用户名: 密码: 验证码:
太湖地区稻麦轮作体系氮肥适宜用量及提高其利用效率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国稻田单季氮肥用量平均为180 kg N ha-1,比世界平均用量大约高75%左右。在江苏等一些高产稻区,稻田的施氮量为270-300 kg ha-1,少数田块甚至高达450 kgha-1。氮肥的高投入造成其利用率降低,据报道,我国稻田氮肥利用率一般为30%-40%,在施氮量较高的太湖地区,甚至不到20%。较低的氮肥利用率不仅增加作物种植成本,更带来严重的环境污染。在一定区域内控制氮肥的总用量,确定在一定产量目标下的氮肥区域平均适宜用量,这不仅有利于提高水稻的氮肥利用率,保证区域的水稻总产量,而且可以减轻因氮肥过量施用所引起的环境负荷。本项研究于2003年到2006年在江苏省常熟农业生态实验站及乡镇农田上进行大田和微区试验,2007年在南京农业大学温室内进行盆栽实验。采用田间试验,结合15N示踪技术和水稻土培试验,研究和确定了太湖地区稻麦轮作系统下水稻和小麦的氮肥区域平均适宜用量;同时还研究了氮肥用量、施肥时期对水稻的生长发育、稻谷产量及氮素吸收、转运和利用的影响;采用新的氮高效水稻品种和施用水面分子膜以提高氮肥利用率等方面的研究。主要的研究结果如下:
     (1)从2003年到2006年在太湖地区不同类型土壤上进行了不同氮水平的田间试验,以研究太湖地区稻麦轮作系统下氮肥区域平均适宜用量。区域平均适宜施氮量是以各田块的适宜施氮量为基础指标,试验分析所得太湖地区水稻的区域平均适宜施氮量为167 kg ha-1,小麦为212 kg ha-1。两者加起来,太湖地区稻麦轮作系统下的区域平均适宜施氮量是379 kg ha-1yr-1,这个数据相对于最大产量下的施氮量减少了21.7%,相对与农民的习惯施氮量减少了36.8%。在区域平均适宜施氮量下,作物产量和农民收益并没有降低,反之,有效提高了氮肥利用率。
     (2)2005年在常熟市大义镇农田上进行了田间小区及微区试验,研究了不同施氮量对两个品种水稻(新品种4007和当地品主栽品种武运粳15,WJ15)的产量、氮素吸收、累积、转运及利用的影响。结果表明4007的籽粒产量在各个施氮水平下显著高于WJ15。施氮量显著促进了水稻各生育期地上部氮素的累积,水稻从分蘖盛期到拔节期植株氮素累积量最大,占总生育期的37%-39%。当施氮量从0 kg ha-1。增加到250kg ha-1,4007的氮素转运量从72.0 kg ha-1上升到104 kg ha-1,氮素转运率从66%下降到51%;而WJ15的氮素转运量从57.0 kg ha-1上升到96.5 kg ha-1,氮素转运率也从57%下降到47%.籽粒中的氮素65%-88%来自营养器官的转运,只有12%-35%是后期从土壤吸收所得。两个品种水稻均表现为15N在籽粒中的分配比例随施氮量的增加逐渐降低,在茎叶的分配率相应上升,根中15N的分配率没有差异,说明增施氮肥有利于水稻营养器官对肥料的吸收。试验结果还表明,15N在水稻各器官的分配为:籽粒>茎叶>根,4007中15N在籽粒中的分配比例要高于WJ15,在茎叶中低于WJ15。说明氮素再分配效率是决定4007水稻高产和高氮肥利用率的重要因素之一。
     (3)运用15N示踪技术研究了不同生育时期水稻对肥料氮的吸收和分配。结果表明:15N分别标记基肥(N1)、分蘖肥(N2)和拔节孕穗肥(N3)的处理中,水稻吸收的氮素在分蘖盛期、拔节期和开花期分别有23.1%、8.3%和19.9%来自标记肥料;从开花期到成熟期,不同时期标记的15N转移量大小为:拔节孕穗追肥(N3)>基肥(N1)>分蘖期追肥(N2),但基肥的氮素转运效率最高,其他两次追肥氮素转运效率相当;在成熟期,N1、N2、N3处理残留在的稻草中的15N分配比例为24.3%、26.7%和30.4%.无论是氮肥基施,还是分蘖期或拔节孕穗期追肥,水稻开花期之前所吸收的15N主要分配在叶片中,其次是鞘,再次是茎;开花期后,随着15N从营养器官向籽粒中的转移,叶片、茎干和鞘中的15N分配百分比逐渐下降,籽粒15N的分配百分比逐渐上升。试验结果还显示,基肥15N标记时,分蘖期所吸收氮来自肥料最高,为23.1%,随生育期的推进逐渐下降,到成熟期仅为10.6%,成熟期吸收的氮来自分蘖期和拔节孕穗期追施的氮肥分别为5.9%和12.4%.综上所述,当土壤氮素含量不高时,基肥对水稻整个生育期生长很重要,基肥适量增加可显著增加水稻茎蘖数,对水稻群体质量建成有决定作用;拔节孕穗肥可显著促进水稻生育后期的籽粒灌浆和充实,增加拔节孕穗期的氮素供应有利于提高水稻的氮素收获指数.
