the soil were positively correlated with biogas slurry irrigation quantity. It indicated that biogas slurry could modify soil acidity in some sense, but it can't go so far as soil salinization.
     3. Biogas slurry flooding decreased the content of total PLFAs compared with non-flooding soil. After flooding by biogas slurry, the characteristic PLFA for bacteria, fungi, aerobic bacteria were almost unchanged, however, the contents and characteristic PLFA for actinomyces, methanotrophic bacteria and sulfate deoxidation bacteria were significantly decreased; The diversity of soil microbial PLFAs was significantly improved due to the exogenous micro-organisms in biogas slurry, conversely, the contents of total PLFAs extracted from the different treated soil were declined, while the dominant soil PLFAs maintain long-term stability under the same condition. It indicated that the micro-ecology of paddy soil could rapidly screen out the priorities and discard the inferior population, adjusting the internal microbial community structure, thus reach the purpose of adaptable environment. Discrimiant analysis and principal component analysis were used to analyze the dominant PLFAs, and the results showed that treatments 0.5N-1N treatments didn't significantly weakened soil dominant microbial community and microbiologic population. Meanwhile, treatment 1.5N had not yet lead to a devastating impact on the paddy soil microbes. After the biogas slurry irrigation, soil-microbial community structure changed little, which indicated soil ecosystem has the resilience and resistance to maintain its health status in short period.
     4. Soil heavy metals did not show the significant increase in the paddy fields with the biogas slurry irrigation (maximum to 2400 t ha-1). The content of heavy metals all accord with the national environmental quality standards (GB/15618-1995).
     5.2N biogas slurry treatment resulted in the highest rice yield. Although rice lodging appeared in 4N biogas slurry irrigation treatment, the yield had not declined significantly. The concentrations of all heavy metals in rice grain were not significantly different among the treatments of the heavy irrigation of biogas slurry, chemical fertilization and CK. The contents of heavy metals in rice grain all accord with the National Standard(GB/2762-2005). With increase of the slurry irrigation, the gel consistency and contents of lysine of the rice declined, while the changes of amylase and crude protein were not significant.
     6. To ensure the safety for rice production, to maintain the sustainable functions of paddy field ecosystem and to consume more biogas slurry in unit paddy field are three goals for this study. But they are not fully consistent with each other. Therefore, the coordination and optimization of these three goals for the paddy filed wetland ecosystem for biogas slurry treatment is a multi-objective optimization problem. According to our research results, two optimization schemes were proposed to make a preliminary estimation of the irrigation quantity of biogas slurry in the experiment areas. The first scheme with rice yield grain as preferential goal followed by environmental safety and soil fertility maintenance respectively was suggested that 2N treatment of biogas slurry irrigation with the total consumption of biogas slurry 1200 t·ha-1 for one rice production season. The second suggested scheme was the maximal consumption of biogas slurry followed by rice yield and soil fertility maintenance respectively:4N treatment of biogas slurry irrigation with the total consumption of biogas slurry 2400 t·ha-1 for one rice production season.
引文
Aceves M B, Grace C, Ansorena J, Dendooven L, Brookes P C. Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine spoil tip. Soil Biology and Biochemistry.1999a,31(6):867-876.
    Aceves M B, Grace C, Ansorena J, Dendooven L, Brookes P C. Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine spoil tip. Soil Biology and Biochemistry.1999b,31(6):867-876.
    Agoramoorthy G, Hsu M J. Biogas Plants Ease Ecological Stress in India's Remote Villages. Human Ecology.2008,36(3):435-441.
    Asano T, Cotruvo J A. Groundwater recharge with reclaimed municipal wastewater:health and regulatory considerations. Water Research.2004,38(8):1941-1951.
    Azam F, Fenchel T, Field JS, Gray J S, Meyer-Reil L A, Thingstad F. The ecological role of water-column microorganisms in the sea. Marine Ecology Progress Series.1983,10: 257-263.
    Baath E, Diaz-Ravina M, Frostegard A. Effect of metal-rich sludge amendments on the soil microbial community. Applied and Environmental Microbiology.1998a,64(1):238-245.
    Baath E, Diaz-Ravina M, Frostegard A. Effect of metal-rich sludge amendments on the soil microbial community. Applied and Environmental Microbiology.1998b,64(1):238-245.
    Belsky A J, Matzke A, Uselman S. Survey of livestock influences on stream and riparian ecosystems in the western United States. Journal of Soil and Water Conservation.1999,54(1): 419-431.
    Bergmann B A, Cheng J, Classen J, Stomp A M. Nutrient removal from seine lagoon effluent by duckweed. Trans, ASAE.2000,43(2):263-269.
    Berka C, Schreier H, Hall K. Linking water quality with agricultural intensification in a rural water shed. Water Air and Soil Pollution.2001,127(1-4):389-401.
    Bezbaruah A N, Zhang T C. Quantification of oxygen release by bulrush (scirpus validus) roots in a constructed treatment wetland. Biotechnology and Bioengineering.2005,89(3):308-318.
    Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology.1959,37(8):911-917.
