用户名: 密码: 验证码:
P改性HZSM-5分子筛上乙醇脱水制乙烯反应的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对P改性HZSM-5分子筛催化剂上乙醇脱水制乙烯反应进行了研究。应用部分因子实验设计,水热合成了ZSM-5分子筛;采用等体积浸渍法,制备了P改性HZSM-5催化剂。利用连续固定床反应器,对催化剂的活性和寿命进行了评价,并对母体及改性催化剂进行了XRD、SEM、XRF、NMR、MIP、BET、NH3-TPD、TG、XPS及IR等表征,结合计算化学方法,探索了P改性催化剂可能的构型。
     采用部分因子实验设计,以乙醇为模板剂,在所研究的原料配比范围内,ZSM-5分子筛合成的数学模型为: Y = 50.50–6.08A+14.77B+7.39C+7.66D+16.72AB–12.49AC–13.67AD式中Y是ZSM-5样品的相对结晶度,A、B、C、D分别是初始凝胶中原料H_2O/SiO_2、SiO_2/Al_2O_3、OH-/SiO_2和C_2H_5OH/SiO_2的摩尔比。根据该拟合方程,Y值取值最大时,对应的最优参数状态为:A (-1),B (-1),C (+1),D (+1),也就是在凝胶组成为:H_2O/SiO_2 = 40,SiO_2/Al_2O_3 = 60,OH~-/SiO_2 = 0.15,C_2H_5OH/SiO_2 = 1.5时,可合成出高纯度的ZSM-5分子筛。
     对比硅铝比25、38、50三种P改性HZSM-5分子筛的催化性能,发现P含量以磷铝摩尔比计分别是0.95,1.1,1.0时,在573 ~ 713 K之间较宽的温度范围内,乙烯为反应的主产物。进一步考察硅铝比25的适宜P含量改性催化剂PZ-25-3.4的催化性能,发现该催化剂上的重时空速,随着反应温度的升高而变大,原料中水含量对催化性能的影响,随反应温度升高而减弱;930小时的寿命实验发现,PZ-25-3.4改性催化剂的反应温度由初始的563 K升至653 K,乙醇转化率、乙烯选择性依然高于99 %;再生后PZ-25-3.4催化剂,初始反应温度与新鲜催化剂相同,乙醇转化率为98.7 %,乙烯选择性为99.9 %。
     催化剂的NMR、NH_3~-TPD等表征说明,P与HZSM-5分子筛中的骨架Al上的桥式羟基发生化学键合作用,造成P改性催化剂的酸性降低。XPS、BET及IR等表征发现,催化剂中引入的P以+5价存在于H_2PO_4~-结构中。结合计算化学结果,探讨了PZ-25-3.4改性催化剂可能的构型。
The reaction of ethanol dehydration to ethylene was studied over P-modified HZSM-5 zeolite catalyst in this thesis. Fractional factorial design of experiments was applied to synthesis of ZSM-5 zeolite by hydrothermal method, and P-modified HZSM-5 catalysts were prepared by impregnating. The activity and stability of the catalysts were tested in a continuous flow fixed-bed reactor. The parent and modified catalysts were characterized by XRD、SEM、XRF、NMR、MIP、BET、NH3-TPD、TG、XPS and IR. The possible molecular structure of the P-modified catalysts was investigated by computational chemistry.
     Using fractional factorial design, a mathematical model for ZSM-5 synthesis with ethanol as template was obtained from the experimental data. The model is: Y = 50.50–6.08A+14.77B+7.39C+7.66D+16.72AB–12.49AC–13.67AD Where Y is relative crystallinity of ZSM-5 samples, A, B, C, D are the molar ratios of H_2O/SiO_2, SiO_2/Al_2O_3, OH-/SiO_2, and C_2H_5OH/SiO_2 respectively in initial gel composition. Response optimization predicted by the model showed that, the response Y presented the maximum value at an optimal parameters of A (-1), B (-1), C (+1), D (+1), i.e., pure ZSM-5 could be prepared at a gel composition: H_2O/SiO_2 = 40, SiO_2/Al_2O_3 = 60, OH~-/SiO_2 = 0.15, C_2H_5OH/SiO_2 = 1.5.