     (4)田间试验条件下,探讨了在施200 kg N ha-1和施250 kg N ha-1两种处理下,加施水面分子膜对太湖地区水稻的增产效应,对稻田氨挥发的影响及不同生育期水稻各器官吸氮量的变化状况;同时应用15N示踪法研究了加膜对水稻氮素吸收及利用率的影响.结果表明,在施200 kg N ha-1的条件下,加膜对水稻的产量效应及氨挥发作用不明显,但在生育前期可显著促进茎叶对氮素的吸收,生育后期使茎叶的氮素大量向籽粒转移,使得籽粒吸氮量提高了13.2%;当施250 kg N ha-1时,加膜可促进分蘖,有利于有效穗数的形成,使水稻增产17.8%,氨挥发总量可减少4.15个百分点,整个生育期除分蘖初期外,水稻茎叶的吸氮量呈递增趋势,但籽粒吸氮量增加不明显。15N示踪法测得结果显示无论那种处理,加膜都有利于水稻各器官对氮素的吸收,植株总体吸氮量可增加3.8%-5.9%;同时,加膜使得表层土壤15N的丰度增加,土壤残留提高,从而减少氮素的损失,对环境做出贡献。
The average nitrogen (N) fertilizer in China applied to rice was 180 kg N ha-1, which is 75% higher than the world average. In some regions with high rice productions, such as Jiangsu Province, the common N application rate in rice season was 270-300 kg ha-1, and even 450 kg N ha-1 was applied in some area. N recovery rate from fertilizer (REN) was relatively low when applied in high doses, and thus it is reported that the REN by rice in China was around 30-40%, or even less than 20% could be found in Tai lake regions, where over N fertilization was often observed. Low REN did not increase the cost of the crop production, but resulted in serious environment pollution. Thus, the REN and net incomes of farmers could increase substantially and N loss could decline significantly when optimal N fertilizer application was practiced. Field experiments and micro-experiments were carried out from 2003 to 2006 at Agricultural Ecological Experiment Station and some farmer's field in Changshu County, Jiangsu Province, and pot experiment was conducted in green house at Nanjing agricultural university in 2007. The objectives of this study are:(1) To determine the Regional Mean Optimal N application Rate (RMOR) for rice and wheat production with a good consideration of increased REN and minimized N loss; (2) To identify the effects of N application rate and timing on rice growth, grain yield, N uptake, translocation and REN; (3) To assess the effects of improved REN by planting new rice cultivar with high REN and applying water surface film-forming material in the field. The results were showed as follo wings:
     1. In order to study the RMOR to rice and wheat in Taihu Region, field experiments were conducted with different N application rates from 2003 to 2006. RMOR was calculated based on the average of the optimal N rate in each field. They were 167 kg N ha-1 for rice and 212 kg N ha-1 for wheat. The N application rate for the rice-wheat rotation system at RMOR was only 379 kg N ha-1 per year, which result in 21.7% and 36.8% reduction per year in N application compared to Regional Mean Maximal Rate (RMMR) and local N application rate, without negative effect on crop yield and farmers' net income. Furthermore, RMOR greatly decreased N loss and increased N use efficiency.
     2. Field and micro-plot experiments were conducted under different N application rates to study the effects of N application rate on N uptake and translocation of two rice cultivars (4007, a new rice cultivar, and Wuyunjingl5, WJ15, a native one). The increases in grain yield with N fertilizer (100,150,200 and 250 kg N ha-1) over the control were 20.6%, 33.6%,37.3% and 34.8% in 4007, while they were 9.41%,14.3%,20.3% and 19.4% in WJ15. N accumulation in rice increased at each growth stage as the enhanced N application rate at both cultivars. The largest N uptake by plants was found between midtillering and initiation and it was 37%-39% of the total N uptake in whole growth period. N translocation to grains increased with enhanced N application rate, ranging from 72.0 kg N ha-1 to 104.4 kg N ha-1 for 4007, and 57.0 kg N ha-1 to 96.5 kg N ha-1 for WJ15, and N translocation efficiency was 66%-51% and 57%-47% for 4007 and WJ15, respectively. 65%-88% of grain N came from the existing N reserves of vegetative tissues acquired before flowering, and only 12%-35% uptaken from soil at reproductive stage. The 15N distribution in grains decreased significantly with increased N application rates, while there was a reverse trend in straw, and no difference in root of both cultivars among the N application rates. The 15N distribution rate in grains of 4007 was much higher than that in WJ15, but lower in straw of 4007 in comparsion with WJ15 under the same N application. Clearly, the higher 15N distribution rate in grains was the main reason for the high grain yield and REN of 4007.