    Bolna N S, Adriano D C, Natesan R, Koo B J. Effects of organic amendments on the reduction and
    Phyto-availability of chromate in mineral soil. Journal of Environmental Quality.2003,32(1): 120-128.
    Booth A M, Hagedorn C, Graves A K, Hagedorn S C, Mentz K H. Sources of fecal pollution in Virginia's Blackwater River. Journal of Environmental Engineering.2003,129(6):547-552.
    Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils.1995,19(4):269-279.
    Cang L, Wang Y J, Zhou D M, Dong Y H. Study of heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu province. Journal of Environmental Science.2004,16(3):371-374.
    Carpenter-Boggs L, Kennedy A C, Reganold J P. Organic and biodynamic management:effects on soil biology. Soil Science Society of America Journal.2000,64(5):1651-1659.
    Chander K, Brookes P C, Harding S A. Microbial biomass and dynamic following addition of metal-enriched sewage sludge to a sandy loam. Soil Biology and Biochemistry.1995a,27(11): 1409-1421.
    Chander K, Brookes P C, Harding S A. Microbial biomass and dynamic following addition of metal-enriched sewage sludge to a sandy loam. Soil Biology and Biochemistry.1995b, 27(11):1409-1421.
    Chynoweth D P, Wilkie A C, Owens J M. Anaerobic processing of piggery wastes:a review. Asian-Australasian Journal of Sciences.1999,12(4):607-628.
    Clark M S, Horwath W R, Shennan C, Scow K M. Changes in soil chemical properties resulting from organic and low-input farming practices. American Society of Agronomy.1998,90(5): 662-671.
    Coveney M F, Stites D L, Lowe E F, Battoe L E, Conrow R. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering.2002,19(2):141-159.
    Dhawan A, Kaur S. Effect of pig dung on water quality and polyculture of carp species during winter and summer. Aquaculture International.2002,10(4):297-307.
    Diefenbach R, Keweloh H. Synthesis of trans-unsaturated fatty acids in Pseudomonas putida P8 by direct isomerization of the double bond of lipids. Archives of microbiology.1994, 162(1-2):120-125.
    Ditterta K, Lampe C, Gasche R, Butterbach-Bahl K, Wachendorf M, Papen H, Sattelmacher B,
    Taube F. Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil. Soil Biology and Biochemistry.2005,37(9):1665-1674.
    Dunne E J, Culleton N, O'Donovan G, Harrington R, Daly K. Phosphorus retention and sorption by constructed wetland soil in Southeast Ireland. Water Research.2005,39(18):4355-4362.
    Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of National Academy of Sciences of the United States of America.2006,103(3):626-631.
    Fliessbach A, Martens R, Reber H H. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry.1994a,26(9): 1201-1205.
    Fliessbach A, Martens R, Reber H H. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry.1994b,26(9): 1201-1205.
    Food and agriculture organization of the United Nations (FAO). Livestock's long shadow: Environmental issues and options.2006 (Retrieved 2008), http://www.fao.org/docrep/010/a0701e/a0701e00.htm.
    Fornairon-Bonnefond C, Salmon J M. Impact of oxygen consumption by yeast lees on the autolysis phenomenon during simulation of wine aging on lees. Journal of Agricultural and Food Chemistry.2003,51(9):2584-2590.
    Fournier B and Hooper D C.A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of staphylococcus aureus. Journal of Bacteriology.2000,14(2):3955-964.
    Frostegard A, Baath E, Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis. Soil Biology and Biochemistry. 1993,25(6):723-730.
    Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to heavy metals. Applied and Environmental Microbiology.1993,59(11):3605-3617.
    Gamage N P D, Asaeda T. Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria. Hydrobiologia.2005a,541(1):13-27.
    Gamage N P D, Asaeda T. Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria. Hydrobiologia.2005b,541(1):13-27.
    Gehron M J, Davis J D, Smith G A, White D C. Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components. Journal of microbiological methods.1984,2:165-176.
    Goemann H, reins P, unkel R, ndland F. Model based impact analysis of policy options aiming at reducing diffuse pollution by agriculture:a case study for the river Ems and a sub-catchment of the Rhine. Vironmental Modelling & Software.2004,20(2):261-262.
    Gonzalez C, Marciniak J, Villaverde S, Garcia-Encina P A. Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Applied Microbiology and Biotechnology. 2008,80(5):891-898.
    Han F X, Banin A, Kingery W L, Triplett G B, Zhou L X, Zheng S J, Ding W X. New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research.2003,8(1): 113-120.
    Han F X, Kingery W L, Selim H M, Gerard P D. Accumulation of heavy metals in a long-term poultry waste amended soil. Soil Science.2000,165(3):26-268.
    Hansen K H, Angineering I, Ahring B K. Anaerobic digestion of swine manure:inhibition by ammonia. Waste resources.1998,32(1):5-12.
    Hernandez I, Perez-Pastor A, Perez Llorens J L. Ecological significance of phosphomonoesters and phosphomonoesterase activity in a small Mediterranean river and its estuary. Ecological significance of phosphomonoesters and phosphomonoesterase activity in a small Mediterranean river and its estuaryAquatic Ecology.2000,34(2):107-117.