     It was found that the main product is ethylene in a broader range of temperatures (573 ~ 713 K) over the P-modified HZSM-5 with a suitable P content. For the P-modified HZSM-5 catalysts with SiO_2/Al_2O_3 molar ratios of 25, 38, 50, the suitable P contents were 0.95, 1.1 and 1.0 (P/Al atomic ratio), respectively. On PZ-25-3.4 modified catalyst (P/Al = 0.95, SiO_2/Al_2O_3=25), catalytic activities indicated that the higher the reaction temperature, the higher the weight hourly space velocity. The effect of water content in feed on catalytic performance decreased with the increment of reaction temperature. The life-time testing for PZ-25-3.4 catalyst showed that ethanol conversion and ethylene selectivity were still above 99 % after 930 hours run at the reaction temperature from 553 K to 653 K. When the deactivated PZ-25-3.4 catalyst was regenerated, ethanol conversion and ethylene selectivity were 98.7 %, 99.9 %, respectively. The initial reaction temperature of the regenerated PZ-25-3.4 catalyst was the same as that of the fresh one.
     NMR, NH3-TPD characterizations indicated that phosphorus interacted with the oxygen of the bridging hydroxyl groups over framework aluminum atoms in tetrahedral coordination, leading to a decrease of the strong acid over P-modified catalysts. Furthermore, XPS, BET and IR characterizations showed that P valence was +5 oxidation state, and there may exists H 2 PO-4 structure over the modified catalysts. Combining this with the result of computational chemistry, the possible structure of P-modified catalyst was proposed in this study.
引文
[1] E.B.韦谢洛夫斯卡雅等著,施荣善译,乙烯共聚物,北京:烃加工出版社,1988:1~125.
    [2]王松汉,何细藕,乙烯工艺与技术,北京:中国石化出版社,2000:1~82.
    [3]莫炳荣,黄科林,广西发展生物酒精乙烯工业的可行性分析,化工技术与开发,2002,31(3):20~23.
    [4]中国石油和石化工程研究会组织编写,当代石油和石化工业技术普及读本乙烯,北京:中国石化出版社,2000,7:1~23.
    [5]李作政,冷寅正,乙烯生产与管理,北京:中国石化出版社,1992:1~68.
    [6]董翠平译,预计全球乙烯供应短缺将持续到2009年,扬子石油化工,2006,21(3):54~54.
    [7]董翠平,乙烯原料问题将凸显,扬子石油化工,2006,21(3):9~9.
    [8]潘峰,吴玉龙,张建安等,Zn与Mn复合改性HZM-5催化剂低浓度乙醇脱水制乙烯,过程工程学报,2007,7(3):490~494.
    [9]胡铁刚,程可可,张建安等,生物乙醇催化制备乙烯的研究进展,现代化工,2007,27增刊(2):96~99.
    [10] R.Le. Van Mao, T.M. Nguyen, G.P. Mclaughlin, The bioethanol-to-ethylene (B.E.T.E.) process, Appl. Catal., 1989, 48: 265~277.
    [11]闵恩泽,利用可再生农业生物资源的炼油厂-推动化学工业迈入“碳水化合物”新时代,化学进展,2006,18(2/3):131~141.
    [12]黄英明,李恒,黄鑫江等,生物乙烯研究进展,生物加工过程,2008,6(1):1~6.
    [13]张旭之,王松汉,戚以政,乙烯衍生物工学,北京:化学工业出版社,1995:1~10.
    [14]徐克勋,精细有机化工原料及中间体手册,北京:化学工业出版社,1997,88~89.
    [15]陈滨,乙烯工学,北京:化学工业出版社,1997:1~30.