     3. Fertilizer-N uptake and distribution of rice were studied using 15N tracer technique. 23.1%,8.3% and 19.9% of N uptake in mid-tillering, initiation and anthesis were from 15N labeled fertilizer applied in base (N1), tillering (N2) and initiation (N3), respectively. The 15N translocation from anthesis to maturity was in the order of N3> N1> N2, but the 15N translocation efficiency was higher in N1 (base fertilizer treatment) than in the other two treatments. At maturity, the 15N distribution in straw in the treatments of N1, N2 and N3 was only 24.3%,26.7% and 30.4%, respectively. No matter what time the N fertilizer was applied, the 15N uptake was mostly distributed in leaves, then in the sheath, the least in stem, and 15N distribution in spike increased with the increased 15N translocated from vegetable organs to spike after anthesis. The study also showed that the 15N uptake at maturity in N1, N2 and N3 treatments was 10.6%,5.9% and 12.4%, respectively. The results indicate that when soil N content is not high, the base fertilizer application is important to rice growth, and optimal increment may help increase tillerings, and improve rice quality; the initiation fertilizer significantly promotes quantities during grain filling, and thus application of N fertilizer in initiation is of considerable advance in increasing N harvest index (NHI).
     4. Effect of applying water surface film-forming material on rice yield, ammonia volatilization, N uptake and utilization were also assessed between the two N application rates of 200 and 250 kg ha-1 in field condition. When 200 kg N ha-1 was applied, water surface film-forming material resulted in little differences in grain yields and ammonia volatilization, but much N uptake in rice leaf and stem before anthesis were found, which was benefitable in N translocation from vegetable organs to seeds in the reproductive growth stage. Accordingly, the N accumulation in seeds (treated by water surface film-forming material) was improved by 13.2% compare to control. When 250 kg N ha-1 was applied, the grain yields in the treatment of water surface film-forming material was increased by 9.9% compared to control and this was mainly contributed by more numbers of tillering. In addition, ammonia volatilization was decreased by 4.15%. Except the tillering stage, higher N uptake was found in leaves and stems during the all growth stage, but no difference was observed in seeds. Whatever the N application rate was, application of water surface film-forming material was benefitable in N accumulation in every part of rice plants, and the total N accumulation was increased by 3.8%-5.9%; Moreover, application of water surface film-forming material could make much more 15N left in the surface of the soil, and make less N lost, and thus contribute a lot to decreased pollution to environment.
引文
1. 蔡贵信,朱兆良.稻田中化肥氮的气态损失.土壤学报,1995,32(增刊):128-135.
    2. 蔡燕华.氮肥施用中的污染问题及防治对策.安徽农学通报,2007,13(18):48-50.
    3. 曹洪生,黄丕生,谬宝山.两种类型中粳稻吸氮分析及施肥技术研究.苏州科技学院学报(社会科学版),1992,9(1):35-41.
    4. 曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定.江西农业大学学报,2000,22(2):162-168.
    5. 曹亚澄.氮同位素质谱分析法.见:鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,2000:558-564.
    6. 陈荣业,孙秀廷,李阿荣,潘遵谱,陈全武,惠茂新.苏州高产稻区氮肥的经济施用.土壤学报,1983,20(4):373-386.
    7. 陈荣业,陈苇.稻田已知标记尿素去向的研究.中国水稻科学,1990,4(3):122-126.
    8. 陈子元,温贤芳,胡国辉.核技术及其在农业中的应用.北京.科学出版社,1983.
    9. 崔玉亭,程序,韩纯儒,.李荣刚.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究.中国农业大学学报,1998,3(5):51-51.
    10. 戴先福,苏泽胜,桂彩虹,朊新明,施伏芝,罗志祥,鲁长贵.不同基因型水稻苗期根系吸氮力的研究.安徽农业科学,2003,31(5):713-714.
    11. 邓美华,尹斌,张绍林,朱兆良,石孝均.不同施氮量和施氮方式对稻田氨挥发损失的影响.土壤,2006,38(3):263-269.
    12. 董明辉,张洪程,戴其根,霍中洋,孟立明.不同粳稻品种氮素吸收利用特点的研究.扬州大学学报(农业与生命科学版),2002,23(4):43-46.