    Hsu J H, Lo S L. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environment Pollution.2001,114(1):119-127.
    Ilea R C. Intensive livestock farming:global trends, increased environmental concerns, and ethical solutions. Journal of Agriculture Environmental Ethics.2009,22(2):153-167.
    Jain M C, Kumar S, Wassmann R, Mitra S, Singh S D, Singh J P, Singh R. Methane emissions from irrigated rice fields in northern India (New Delhi). Nutrient Cycling in Agroecosystems. 2000,58(1-3):75-83. Jensen H S, Anderson F O. Importance of temperature, nitrate, and pH for phosphate release
    from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography.1992, 37(3):577-589.
    Jia R A, Wang C X, Jia X J. A System Dynamics Analysis of Intensive Pig Farming Eco-energy System Based on the Rate Variable Fundamental In-tree Model. System Dynamics Society International Conference.2007.25th
    Bjorkman K M and Karl D M. Bioavailability of dissolved organic phosphorus in the euphotic zone at station ALOHA. North Pacific Subtropical Gyre, Limnology and Oceanography.2003, 48(3):1049-1057.
    Kandeler E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils.1996a,23(3):299-306.
    Kandeler E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils.1996b,23(3):299-306.
    Kelly J J, Haggblom M, Tate R L. Changes in soil microbial communities over time resulting from one time application of zinc:a laboratory microcosm study. Soil Biology & Biochemistry. 1999,31(10):1455-1465.
    Labry, Delmas D and Herbland A. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay). Journal of Experimental Marine Biology and Ecology.2005,318(2):213-225.
    Lee D H, Zo Y G, Kim S J. Nonradioactive method to study genetic profiles of natural bacterialcommunities by PCR-single-strand-conformation polymorphism. Applied and Environmental Microbiology.1996a,62(9):3112-3120.
    Lee D H, Zo Y G, Kim S J. Nonradioactive method to study genetic profiles of natural bacterialcommunities by PCR-single-strand-conformation polymorphism. Applied and Environmental Microbiology.1996b,62(9):3112-3120.
    Lee I S, Kim K O, Chang Y Y, Bae B, Kim H H, Baek K H. Heavy Metal Concentrations and Enzyme Activities in Soil from a Contaminated Korean Shooting Range. Journal of Bioscience and Bioengineeering.2002a,94(5):406-411.
    Lee I S, Kim K O, Chang Y Y, Bae B, Kim H H, Baek K H. Heavy Metal Concentrations and Enzyme Activities in Soil from a Contaminated Korean Shooting Range. Journal of Bioscience and Bioengineeering.2002b,94(5):406-411. Leon M C C, Stone A, Dick R P, Organic soil amendments:impacts on snap bean common root rot (Aphanomyes euteiches) and soil quality. Applied Soil Ecology.2006,31(3): 199-210.
    Liu J B, Tang X B, Mo F L, Study on wastewater purification efficiency of vertical flow constructed wetland systems. Research of environmental sciences.2005,18(6):68-71.
    Madejon E, Burgos P, Lopez R, Cabrera F. Soil enzymatic response to addition of heavy metals with organic residues. Biology and Fertility of Soils.2001a,34(3):144-150.
    Madejon E, Burgos P, Lopez R, Cabrera F. Soil enzymatic response to addition of heavy metals with organic residues. Biology and Fertility of Soils.2001b,34(3):144-150.
    Mancera-Lopez M E, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda G, Barrera-Cortes J. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. International Biodeterioration & Biodegradation.2008a,61(2): 151-160.
    Mancera-Lopez M E, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda G, Barrera-Cortes J. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. International Biodeterioration & Biodegradation.2008b,61(2): 151-160.
    Marcato C E, Pinelli E, Cecchi M, Winterton P, Guiresse M. Bioavailability of Cu and Zn in raw and anaerobically digested pig slurry. Ecotoxicology and Environmental Safety.2009,72(5): 1538-1544.
    Marques A P G C, Oliveira R S, Rangel A O S S, Castro P M L. Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environmental Pollution.2008,151(3): 608-620.
    Mceller K, Stinner W. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). European journal of agronomy.2009,30(1):1-16.
    McNeil B, Harvey LR, Grant A, White S, Berry DR. Measurement of autolysis in submerged
    batch cultures of Penicillium chrysogenum. Biotechnology and Bioengineering.1998,57(3): 298-305
    Mechsner K. The influence of the dissolved oxygen concentration on the physiology and ecology of Sphaerotilus natans Kiitz. Oecologia (Berlin).1983,60(1):18-20.
    Melse R W, Timmerman M. Sustainable intensive livestock production demands manure and exhaust air treatment technologies. Bioresource Technology.2009,100(22):5506-5511.
    Gasson M J. Lytic systems in lactic acid bacteria and their bacteriophages. Antonie van Leeuwenhoek.1996,70(2-4):147-159.
    Moller K, Stinner W, Deuker A, Giinter L. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutrient Cycling in Agroecosystems.2008,82(3):209-232.
    Moller K. Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. Nutrient Cycling in Agroecosystems.2009,84(2):179-202.