    [16]何宪,乙烯工程,广东:广东科技出版社,1997:1~114.
    [17]张宪,NiAPSO-34分子筛合成、表征及其催化乙醇脱水制备乙烯反应性能的研究:[博士学位论文],天津大学,2008.
    [18]谢光全,甲烷氧化偶联制乙烯进展,天然气化工,1999,25(4):34~39
    [19] P. Tynj?l?, T.T. Pakkanen, S. Mustam?ki, Modification of ZSM-5 Zeolite with trimethyl phosphite. 2. catalytic properties in the conversion of C1-C4 alcohols, J. Phys. Chem. B., 1998, 102: 5280~5286.
    [20]孔芬霞,肖睿,生物质乙醇脱水制乙烯,新能源与新材料,37~40.
    [21]顾志华,乙醇制乙烯技术现状及展望,化工进展,2006,25 (8):847~851.
    [22]刘雁,丛津生,邹仁鋆,用序贯法研究乙醇脱水制乙烯的速率模型,化学反应工程与工艺,1995,11(3):302~309.
    [23]洪爱珠,颜桂炀,刘欣萍等,生物乙醇催化脱水制乙烯的研究进展,广州化学,2007,32(4):60~65.
    [24]秦云,乙醇脱水产物的讨论,西南民族学院学报自然科学版,1998,24(1):34~37.
    [25]金克新,赵传钧,马沛生,化工热力学,天津:天津大学出版社,1990,205~266.
    [26]顾志华,王艳丹,金照生等,乙醇脱水反应的热力学分析与实验研究,化学研究,2006,17(1):68~71.
    [27]刘翠鹃,祝红兵,高洪福,乙醇脱水反应的制约条件,佳木斯大学学报(自然科学版),2001,19(3):303~306.
    [28]陶治云,张建芳,朱悦军等,乙醇脱水中取代和消除竞争的讨论,张家口师专学院,1999,15(2):104~106.
    [29]郭铠,唐小恒,周绪美,化学反应工程,北京:北京化学工业出版社,2000, 14~19.
    [30] N.K. Kochar, R. Merims, A.S. Padia, Ethylene from ethanol, Chem. Eng. Prog., 1981, 77(6): 66~70.
    [31]天津大学物理化学教研室编,物理化学(第三版),北京:高等教育出版社,1993,6:365~371.
    [32]袁加程,卢卫平,乙醇脱水制乙烯新法,化学教育,2003,24(12):48.
    [33]高滋,何鸣元,戴逸云,沸石催化与分离技术,中国石化出版社,1999:405~424.
    [34]于云霞,刘必武,NC1301型乙醇脱水制乙烯催化剂的研制,化学工业与工程技术,1995,16(2):8~10.
    [35]朱晓茹,改性纳米HZSM-5催化剂上生物乙醇脱水制乙烯的研究:[硕士学位论文],大连理工大学,2007.
    [36] I. Takahaha, M. Saito, M. Inaba, et al, Dehydration of ethanol into ethylene over solid acid catalysts, Catal. Lett., 2005, 105(3): 249~252.
    [37]龚林军,韩超,谭天伟,乙醇制备乙烯的研究,现代化工,2006,4:44~47.
    [38]周忠清,低浓度乙醇制乙烯的研究,精细石油化工,1993,1:35~37.
    [39]王定一,陈家雄,李景林,黄佩芳,乙醇制乙烯新催化剂SAPO-34特性研究,广西化工,1991,4:1~3.
    [40] J.B. Uytterhoeven, J.M. Jacobs, P.J. Tastenhoye, et al, Process for obtaining ethylene from ethanol, U.S. Patent 4727214, Feb. 23, 1988.
    [41]郝彤,乙醇稀水溶液在ZSM-5分子筛上催化剂上脱水制乙烯,石油化工,1985,14(2):92~93.