    13. 段英华,张亚丽,沈其荣,陈红云,张勇.增硝营养对不同基因型水稻苗期氮素吸收同化的影响.植物营养与肥料学报,2005,11(2):160-165.
    14. 段永蕙,张乃明,张玉娟.施肥对农田氮磷污染物径流输出的影响研究.土壤,2005,37(1):48-51.
    15.方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,2001,7(2):159-165.
    16. 符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究.植物营养与肥料学报,2001,7(2):145-152.
    17. 傅志坚,王德先.水稻对红壤中氮磷的吸收利用.核农学报,1992,6(4):214-218.
    18. 高超,朱建国,窦贻俭.农业非点源污染对太湖水质的影响:发展态势与研究重点.长江流域资源与环境,2002,11(3):260-263.
    19. 郭天财,宋晓,冯伟,马冬云,谢迎新,王永华.高产麦田氮素利用、氮平衡及适宜施氮 量.作物学报,2008,34(5):886-892.
    20.郭章贤,卢华兵,锅国锦.施氮量、栽培密度对玉米浙甜7号产量的影响.浙江农业科学,2007,5:549-550.
    21.黄见良,李合松,李建辉,邹应斌,陈开铁.不同杂交水稻吸氮特性与物质生产的关系.核农学报,1998,12(2):89-94.
    22.黄见良.水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究.长沙:湖南农业大学博士学位论文,2003.
    23.黄见良,邹应斌,彭少兵,Buresh R J.水稻对氮素的吸收、分配及其在组织中的挥发损失.植物营养与肥料学报,2004,10(6):579-584.
    24.黄进宝,范晓晖,张绍林,葛高飞,孙永红,冯霞.太湖地区黄泥土壤水稻氮素利用与经济生态适宜施氮量.生态学报,2007,27(2):588-595.
    25.江立庚,戴廷波,韦善清,甘秀琴,徐建云,曹卫星.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471.
    26.江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径.中国水稻科学,2002,16(3):261-264.
    27.蒋永忠,吴金贵,娄德仁.氮素化肥对农业生态环境的污染及其控制措施.江苏农业科学.1998,6:48-50
    28.巨晓堂.冬小麦/夏玉米轮作体系中土壤-肥料氮的转化及去向.北京:中国农业大学博士学位论文,2000.
    29.巨晓堂,张福锁.中国北方土壤硝态氮的累积及其对环境的影响.生态环境,2003,12(1):24-28.
    30.李冬初,徐明岗,李菊梅,秦道珠,八木一行,宝川靖和.化肥有机肥配合施用下双季稻田氮素形态变化.植物营养与肥料学报,2009,15(2):303-310.
    31.李培德,朴钟泽,张建明,朱春梅,王士梅.水稻不同器官氮积累及转化效率与氮素利用效率的关系.中国农学通报,2007,23(9):287-292.
    32.李荣刚,崔玉亭,程序.苏南太湖地区水稻氮肥施用与环境可持续发展.耕作与栽培,1999,4:49-63.
    33.李庆逵.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997.
    34.李荣刚.高产农田氮素肥效与调控途径-以江苏太湖地区稻麦两熟农区为例推及全省.北京:中国农业大学博士学位论文,2000.
    35.李伟波,吴留松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究.土壤学报,1997,34(1):67-73.
    36.李友宏,王芳,罗旭雄,虎希柏,边椒华.徐层尿素对主要作物增产效果的研究.土壤肥料,2001,1:19-22.
    37.廖晓勇,张杨珠,刘学军,陈新平,张福锁.农田生态系统中土壤氮素行为的研究现状与展望.西南农业学报,2001,14(3):94-98.
    38.林葆.提高作物产量,增加施肥效应.见:中国土壤学会.中国土壤科学的现状与前景.江苏:江苏科学技术出版社,1991:29-32.
    39.凌启鸿.水稻栽培理论与技术兼及作物栽培科学的发展评述(下).中国稻米,1999,2:3-8.
    40.凌启鸿.作物群体质量.上海:上海科学技术出版社,2000:96-107.
    41.凌启鸿,张洪程,黄丕生,凌励,戴其根.水稻高产氮肥合理施用的运筹新探索.土壤学报,2002,39(增刊):36-40.
    42.刘德林,聂军,肖剑.15N标记水稻控释氮肥对提高氮素利用效率的研究.激光生物学报,2002,11(2):87-92.
    43.刘立军.水稻氮肥利用效率及其调空途径.南京:扬州大学博士学位论文,2005.