    Mrayyan B, Battikhi M N. Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. Journal of Hazardous Materials B.2005a,120(1-3):127-134.
    Mrayyan B, Battikhi M N, Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. Journal of Hazardous Materials B.2005b,120(1-3):127-134.
    Nicholson R J, Webb J, Moore A. A review of the environmental effects of different livestock manure storage systems, and a suggested procedure for assigning environmental ratings. Journal of Agricultural Engineering Research.2002,81(4):363-377.
    Nicholson F A, Smith S R, Alloway B J, Canton-Smith C, Chambers B J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment. 2003,311(1-3):205-219.
    Ostroumov S A. Polyfunctional role of biodiversity in processes leading to water purification: current conceptualizations and concluding remarks. Hydrobiologia.2002,469(1-3):203.
    Ostroumov S A. On some issues of maintaining water quality and self-purification. Water Resources.2005,32(3):305-313.
    Pillidge C J, Rallabhandi R S VS, Tong X Z, Gopal P K, Farley P C, Sullivan P A. International Dairy Journal.2002,12(2-3):133-140.
    Wilkie A C. Anaerobic digestion:holistic bio-processing of animal manures. Proceedings of the animal residuals management conference. Water environment federation, alexandria, Virginia. 2000:1-12.
    Radjenovic J, Petrovic M, Barcelo D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry.2007,387(4): 1365-1377.
    Rattan R K, Datta S P, Chhonkar P K, Suribabu K, Singh A K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater-a case study. Agriculture, Ecosystems and Environment.2005,109(3,4):310-322.
    Ritter W F. Watershed management and hydrology. Los Angeles:CRC Press LLC.2001.136-158.
    Shi Y M, Xu L F, Gong D Q, Lu J. Effects of sterilization treatments on the analysis of TOC in water samples. Journal of environmental science,2010,22(5):789-795.
    Stenberg B. Monitoring soil quality of arable land:Micro-biological indicators. Acta Agriculturae Scandinavica Section B-Soil and Plant Science.1999,49 (1):1-24.
    Stolze M, Piorr A, Haring A, Dabbert S. The environmental impact of organic farming in Europe. Economics and Policy.2000,6:1437-1512.
    Suhadolc M, Schroll R, Gattinger A, Schloter M, Munch J C, Lestan D. Effects of modified Pb-, Zn-, and Cd-availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biology & Biochemistry.2004,36(12): 1943-1954.
    Sundby B, Gobeil C, Silberberg N. The phosphorus cycle in coastal marine sediments.Limnology and Oceanography.1992,37(6):1129-1145.
    Murphy T, Lawson A, Kumagai M, Nalewajko C. Release of phosphorus from sediments in Lake Biwa. Limnology.2001,2(2):119-128.
    Valsecchi G, Gigliotti C, Farini A. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biology and fertility of soil.1995a,20(4):253-259.
    Valsecchi G, Gigliotti C, Farini A. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biology and fertility of soil.1995b,20(4):253-259.
    Van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology.2000,15(1):13-24.
    Verhoeven J T A. and Meuleman A F M. Wetlands for wastewater treatment:Opportunities and limitations. Ecological Engineering.1999,12(1-2):5-12.
    Visser S, Parkinson D. Soil biological criteria as indicators of soil quality:soil micro-organisms. America Journal Alternative Agriculture.1992,7:33-37.
    Volesky B. Biosorption of Metals by Waste Biomasses. Biotechnology Progress.1995,11: 235-250.
    Wang X L, An Y, Zhang J, Shi X Y, Zhu C J, Li R X, Zhu M Y, Chen S. Contribution of biological processes to self-purification of water with respect to petroleum hydrocarbon associated with No.0 diesel in Changjiang Estuary and Jiaozhou Bay, China. Hydrobiologia. 2002,469(1-3):179-191.
    Weiland P. Biogas production:current state and perspectives. Applied Microbiology and Biotechnology.2010,85(4):849-860.
    White S, McIntyre M, Berry DR, McNeil B. The autolysis of industrial filamentous fungi. Critical Reviews in Biotechnology.2002,22(1):1-14.
    Whitney D, Rossman A, Haden N. Evaluating an existing subsurface flow constructed wetland in Akumal, Mexico. Ecological Engineering.2003,20(1):105-111.
    Xue D, Yao H Y, Ge D Y, Huang C Y. Soil Microbial Com m unity Structure in Diverse Land Use Systems:A Comparative Study Using Biolog, DGGE, and PLFA Analyses. Pedosphere.2008, 18(5):653-663.
    Young I M, Crawford J W. Interactions and self-organization in the soil-microbe complex. Science. 2004,304(5677):1634-1637.
    Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil:A review. Biology and Fertility of Soils.1999,29(2):111-129.
    Zhang J, Zhou Q, He R. Mechanism of nitrogen and phosphorus removal in free-water surface constructed wetland. Ecology and Environment.2004,13(1):98-101.
    Zhou S Y, Zhang B, Cai Z F. Emergy analysis of a farm biogas project in China:A biophysical perspective of agricultural ecological engineering. Communications in Nonlinear Science and Numerical Simulation.2010,15(5):1408-1418.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社.2005a,187.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社.2005b,25-55.