    [42] C.B. Phillips, R. Datta, Production of ethylene from hydrous ethanol on HZSM-5 under mild condition,Ind. Eng. Chem. Res., 1997, 36(11): 4466~4475.
    [43]潘履让,李赫晅,NKC-03A乙醇脱水制乙烯催化剂,石油化工,1987,16(11):764~767.
    [44]赵本良,王静波,王春梅等,杂多酸催化剂催化乙醇脱水制乙烯,东北师大学报然科学版,1997,3:41~43.
    [45] D. Varisli, T. Dogu, G. Dogu, Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts, Chem. Eng. Sci., 2007, 62: 5349~5352.
    [46] G.A. El-Shobaky, M.M. Doheim, A.M. Ghozza, et al, Catalytic conversion of ethanol over Co3O4/MgO system treated with g-irradiation, Mater. Lett., 2002, 57: 525~531.
    [47] T. Zaki, Catalytic dehydration of ethanol using transition metal oxide catalysts, J. Colloid Interface Sci., 2005, 284: 606~613.
    [48] M.M. Doheim, S.A. Hanafy, G.A. El-Shobaky, Catalytic conversion of ethanol and isopropanol over the Mn2O3/Al2O3 system doped with Na2O, Mater Lett, 2002, 55: 304~311.
    [49] R.J. Argauer, G.R. Landolt, Crystalline zeolite HZSM-5 and method of preparing the same, U.S. Patent 3702886, Nov. 14, 1972.
    [50]杨少华,崔英德,陈循军等,ZSM-5沸石分子筛的合成和表面改性研究进展,精细石油化工进展,2003,4(4):47~50.
    [51]杨小明,舒兴田,何鸣元,一种ZSM-5分子筛的合成方法,中国专利CN1187462,1998-7-15.
    [52] C.J. Plank, E.J. Rosinski, M.K. Rubin, Method for producing zeolites, U.S. Patent 4175114, Nov. 20, 1979.
    [53]张永明,郑叔琴,刘宏海,ZSM-5沸石合成技术的进展(Ⅲ),催化裂化,1997,16 (5):53~56.
    [54]郭益群,刘冠杰,魏振枢,ZSM-5沸石分子筛的制备及其芳构化活性的研究,河南化工,1994,12:9~11.
    [55]李赫晅,项寿鹤,吴德明等,ZSM-5沸石分子筛合成的研究,高等学校化学学报,1981,2(4):517~519.
    [56]孙予罕,仁杰,王锋等,一种快速合成高结晶度沸石分子筛的方法,中国专利CN1417116A,2003-5-14.
    [57] R.Le. Van Mao, P. Levesque, G. Mclaughlin, et al. Ethylene from ethanol over zeolite catalysts, Appl. Catal., 1987, 34: 163~179.
    [58] J.M. Jacobs, P.A. Jacobs, J.B. Uytterhoeven, Process for obtaining ethylene from ethanol, U.S. Patent 4670620, Jun. 2, 1987.
    [59] M. Inaba, K. Murata, M. Saito, et al, Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts, React. Kinet. Catal. Lett., 2006, 88: 135~142.
    [60] D.R. Whitcraft, X.E. Veryklos, R. Mutharasan, Recovery of ethanol from fermentation broths by catalytic conversion to gasoline, Ind. Eng. Chem. Process. Des. Dev., 1983, 22: 452~457.
    [61] E. Costa, A. Uguina, J. Aguado and P.J. Hernandez, Ethanol to gasoline process: effect of variables, mechanism, and kinetics, Ind. Eng. Chem. Process. Des. Dev., 1985, 24: 239~244.
    [62] A.T. Aguayo, A.G. Gayubo, A.M. Tarrío, Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite, J. Chem. Tech. Biotech., 2002, 77: 211~216.
    [63] M. Inaba, K. Murata, M. Saito et al, Production of chemical compound from bio-ethanol by zeolite catalysts, 4th international symposium on environmentally conscious design and inverse manufacturing, Tokyo, Japan, December 12-14, 2005: 866~872.