    44.刘强,罗泽民,荣湘民,陈勇跃,杨钟培,黄启为.不同时期不同施氮量对糙米蛋白质积累的影响初探.土壤学报,2000,37(4):529-535.
    45.刘胜环.基蘖氮肥用量对水稻群体质量影响及氮肥高效利用机理研究.南京:南京农业大学硕士学位论文,2003.
    46.卢学兰,蔡大同,史瑞和.水稻植株对土壤氮和肥料氮的吸收同化和分配.南京农业大学学报.1998,14(4):56-64.
    47.卢学兰,蔡大同,史瑞和.水稻植株对土壤氮和肥料氮的吸收同化和分配.南京农业大学学报,1991,14(4):56-64.
    48.罗志祥,苏泽胜,施伏芝,阮新民,朴忠泽.氮肥高效利用水稻育种的现状与展望.中国农学通报,2003,19(1):66-69.
    49.吕修涛.氮肥运筹对水稻产量形成及氮素吸收利用的影响.南京:扬州大学硕士论文,2001.
    50.马立珊,汪祖强,张水铭,马杏法,张桂英.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1):39-47.
    51.马立珊.太湖流域水环境硝态氮和亚硝态氮污染的研究.环境科学,1987,8(2):60-65.
    52.孟军,陈温福,徐正进,周淑清,李磊鑫.水稻剑叶净光合速率与叶绿素含量的研究初报.沈阳农业大学学报,2001,32(4):247-249.
    53.牛文元,张任华.土面增温剂的机理与效应.北京:科学出版社,1982.
    54.潘庆民,于振文,王月福,田奇卓.公顷产9000kg小麦氮素吸收分配的研究.作物学报,1999,25(5):540-547.
    55.潘圣刚,曹凑贵,蔡明历,汪金平,王若涵,原保忠,翟晶.不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响.植物营养与肥料学报,2009,15(2):283-289.
    56.彭娜,王开峰,谢小立,王凯荣.长期有机无机肥配施对稻田土壤基本理化性状的影响.中国土壤与肥料,2009(2):6-10.
    57.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    58.朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异.中国水稻科学,2003,17(3):233-238.
    59.茹德平,赵彩霞,李习军,李青松,赵治军.用15N示踪技术研究高产小麦、玉米的施氮规律.核农学报,2005,19(2):151-154.
    60.司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤,2000,4:188-193.
    61.单玉华,王余龙,山本由德.常规籼稻与杂交籼稻氮素利用效率的差异.江苏农业研究,2001,22(1):12-15.
    62.沈其荣,徐国华.小麦和玉米叶面标记尿素态15N的吸收和运输.土壤学报,2001,38(1):67-74.
    63.沈掌泉,王珂,朱君艳.叶绿素计诊断不同水稻品种氮素营养水平的研究初报.科技通报,2002,18(3):173-176.
    64.石庆华,程永盛,潘晓华,李木英.施氮量对两系杂交晚稻产量和品质的影响.土壤肥料,2000,(4):9-12.
    65.石英,松进,沈其荣,徐国华,李伟.覆盖旱作水稻的生物效应及吸氮特征.农村生态环境,2001,17(2):22-25,44.
    66.宋勇生,范晓晖.稻田氨挥发研究进展.生态环境,2003,12(2):240-244.
    67.苏祖芳,周培南,许乃霞,张亚洁.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(2):281-286.
    68.孙克君,卢其明,毛小云,廖宗文.复合控释材料的控释性能.肥效及其成膜特性研究.土壤学报,2005,42(1):127-133.
    69.孙旭生,林琪,李玲燕,姜雯,翟延举.氮素对超高产小麦生育后期光合特性及产量的影响.植物营养与肥料学报,2008,14(5):840-844.
    70.唐启源,邹应兵,米湘成,汪汗林,周美兰.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用.杂交水稻,2003,18(1):44-48.
    71.田明光,蔡祖聪,曹金留,李小平.镇江丘陵区稻田化肥氮的氨挥发及其影响因素.土壤学报,2001,38(3):324-331.
    72.同延安,赵营,赵护兵,樊红柱.施氮量对冬小麦氮素吸收、转运及产量的影响.植物营养与肥料学报,2007,13(1):64-69.
    73.王春虎,陈士林,董娜,蒋爱风.华北平原不同施氮量对玉米产量和品质的影响研究.玉米科学,2009,1:38-42.
    74.王福钧,彭根元,兰林旺,张启刚,邓洪民,王保中,温贤芳,麦鸿逵.应用15N示踪技术研究水稻吸收肥料氮的动态及不同时期追施氮肥的作用.中国农业科学,1981,4:66-71.
    75.王广元.水稻新施肥技术研究.山西农业科学,1997,25(1):30-32.