    陈露.茶叶喷施不同浓度沼液效果研究.耕作与栽培,2009,4:37-38.
    程海翔,贾秀英,朱维琴,吴汶滢,梅凌斐.杭州地区猪粪重金属含量及形态分布的初步研究.杭州师范大学学报(自然科学版),2008,7(4):294-297.
    戴德球,范伟胤,李冀武,邝锦荣.水稻施用沼液生产试验报告.中国沼气,2000,2(18):34-36.
    邓良伟,陈铭铭.Ic工艺处理猪场废水试验研究.中国沼气,2001,19(2):12-15.
    董占荣,陈一定,林成永,章永松,倪丹华.杭州市郊规模化养殖场猪粪的重金属含量及其形态.浙江农业学报,2008,20(1):35-39.
    段文霞,牟树森,徐可南.厌氧发酵液在土壤生态系统中的循环于利用研究.农业环境保护,1993,12(4):181-182,186.
    方茜,张可方,林金銮.间歇投加碳源模式下SND的脱氮效能[C].2009年给水厂、污水厂升级改造及节能减排新技术新工艺研讨会论文集,2009:142-146.
    冯绍元,郑耀泉.农田氮素转化与损失及其对水环境的影响.农业环境保护,1996,15(6):277-279.
    高景峰,彭永臻,王淑莹,曾薇,隋铭皓.以DO、ORP、pH控制SBR法的脱氮过程.中国给水排水,2001,17(4):6-11.
    高效江,胡雪峰,王少平,贺宝根,沈铭能.淹水稻田中氮素损失及其对水环境影响的试验研究.农业环境保护,2001,20(40):196-198,205.
    高云超,邝哲师,田兴山,杜宗亮,杨景培.猪场污水活性污泥-稳定塘法处理效果及环境问题探讨.广东农业科学,2003,3:46-49.
    耿琦鹏.人工湿地对化粪池出水净化效果的研究.水资源研究,2007,28(2):29-30.
    龚丽雯,龚敏红,王成云,陈建湘,李京会.微电解/接触氧化/稳定塘处理猪场废水.中国给水排水,2003,19(8):92-94.
    关松荫.土壤酶及其研究法[M].北京:农业出版社.1986:206-239.
    国家环境保护部.畜禽养殖业污染治理工程技术规范编制说明(征求意见稿)[OL].2007,http://www.zhb.gov.cn/info/gw/bgth/200712/W020071228279509740402.pdf
    国家环境保护部.畜禽养殖污染防治技术政策(征求意见稿)编制说明[OL].2009,http:///www.zhb.gov.cn/info/bgw/bbgth/200909/W020090918349658446952.pdf
    国家环境保护总局.2001年中国环境状况公报.2002,http://www. zhb. gov.cn/64
    9368273124589568/index.shtml.
    国家环境保护总局自然生态保护司.全国规模化畜禽养殖业污染情况调查技术报告.全国规模化畜禽养殖业污染情况调查及防治对策[M].北京:中国环境科学出版社,2002.
    韩润平,石杰,鲍改玲.酵母茵对铅离子的生物吸附研究.河南科学,2000,18(18):52-55.
    韩小平.玉米喷施不同浓度沼液效果试验报告.中国沼气.2009,27(3):50-51.
    郝鲜俊,洪坚平,谢英荷,高文俊.施用沼液对芹菜品质和产量的影响.农业资源与环境科学,2008,24(7):408-412.
    郝鲜俊,洪坚平,谢英荷,高文俊.施用沼液对芹菜品质和产量的影响.中国农学通报,2008,24(7):408-412.
    胡向军,余东波.沼液对柑生长发育、产量和品质的影响.中国沼气,2008,26(3):29-33.
    黄国锋,张振钿,钟流举,吴启堂,黄焕忠.重金属在猪粪堆肥过程中的化学变化.中国环境科学,2004,24(1):94-99.
    黄海龙,罗建新,赵莉,肖巧琳.畜禽粪便的环境生态效应及资源化利用.作物研究,2007,21(5):771-774.
    黄民生,郑乐平,朱莉.微生物对重金属的吸附与解吸.化工装备技术,2000,21(2):17-22.
    黄世文,廖西元.沼肥用于水稻的现状及展望.中国沼气,2005,23(2):23-25.
    黄玉溢,刘斌,陈桂芬,王影.规模化养殖场猪配合饲料和粪便中重金属含量研究.广西农业科学,2007,38(5):544-546.
    黄治平,徐斌,张克强,杨秀春.连续四年施用规模化猪场猪粪温室土壤重金属积累研究.农业工程学报,2007,23(11):239-244.
    姜翠玲,夏自强,刘凌,赵胜领,王磊,万正成,郑文兰.污水灌溉土壤及地下水三氮的变化动态分析.水科学进展,1997,8(2):183-188.
    蒋强勇,刘强,荣湘民,谢桂先,宋海星,彭建伟,张玉平.不同钝化剂对猪粪堆肥处理重金属形态转化的影响.湖南农业大学学报(自然科学版),2008,34(6):708-712.