    [64] A.T. Aguayo, A.G. Gayubo, A. Atuxa, et al, Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons, Catal. Today., 2005, 107-108: 410~416.
    [65] J.T. Scanlon, D.E. Willis, Calculation of flame ionization detector relative response factors using the effective carbon number concept, J. Chromatogr. Sci., 1985, 23: 333~339.
    [66] J. Novák, Quantitative analysis by gas chromatography, New York: Marcel. Dekker. Inc, 1975, 47~58.
    [67] C.T. Poole, The essence of chromatography, Amsterdam: Elsevier, 2nd edn, 2003, 226~229.
    [68]王宇成,最新色谱分析检测方法及应用技术实用手册,吉林:吉林省出版发行集团,2004,190~205.
    [69] Y.G. Adewuyi, D.J. Klocke, J.S. Buchanan, Effects of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) RE-USY catalyst, Appl. Catal. A: Gen., 1995, 131: 121~133.
    [70] H.A. Zaidi, K.K. Pant, Catalytic conversion of methanol to gasoline range hydrocarbons, Catal. Today., 2004, 96: 155~160. [7 1 ] T.C. Tsai, S.B. Liu, I. Wang, Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts, Appl. Catal. A: Gen., 1999, 181: 355~398.
    [72] T.Y. Song, R.R. Xu, L.Y. Li, et al, The templating effect during the formation of ZSM-5 type zeolite, Edited by Y. Murakami, A. Iijima, J.W. Ward, New developments in zeolite science and technology: proceeding of the 7th International Zeolite Conference, Tokyo, 1986: 201~206.
    [73] S.B. Kulkarni, V.P. Shiralkar, A.N. Kotasthanc, et al, Studies in the synthesis of ZSM-5 zeolites, Zeolites, 1982, 2: 313~318.
    [74] E. Narita, K. Sato, N. Yatabe, et al, Synthesis and crystal growth of zeolite ZSM-5 from sodium aluminosilicate systems free of organic templates, Ind. Eng. Chem. Prod. Res. Dev., 1985, 24: 507~512..
    [75] V.P. Shiralkar, A. Clearfield, Synthesis of molecular sieve ZSM-5 without the aid of template, Zeolites, 1989, 9: 363~370.
    [76] C. Falamaki, M. Edrissi, M. Sohrabi, Studies on the crystallization kinetics of zeolite ZSM-5 with 1,6-hexanediol as a structure directing agent, Zeolites, 1997, 19: 2~5.
    [77] S.D. Kim, S.H. Noh, J.W. Park, et al, Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process, Micropor. Mesopor. Mater., 2006, 92: 181~188.
    [78] R.K. Vempati, R. Borade, R.S. Hegde, et al, Template free ZSM-5 from siliceous rice hull ash with varying C contents, Micropor. Mesopor. Mater., 2006, 93: 134~140.
    [79] P. Wang, B.J. Shen, D.D. Shen, et al, Synthesis of ZSM-5 zeolite from expanded perlite/kaolin and its catalytic performance for FCC naphtha aromatization, Catal Commu., 2007, 8: 1452~1456.
    [80] R. Anuwattana, K.J. Balkus Jr, S. Asavapisit, et al, Conventional and microwave hydrothermal synthesis of zeolite ZSM-5 from the cupola slag, Micropor. Mesopor. Mater., 2008, 111: 260~266.
    [81] E.Costa, M.A. Uguina, A. de Lucas, et al, Synthesis of ZSM-5 zeolites in the C2H5OH-Na2O-Al2O3-SiO2-H2O system, J. Catal., 1987, 107: 317~324.
    [82] M.A. Uguina, A. de Lucas, F. Ruiz, et al, Synthesis of ZSM-5 from ethanol containing systems: influence of the gel composition, Ind. Eng. Chem. Res., 1995, 34: 451~456.