    76.王米,杨京平,徐伟,汪华,孙军华.分次施氮对单季稻氮素利用率及生态经济适宜施氮量的影响.浙江大学学报(农业与生命科学版)2009,1:71-76.
    77.王庆保,唐志华,曹斌.再生稻的营养特性及施肥技术研究.土壤肥料,1993,(4):20-23.
    78.王秀芹,张洪程,黄银忠,戴其根,霍中洋,许轲.施氮量对不同类型水稻品种吸氮特性及氮肥利用率的影响.上海交通大学学报(农业科学版),2003,21(4):325-330.
    79.王绍华,曹卫星,丁艳锋,田永超,姜东.水氮互作对水稻氮吸收与利用的影响.中国农业科学,2004,37(4):497-501.
    80.王智平,胡春胜,杨居荣.无机氮对土壤甲烷氧化作用的影响.应用生态学报,2003,14(2):305-309.
    81.温贤芳,王宝忠,张希忠,王有良.应用15N示踪法研究不同氮磷配比对水稻吸收氮素的影响.原子能农业应用,1983,1:43-47,59.
    82.温贤芳.应用同位素15N研究水稻几种主要氮肥的氮素利用.稳定同位素,1985,2:17-18.
    83.温贤芳,郭志芬,陈良.稳定同位素15N在我国农业研究中的应用进展.同位素,1991,4(4):60-64.
    84.吴良欢,陶勤南.水稻叶绿素计诊断追氮法研究.浙江农业大学学报,1999,25(2):135-138.
    85.吴平,陶勤南.水稻氮素生理利用率选择参数.中国水稻科学,1995,9(3):179-184.
    86.武志杰.我国化肥生产应用中的问题及对策.科技导报,1997,19:37-39.
    87.谢迎新.人为影响下稻田生态系统环境来源氮解析.南京:中国科学院研究生院博士学位论文,2006.
    88.许爱霞,黄高宝,李玲玲,谢奎忠,赵君范,高慧,郑甲成.半干旱地区春小麦氮肥后效的研究.甘肃农业大学学报,2008,2:105-109.
    89.许前欣,赵振达,李振云.稻田水面分子膜对提高氮肥利用率的研究.农业环境保护,1998,17(5):216-218,221.
    90.许仁良,戴其根,王秀芹,黄银忠,吕修涛.氮肥施用量、施用时期及运筹对水稻氮素利用率影响研究.江苏农业科学,2005,2:19-22.
    91.许秀成.包膜(包裹)型控制释放肥料各国研究进展.磷肥与复肥,2001,16(4):4-8.
    92.阎德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻内吸氮和地下水的影响.土壤学报,2005,42(3):440-446.
    93.杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制研究.土壤学报,1992,29(1):73-79.
    94.杨益花.不同施氮量对水稻品种产量形成和N素吸收利用的影响.南京:扬州大学硕士论文,2003.
    95.杨震,朱兆良,蔡贵信.表面成膜物质抑制水稻田中氨挥发的研究.土壤学报,1995,32(增刊):160-166.
    96.叶永印,张时龙,杨远平.水稻不同施氮方式对产量的影响.贵州农业科学,2000,28(5):33-36.
    97.易镇邪,王璞,陈平平,屠乃美.氮肥类型对夏玉米氮素吸收和利用的影响.植物营养与肥料学报,2008,14(3):472-478.
    98.尹斌.利用水面分子膜减少稻田氨挥发损失与提高氮肥增产效果的研究.中国科学院博士后研究工作报告,1997.
    99.尹斌,沈仁芳,朱兆良.水面分子膜对提高氮肥利用率及水稻产量的影响.红壤生态系统研究.中国科学院红壤生态实验站编,1998,5:192-195.
    100.尹斌,倪吾钟,庄舜尧.稻田土壤中化肥氮的气态损失及对策.挖掘生物高效利用土壤养分潜力,保持土壤环境良性循环.中国农业大学出版社,2004:315-343.
    101.曾宪坤.我国化肥市场探析.化肥工业,1999,25(5):3-7.
    102.赵不凋,刘柏朱,卢晓芳,李大,唐海,彭懿明.水体富营养化的形成、危害和防治.安徽农学通报,2007,13(17):51-53.
    103.赵其国.土壤与环境问题国际研究概况及其发展趋向-参加第16届国际土壤学会专题综述.土壤,1998,6:281-310.
    104.赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响.植物营养与肥料学报,2006,12(5):622-627.
    105.张朝晖,吕锡武,齐玉平.N2O大气污染演变及源汇分布.电力环境保护,2005,21(1):42-44.
    106.张福锁,米国华,刘建安.玉米氮效率遗传改良与应用.农业生物技术学报,1997,2:112-117.