    金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响,中国环境科学,2004,24(6):707-711.
    金正勋,崔成焕,秋太权.水稻杂种后代稻米直链淀粉含量的配合力分析.东北农业大学学报,1999,30(2):1-8.
    李民.规模化畜禽养殖场粪污染与防治.农业科技通讯,2001,10:22-23.
    李娜,靳晓洁.含重金属废水处理技术的研究进展概述.电力科学与工程,2008,24(4):42-44.
    李阳,杨高英,雷兆武.重金属废水处理与资源化利用现状.电力环境保护,2009,25(4):50-51.
    李远,单正军,徐德徽.我国畜禽养殖业的环境影响与管理政策初探.中国生态农业学报,2002,10(2):136-138
    李远.我国规模化畜禽养殖业存在的环境问题与防治对策.上海环境科学,2002,21(10):597-599.
    李宝宏,曹文平.人工湿地植物在污水处理系统中的作用探讨.环境科学与管理,2007,23(9):65-67.
    李焕烈.浅谈养猪与环保的矛盾及解决办法.猪业科学,2009,26(7):38-40.
    李庆康,吴雷,刘海琴,蒋永忠,潘玉梅.我国集约化畜禽养殖场粪便处理利用现状及展望.农业环境保护,2000,19(4):251-254.
    李忠卫,王全金,李丽.垂直流人工湿地工艺设计概述.华东交通大学学报,2008,25(3):40-44.
    梁威,胡洪营.人工湿地净化污水过程中的生物作用.中国给水排水,2003,19(10):28-31.
    廖新,骆世明.人工湿地对猪场废水有机物处理效果的研究.应用生态学报,2002,13(1):113-117.
    廖敏,陈雪花,陈承利,曾路生.土壤-青菜系统中铅污染对土壤微生物活性及多样性的影响.环境科学学报,2007,27(2):220-227.
    廖新佛,汪植三,李其谦,王俊三,梁敏.人工湿地在猪场污水净化中的应用.农业工程学报,1995,11(4):96-100.
    刘德福.氧化还原电位、值与水体自净能力的关系.上海环境科学,1985,2:22-23.
    刘光栋,吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究.中国生态农业学报,2003,11(1):91-93.
    刘浩荣,宋海星,荣湘民,刘强,谢桂先,陈历儒,周成.好氧高温猪粪堆肥重金属(Cr、Cd、Pb)钝化剂及其添加比例研究.江西农业大学学报,2008,30(6):967-972.
    刘浩荣,宋海星,荣湘民,刘强,谢桂先,彭建伟,周成,陈历儒.钝化剂对好氧高温堆肥处理猪粪重金属含量及形态的影响.生态与农村环境学报,2008,24(3):74-80.
    刘培斌,程伦国,陈瑞忠,刘德福,言鸽.排水条件下稻田中氮素运移转化规律的试验研究.农田水利与小水电,1994,4:15-20.
    刘荣乐,李书田,王秀斌,王敏.我国商品有机肥料和有机废弃物中重金属的含量状况与分
    析.农业环境科学学报,2005,24(2):39-39.
    刘同军,徐文琳,孙文波,张玉臻.溶氧对变溶菌素发酵的影.生物工程学报,2003,16(2):229-231.
    刘岳燕,姚槐应,黄昌勇.水分条件对水稻土微生物群落多样性及活性的影响.土壤学报,2006,43(5):828-834.
    刘忠翰,彭江燕.污水土地处理中水田氮素的迁移特征.土壤学报,2000,37(3):428-432.
    陆敏,刘敏,茅国芳,黄明蔚,屈璠.大田条件下稻田土壤氮素淋失研究.华东师范大学学报(自然科学版),2006,4:71-77.
    马龙华.水稻不同灌溉措施对面源污染影响效应研究[D].南京林业大学硕士学位论文,2004:43-47.
    孟庆国,周静茹.厌氧消化残留物的再利用及其中微量元素的测定.农业环境保护,1998,17(2):81-83.
    孟庆国 赵凤兰 张聿高 王素青 赵殿英 张铁.气相色谱法测定沼液中的游离蛋白氨基酸.农业环境保护,2000,19(2):14-15.
    全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,23(2):291-298.
    史小丽,王凤平,蒋丽娟,杨柳燕,孔志明,高光,秦伯强.扰动对外源磷在模拟水生态系统中迁移的影响.中国环境科学,2002,22(6):537-541.
    史一鸣,吕军.曹娥江干流水质有机污染时空变异分析和可生化性研究.水土保持学报,2006,20(4):143-147.
    司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤,2000,4:188-193.
    苏杨.我国集约化畜禽养殖场污染问题研究.中国生态农业学报,2006,14(2):15-18.
    苏杨.我国集约化畜禽养殖场污染治理障碍分析及对策.生态养殖,2006,42(14):31-34.
    宿庆瑞,李卫孝,迟凤琴.有机肥对土壤盐分及水稻产量的影响.中国农学通报,2006,22(4):299-301.
    孙广辉.沼液灌溉对蔬菜产量和品质以及土壤质量影响的研究[D].浙江大学硕士论文,2006:6-14.