    [83]张弛,六西格玛实验设计,广东:广东经济出版社,2003,1~225.
    [84] R.G. Brereton, Chemometrics: data analysis for the laboratory and chemical plant, New York: John Wiley & Sons, 2003, 15~213.
    [85] M. Kincl, S. Turk, F. Vre?er, Application of experimental design methodology in development and optimization of drug release methodInt, J. Pharm., 2005, 291: 39~49.
    [86] C.F. Jeff Wu, M. Hamada著,张润楚,郑海涛,兰燕等译,实验设计与分析及参数优化,北京:中国统计出版社,2003,81~174.
    [87]史永刚,冯新泸,李子存,化学计量学,北京:中国石化出版社,2003,1~82.
    [88] A.ávila, E.I. Sánchez, M.I. Gutiérrez, Optimal experimental design applied to the dehydrochlorination of poly (vinyl chloride), Chemom. Intell. Lab. Syst., 2005, 77: 247~250.
    [89] Montgomery D.C.著,汪仁官,陈荣昭译,实验设计与分析,北京:中国统计出版社,1998,1~437.
    [90] X. Zhang, R.J. Wang, X.X. Yang, et al, Central composite experimental design applied to the catalytic aromatization of isophorone to 3,5-xylenol, Chemom. Intell. Lab. Syst., 2007, 89: 45~50.
    [91]张敏,唐来安,王小军等,用正交实验设计法优化由间苯二酚合成PBO单体盐酸盐的工艺条件,高分子材料科学与工程,2006,22(1):60~63.
    [92]王彦飞,马沛生,王加宁等,化学合成3-羟基丁酸工艺条件的分析与优化,石油化工,2004,33(9):833~837.
    [93]李晓娥,阎宏涛,刘木兰,掺杂与涂膜纳米TiO2光催化性能的研究,西北大学学报(自然科学版),2003,33(2):163~166.
    [94]丁洪生,正交实验设计法研究ZSM-5催化剂的积炭量,光谱实验室,2006,23(3):479~482.
    [95] A. Cichocki, P. Koscielniak, Marek Michalik, et al, Experimental designs applied to hydrothermal synthesis of zeolite ERI + OFF (T) in the Na2O-K2O-Al2O3 -SiO2 -H2O system. part 1. diagnostic study, Zeolites, 1997, l8: 25~32.
    [96] A. Cichocki, P. Koscielniak, Experimental designs applied to hydrothermal synthesis of zeolite ERI+OFF(T) in the Na2O-K2O-Al2O3-SiO2-H2O system. Part 2. regular study, Micropor. Mesopor. Mater., 2000, 29: 369~382.
    [97] A. Cichocki, P. Koscielniak, Experimental designs applied to hydrothermal synthesis of zeolite ERI + OFF (T) in the Na2O-K2O-Al2O3 -SiO2-H2O system. part 3. mathematical models and geometrical forms of the relationship between product properties and synthesis parameters: an attempt to optimize synthesis conditions. Micropor. Mesopor. Mater., 2000, 41: 241~251.
    [98] Q.M. Gao, B.M. Weckhuysen, R.A. Schoonheydt, On the synthesis of CoAPO-46, -11 and -44 molecular sieves from a Co(Ac)2·4H2O·Al(iPrO)3·H3PO4·Pr2NH·H2O gel via experimental design, Micropor. Mesopor. Mater., 1999, 27: 75~86.
    [99] L. Frunza, P.V.D. Voort, E.F. Vansant, et al, On the synthesis of vanadium containing molecular sieves by experimental design from a VOSO4·.5H2O·Al(iPrO)3·Pr2NH·H2O gel: occurrence of VAPO-41 as a secondary structure in the synthesis of VAPO-11, Micropor. Mesopor. Mater., 2000, 39: 493~507.
    [100] A. Katovic, M. Cosco, P. Cozzucoli, et al, The factorial experimental design applied to the zeolite synthesis, Studies in Surface Science and Catalysis. Amsterdam, Elsevier, 2001, 140: 323~330.