    107.张福锁.养分资源利用的问题及其研究重点.李春剑主编:土壤与植物营养研究新动态(第四卷)北京:中国农业大学出版社,2001:12-23.
    108.张福锁.养分资源综合管理.中国农业大学出版社,2003.
    109.张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报,1998,4(4):331-338.
    110.张国良,章申.农田氮素淋洗研究进展.土壤,1998,6:291-296.
    111.张俊英,赵同科,许永利.氮肥施用与环境质量.华北农学报,2002,17(增刊):223-229.
    112.张小莉,孟琳,王秋君,罗佳,黄启为,徐阳春,杨兴明,沈其荣.不同有机无机复混肥 对水稻产量和氮素利用率的影响.应用生态学报,2009,20(3):624-630.
    113.张云桥,吴荣生,蒋宁.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,1989,2:45-47.
    114.张绍林,朱兆良,徐银华,陈容业,李阿荣.关于太湖地区稻麦上氮肥的适宜用量.土壤,1988a,1:5-9.
    115.张绍林,朱兆良,徐银华.黄泛区潮土.冬小麦系统中尿素的转化和化肥氮去向.核农学报,1989,3(1):9-15.
    116.张希忠,温贤芳,陈一珠,李东阳.应用15N,32P示踪法研究水稻对不同复(混)合肥料中氮磷的吸收.核农学报,1988,2(2):102-105.
    117.张希忠,温贤芳,陈一珠.利用同位素15N和32P研究掺合肥料的肥效.核农学通报,1989,10(1):21-28.
    118.张亚丽.水稻氮效率基因型差异评价与氮高效机理研究.南京:南京农业大学博士学位论文,2006.
    119.张耀鸿,吴洁,张亚丽,王东升,沈其荣.不同株高粳稻氮素累积和转运的基因型差异.南京农业大学学报,2006,29(2):71-74.
    120.张玉烛,马国辉,朱德保.栽培因素对食用优质稻垩白的影响.作物研究,1999,3:9-13.
    121.张志明,毕蔗春,李继云,冯元琦,伍蔚民.长效碳铵特性与应用效益研究.科学通报,1997,42(8):874-878.
    122.郑景生,庄占龙,黄育民.杂交稻氮素水平与物质生产关系的研究.福建稻麦科技,1994,3:20-25.
    123.郑圣先,蔡立湘.土壤植物营养学与农业持续发展.湖南农业科学,1998,4:5-7.
    124.中国科学院生物学部.我国化肥面临的突出问题及建议.科技导报,1997,9:35-38.
    125.周保平.黑龙江省水稻生态平衡施肥决策支持系统总体设计及部分模块功能实现.哈尔滨:东北农业大学硕士论文,2003.
    126.周培南,冯惟珠,许乃霞,张亚洁,苏祖芳.施氮量和移栽密度对水稻产量及稻米品质的影响.江苏农业研究,2001,22(1):27-31.
    127.周珊庆,陈开铗,李合松,黄见良,邹应斌,萧光玉.应用15N示踪技术研究水稻对氮素的吸收利用.湖南农学院学报,1991,17(4):665-669.
    128.朱兆良.澳大利亚的土壤和肥料氮素的研究概况.土壤,1981,5:199-201.
    129.朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):2-9.
    130.朱兆良.关于稻田土壤供氮量的预测和平均适宜施氮量的应用.土壤,1988b,(2):57-61.
    131.朱兆良.土壤中氮素转化研究中的几个问题.土壤圈物质循环研究导向论文集,1989:76-91.
    132.朱兆良.农田生态系统中化肥氮的去向和氮素管理.中国土壤氮素.南京:江苏科技出 版社,1992:37-59.
    133.朱兆良.中国土壤的氮素肥力与农业中的氮素管理.见:沈善敏主编.中国土壤肥力.农业出版社,1998:160-211.
    134.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    135.朱兆良.推荐氮肥适宜施用量的方法刍议,植物营养与肥料学报,2006,12(1):1-4.
    136.朱兆良.对我国粮食安全的几点思考.中国科学院院刊,2006,21(5):371-372.
    137.朱兆良.中国农业面源污染控制对策研究.污染减排.2008,48(39):4-6.
    138.庄舜尧.表面分子膜抑制稻田氨挥发的模型和预测.南京:中国科学院博士研究生学位论文,2000.
    139.庄舜尧,尹斌,朱兆良.表面分子膜抑制稻田氨挥发的模拟研究.土壤,2001,2:60-67.
    140.庄舜尧,尹斌,朱兆良.表面分子膜抑制稻田氨挥发的模型研究.中国农业科学,2002,35(12):1506-1509.