    孙有泉,世荣,刘吉新,赵国珍,春原嘉弘.粳稻谷粒不同水分含量对整精米率的影响.西南农业学报,1995,8(4):1-4.
    覃舟.施用沼液对紫甘蓝产量、营养品质及土壤质量的影响.江西农业学报2009,21(7): 83-86.
    田纪春.谷物品质测试理论与方法[M].北京:科学出版社.2006,25-26.
    田宁宁,李宝林,王凯军,杨丽萍.畜禽养殖业废弃物的环境问题及其治理方法.工程与技术,2000,12:10-13.
    田永强.微生物自溶现象研究进展.微生物学杂志,1997,12(7):53-60.
    屠云璋.中国沼气发展现状.2007,http://www.china001.com/show_ hdr.php? xname= PPDDMV0&dname=ETSSK41&xpos=90
    汪开英,陈小霞,赖发英.规模畜禽场沼肥资源化利用技术综述与展望.家畜生态学报,2009,30(3):105-107.
    汪清平,王晓燕.畜禽养殖污染及其控制.首都师范大学学报(自然科学版),2003,24(2):96-101.
    王灿,王德建,孙瑞娟,林静慧.长期不同施肥方式下土壤酶活性与肥力因素的相关性.生态环境,2008,17(2):688-692.
    王新,倪晋仁,翟风敏.猪场稳定塘废水的IBAF脱氮影响因素研究.应用基础与工程科学学报,2006,14(1):10-15.
    王昭,杨国华,陈玺,费宇红,张凤娥,陈京生.污灌对地下水的污染及防治对策.水文地质工程地质,2008,3:99-103.
    王方浩,马文奇,窦争霞,马林,刘小利,许俊香,张福锁.中国畜禽粪便产生量估算及环境效应.中国环境科学,2006,26(5):614-617.
    王贵平,冯志国,周喜平,张耀文.添喂沼液对猪生长及质量的影响.中国沼气,2007,25(4):37-38,36.
    王国书,龙建洪,冉隆俊.沼液在水稻育秧上的应用研究.耕作与栽培,2003,1:36,60.
    王家玉,王胜佳,陈义,郑纪慈,李超英,计小江.稻田土壤中氮素淋失的研究.土壤学报,1996,33(1):28-36.
    王伟楠,杨改河,任广鑫,冯永忠,孔德杰.叶面喷施沼液对苹果树营养生长和果实品质的影响.西北农林科技大学学报(自然科学版),2008,36(11):151-156,161.
    王小艳.浅议含重金属废水处理技术.有色冶金设计与研究,2008,29(6):41-42,56.
    王晓波,刘喜德,包和平,刘士彪,刘振刚.水稻优质高产配方施肥的研究.吉林农业大学学报,2000,22(3):14-18.
    王晓波,宋凤斌.N、P、K三要素对水稻直链淀粉含量的影响.农业系统科学与综合研究,
    2005,21(2):94-96.
    王新谋.家畜粪便学[M].上海:上海交通大学出版社.1997.
    王远远,刘荣厚,黄彩霞,武丽娟.施用沼液防治菜青虫的试验研究.上海交通大学学报(农业科学版),2007,25(4):309-401,418.
    王远远,刘荣厚.沼液综合利用研究进展.安徽农业科学,2007,35(4):1089-1091.
    王朝辉,刘学军,巨晓棠,张福锁.田间土壤氨挥发的原位测定一—通气法.植物营养与肥料学报,2002,8(2):205-209.
    韦朝领,刘敏华,陈多璞,乔玉强,韩立德.江淮地区稻米品质性状典型相关分析及其与气象因子关系的研究.安徽农业大学学报,2001,28(4):345-349.
    吴飞龙,叶美锋,林代炎.沼液综合利用的研究进展.能源与环境,2009,1:94-95,105.
    吴国英,贾秀英,郭丹,来凯凯,姜洪芳.蚯蚓对猪粪重金属Cu、 Zn的吸收及影响因素研究.农业环境科学学报,2009,28(6):1293-1297.
    吴淑杭,姜震方,俞清英.禽畜粪污染现状与发展趋势.上海农业科技,2002,1:9-10.
    吴淑杭,姜震方.水葫芦(Water hyacinth)深度净化猪粪便污水研究.上海农业学报,2003,19(4):76-80.
    吴淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响.中国农业大学博士学位论文,2005.
    吴振斌,成水平,贺锋,付贵萍,金建明,陈辉蓉.垂直流人工湿地的设计及净化功能初探.应用生态学报,2002,13(6):715-718.
    吴振斌,詹德昊,张晟,成水平,傅贵萍,贺峰.复合垂直流构建湿地的设计方法及净化效果.武汉大学学报(工学版),2003,36(1):12-16,41.
    向多斌.沼液的综合利用.农技服务,2009,26(6):137-138.
    谢红梅,朱波.农田非点源氮污染研究进展.生态环境,2003,12(3):349-352.
    新华社.2008.2010年我国将有4000万农户用上沼气[OL]. http://www.go v.cn/jrzg/ 2008-08/28/content_1082128.htm.