    [101] M. Tagllabue, L.C. Carluccio, D. Ghisletti, et al. Multivariate approach to zeolite synthesis, Catal Today., 2003, 81: 405~412.
    [102] E. Dumitriu, D. Lutic, V. Hulea, et al, Synthesis optimization of chabasite-like SAPO-47 in the presence of sec-butylamine, Micropor. Mesopor. Mater., 1999, 31: 187~193.
    [103] G. ?ye, J. Sjoblom, M. Stocker, A multivariate analysis of the synthesis conditions of mesoporous materials, Micropor. Mesopor. Mater., 2000, 34: 291~299.
    [104] Y.H. Yang, S.Y. Lim, C. Wang, D. Harding, G. Haller, Multivariate correlation and prediction of the synthesis of vanadium substituted mesoporous molecular sieves, Micropor. Mesopor. Mater., 2004, 67: 245~257.
    [105] T. Klimova, A. Esquivel, J. Reyes, et al, Factorial design for the evaluation ofthe influence of synthesis parameters upon the textural and structural properties of SBA-15 ordered materials, Micropor. Mesopor. Mater., 2006, 93: 331~343.
    [106] S.Y. Sang, F.X. Chang, Z.M. Liu, et al. Difference of ZSM-5 zeolites synthesized with various templates, Catal Today., 2004, 93-95: 729~734.
    [107] K. Byrappa. Handbook of hydrothermal technology: technology for crystal growth and materials processing. Noyes publications, 2001: 1~364.
    [108] Z.R. Lazic, Design of experiments in chemical engineering: a practical guide, Weinheim: WILEY-VCH, 2004, 157~323.
    [109] R. Szostak, Molecular sieves: principles of synthesis and identification, New York: Van Nostrand Reinhold, 1989, 51~126.
    [110] V.N. Romannikov, V.M. Mastikhin, S. Ho?evar, et al, Laws observed in the synthesis of zeolites having the structure of zsm-5 and varying chemical composition, Zeolites, 1983, 3: 311~320.
    [111]吕仁庆,直接法ZSM-5的改性及水热活性稳定性研究:[博士学位论文],南开大学,2003.
    [112] W.W. Kealing, S.A. Butter, Production of chemicals from methanol: 1.low molecular weight olefins, J. Catal., 1980, 61: 155~164.
    [113] B.S. Balkrishnan, S.G. Rao, A.N. Hegde, et al, Catalytic activity and selectivity in the conversion of methanol to light olefins. J. Molecul. Catal., 1982, 17(2-3): 261~270.
    [114] Kealing W.W, Chu C, Young LB, et al, Selective alkylation of toluene with methanol to produce para-Xylene, J. Catal., 1980, 67: 159~174.
    [115] P. Tynj?l?, T.T. Pakkanen, Modification of ZSM-5 zeolite with trimethyl phosphate. part 1. structure and acidity, Micropor. Mesopor. Mater., 1998, 20: 363~369.
    [116] A. Széchényi, R. Barthos, F. Solymosi, Aromatization of ethanol on Mo2C/ZSM catalysts, Catal. Lett., 2006, 110: 85~89.
    [117] J. Schulz, F. Bandermann, Conversion of ethanol over zeolite H-ZSM-5, Chem. Eng. Technol., 1994, 17: 179~186.
    [118] S. Bun, S. Nishiyama, S. Tsuruya, et al, Ethanol conversion over ion-exchanged ZSM-5 zeolites, Appl. Catal., 1990, 59: 13~29.
    [119]潘履让,蒋德林,李赫晅,乙醇脱水制乙烯新型催化剂的研发(Ⅱ),石油化工,1986,15(3):155~159.
    [120] J.Q. Zhuang, D. Ma, G. Yang, et al, Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking, J. Catal., 2004, 228: 234~242.