    徐明德,周文瑞.水环境生态修复中人工湿地技术比较.科技情报开发与经济,2005,15(18):191-192.
    颜慧,钟文辉,李忠佩,蔡祖聪.长期对红壤水稻土磷酸脂肪酸特性和酶活性的影响.应用生态学报,2008,19(1):71-75.
    杨朝辉.高浓度有机废水(养猪场废水)处理技术的研究.湖南大学硕士学位论文,2002.
    杨晓铭,王树仁,李国栋,丛春波,李维尧,仇东.不同浓度沼液对反季刺五加产量和质量的影响试验.可再生能源,2008,26(3):80-81.
    姚向君,郝先荣,郭宪章.畜禽养殖场能源环保工程的发展及其商业化动作模式的探讨.农业工程学报,2002,18(1):181-184.
    叶树明,楼凯凯,杨俊毅,张东生,陈杭.利用ATP生物发光法测定西湖水体微生物量.浙江大学学报(农业与生命科学版),2006a,32(5):500-504.
    叶树明,楼凯凯,杨俊毅,张东生,陈杭.利用ATP生物发光法测定西湖水体微生物量.浙江大学学报(农业与生命科学版),2006b,32(5):500-504.
    尹军,崔玉波.人工湿地污水处理技术.北京:化学工业出版社.2006:7-52.
    于树,汪景宽,李双异.应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响.生态学报,2008,28(9):4221-4227.
    曾薇,彭永臻,王淑莹.以DO、ORP、pH作为两段SBR工艺的实时控制参数.环境科学学报,2003,23(2):252-256.
    曾向辉,刘世荣,李云开,张克强.集约化畜禽养殖再生水灌溉的研究现状与趋势分析.灌溉排水学报,2007,26(6):1-5.
    张华,付玉兰,丁其.湿地净化功能及其机制的研究进展.山西建筑,2007,33(14):347-348.
    张进,张妙仙,单胜道,骆林平,王敏艳.沼液对水稻生长产量及其重金属含量的影响.农业环境科学学报,2009,28(10):2005-2009。
    张岳.沼气及其发酵物在生态农业中的在综合应用.农业环境保护,1998,17(2):94-95.
    张国治,姚爱莉.藻类对猪粪厌氧废液的净化作用.西南农业学报,2000,13(增刊):105-112.
    张红梅,速宝玉.土壤及地下水污染研究进展.灌溉排水学报,2004,23(3):70-73.
    张庆乐,张文平,党光耀,秦昆,唐心强.玉米芯对废水重金属的吸附机制及影响因素.污染防治技术,2008,21(5):21-22,33.
    张秋芳,刘波,林营志,史怀,杨述省,周先冶.土壤微生物群落磷脂脂肪酸PLFA生物标记多样性.生态学报,2009,28(9):4127-4137.
    张树清,张夫道,刘秀梅,王玉军,张建峰.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用.中国农业科学,2006,39(2):337-343.
    张维理,武淑霞,冀宏杰,Kolbe H.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008-1017.
    张无敌,尹芳,李建昌,刘士清,陈玉保,许玲,毛羽.沼液对土壤有机质含量和肥效的影响.
    可再生能源,2008,26(6):45-47.
    张亚莉.廊坊市农业有机废弃物厌氧处理的综合利用研究.中国农业大学硕士学位论文,2005.
    张永锋,许振良.重金属废水处理最新进展.工业水处理,2003,23(6):1-4.
    张元碧.集约化养猪场的污染问题及治理模式.福建环境,2003,20(4):45-48.
    章明奎,方利平.利用非活体生物质去除废水中重金属的研究.生态环境,2006,15(5):897-900
    郑国砥,陈同斌,高定,罗维,李艳霞.好氧高温堆肥处理对猪粪中重金属形态的影响.中国环境科学,2005,25(1):6-9.
    曾薇,彭永臻,王淑莹.以DO、ORR、pH作为两段SBR工艺的实时控制参数.环境科学学报,2003,23(2):252-256.
    中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社.1980:410-490.
    钟攀,李泽碧,李清荣,王正银.重庆沼气肥养分物质和重金属状况研究.农业环境科学学报2007,26(增刊):165-171.
    钟珍梅,黄秀声,黄勤楼.水葫芦净化沼液效果的研究.福建农业科技,2006,2:84-86.
    周舵.溶解氧浓度和pH对Eh的影响[C],全国核化学化工学术交流年会论文集.2002:2-9.
    周礼恺,张志明.土壤酶活性的测定方法.土壤通报,1980,5:37-39.
    周孟津.厌氧发酵工艺分析.农村能源网,2002.http://www. zjagri.gov.cn/html/n cny/product View/2006012559814.html.
    朱广伟,陈英旭,周根娣.运河(杭州段)沉积物磷释放的模拟实验.湖泊科学.2002,12(4):343-349.
    朱鹤健.水稻土.北京:农业出版社.1985.
    朱自芬,周美兰,李仕华,李英,郭世明,柳仙凤.水稻施用沼液效果研究.云南农业科技,2009,4:36-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700