    [121]许越,催化剂设计与制备工艺,北京:化学工业出版社,2003,76~87.
    [122]张秀斌,李崎峰,柳云骐等,磷镁改性的ZSM-5分子筛催化性能研究,工业催化,2004,12(2):40~45.
    [123]潘履让,李赫晅,乙醇脱水制乙烯新型催化剂的研制(Ⅰ),石油化工,1985,14(3):154~157.
    [124] S.N. Chaudhuri, C. Halik, J.A. Lercher, Reaction of ethanol over HZSM-5, J. Mol. Catal. 1990, 62: 289~295.
    [125] K. Damodaran, J.W. Wiench, S.M. Cabral de Menezes, et al, Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy, Micropor. Mesopor. Mater., 2006, 95: 296~305.
    [126]潘履让,李赫晅,乙醇脱水制乙烯新型催化剂的研制(Ⅲ),催化剂的失活与再生,石油化工,1986,15(9):523~527.
    [127] S.M. Cabral de Menezes, Y.L. Lam, K. Damodaran, et al, Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties, Micropor. Mesopor. Mater., 2006, 95: 286~295. [ 1 28] A.K. Talukdar, K.G. Bhattacharyya, S. Sivasanker, HZSM-5 catalyzed conversion of aqueous ethanol to hydrocarbons, Appl. Catal A: Gen., 1997, 148: 357~371.
    [129]张常群,嫣红,郭广生等,计算化学,北京:高等教育出版社,2006:1~167.
    [130] B. Viswanathan, Alex C. Pulikottil, Surface properties of ZSM-5 modified by phosphorus, Catal. Lett., 1993, 22: 373~379.
    [131] J.C. Vedrine, A. Auroux, P. Dejaifve, et al, Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite, J. Catal., 1982, 73, 147~160.
    [132] N.H. Xue, X.K. Chen, L. Nie, et al, Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5, J. Catal., 2007, 248: 20~28.
    [133] G.L. Zhao, J.W. Teng, Z.K. Xie, et al, Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. J. Catal., 2007, 248: 29~37.
    [134] G. Caeiro, P. Magnoux, J.M. Lopes, et al, Stabilization effect of phosphorus on steamed H-MFI zeolites. Appl. Catal A: Gen., 2006, 314: 160~171.
    [135]辛勤,催化研究中的原位技术,北京:北京大学出版社,1993:39~57.
    [136] T. Blasco, A. Corma, J. Martínez-Triguero, Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition, J. Catal., 2006, 237: 267~277.
    [137]张平,王乐夫,李雪辉等,高温漫反射红外光谱及探针分子识别分子筛中的羟基,分析化学,2002,30(9):1096~1098. [ 1 38] J.A. Lercher, G. Rumplmayr, Controlled decrease of acid strength by orthophosphoric acid on ZSM-5, Appl. Catal., 1986, 25: 215~222.
    [139] V.N. Romanikov, A.J. Tissler, R. Thome, Alkylation of aromatic on p-containing ZSM-5 zeolites, React. Kinet. Catal. Lett., 1993, 51(1): 125~134.
    [140] J. Caro, M. Bulow, M. Derewinski, et al, NMR and IR studies of zeoliteH-ZSM-5 modified with orthophosphoric acid, J. Catal., 1990, 124: 367~375.
    [141] W.J. Mortier, J. Sauer, J.A. Lercher, et al, Bridgling and terminal hydroxyls. a structural chemical and quantum chemical discussion. J. Phys. Chem., 1984, 88: 905~912.
    [142] J. Sauer, P. Ugliengo, E.Garrone, et al, Theoretical study of van der waals complexes at surface sites in comparison with the experiment, Chem. Rev., 1994, 94(7): 2095~2160.
    [143] M.T. Aronson, R.J. Gorte, W.E. Farneth, The influence of osonium ion and carbenium ion stabilities on the alcohol/H-ZSM-5 interaction, J. Catal., 1986, 98: 434~443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700