    141.邹长明,秦道珠,陈福兴,刘更另.水稻氮肥施用技术Ⅰ.氮肥施用的适宜时期与用量.湖南农业大学学报,2000,26(6):467-470.
    142. Alivelu K., Subba R A, Sanjay S, Singh K N, Raju N S, Madhuri P. Prediction of optimal nitrogen application rate of rice based on soil test values. Eur. J. Agron.,2006,25:71-73.
    143. Angus J F, Williams R L, Durkin C O. MANAGE RICE: decision support for tactical crop management. In:R. Ishii and T. Horie ed. Crop Research in Asia:Achievements and Perspective. Proceedings of the 2nd Asian Crop Science Conference.21-23 August,1995. Fukui, Japan.1996:274-279.
    144. APAD of IRRI, IMA of Justus-Leibig University, and IRDCSES of Virginia Polytechnic Institute and State University. Nitrogen uptake and recovery from urea and green manute in lowland rice measured by 15N and non-isotope techniques. Plant Soil,1993,148:91-99.
    145. Balasubramanian V, Morales A C, Cruz R T, Abdulrachman S. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice system. Nutr. Cycl. A groecosyst,1999, (53):59-69.
    146. Batten G D, Blakeney A B, Glennie-Holmes M, Bacon P E, Heenan D P. Rapid determination of shoot nitrogen status in rice use near infrared spectroscopy. J. Sci. Fd. Agric.,1991,54:191-197.
    147. Bayrakli F. Ammonia volatilization losses from different fertilizers and effect of several urease inhibitors, CaCl2 and phosphogypsum on losses from urea. Fert. Res.,1990,23: 147-150.
    148. Blankenau K, Kuhlmann H. Effect of N supply on apparent recovery of fertilizer N as crop N and Nmin in soil during and after cultivation of winter cereals. J. Plant Nutr. Soil Sci.,2000, 163:91-100.
    149. Bowman J. The greenhouse effect. In: Bennett R M (ed), The greenhouse effect and UK agriculture, Center for Agricultural Strategy, University of Reading,1989:17-26.
    150. Bremner J M.1996. Nitrogen-total. In Sparks, D. L., Page, A. L., Johnston, C. T., Summer, M. E. (Eds.), Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Ser. No.5. SSSA, Madison, WI. pp.1085-1121.
    151. Broadbent F E, De Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron.J.,1987,79:786-791.
    152. Bronson K F, Hussain F, Pasuquin E, Ladha J K. Use of 15N-labeled soil in measuring nitrogen fertilizer recovery efficiency in TransPlanted rice. Soil Sci. Soc. Am.J., 2000,64: 235-239.
    153. Bufogle A J, Bollich P K, Kovar J L. Rice variety differences in dry matter and nitrogen accumulation as related to plant stature and maturity group. J. Plant Nutr.,1997,20(9): 1203-1224.
    154. Bufogle A J, Bollich P K, Kovar J L. Rice Plant growth and nitrogen accumulation from a Midseason application. J. Plant Nutr.,1997,20(9):1191-1201.
    155. Buresh R J, Austin E R, Craswell E T. Analytical methods in 15N research. Fert. Res.,1982,3: 37-62.
    156. Byrnes B H. Environment effects of N fertilizer use-An overview. Fert. Res.,1990,26: 209-215.
    157. Cai G X, Freney J R, Humphreys E, Denmead O T, Samson M, Simpson J R. Use of surface films to reduce ammonia volatilization from flooded rice fields. Aust. J. Agri Res,1987, 39(2):177-186.
    158. Cassman K G., Bryant D C, Fulton A E, Jackson L F. Nitrogen supply effects on partitioning of dry matter and nitrogen to grain of irrigated wheat. Crop Sci.,1992,32:1251-1258.
    159. Cassman K G., Krofff M J, Gaunt J L, Peng S. Nitrogen use efficiency of rice reconsidered: What are the key constraints. Plant Soil,1993,155/156,359-362.
    160. Cassman K Q Pingali P L. Intensification of irrigated rice systems:learning from the past to meating future challenges. Geo Journal,1995,35:299-305.
    161. Cassman K G, Pingali P L. Extrapolating trends from long-term experiments to farmers'fields:the case of irrigated rice systems in Asia. In:V. Barnett ed. A gricult ural S ustai nability i n Economic, Envi ronmental and Statistical Terms. London, U K:John Wiley and Sons, Ltd.,1995:63-68.
    162. Cassman K G, Gines G C, Dizon M A, Samson M I, Alcantara J M. Nitrogen-use efficiency in tropical lowland rice systems:cont ributions from indigenous and applied nit rogen. Field Crops Res.,1996c,47:1-12.
    163. Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res.,1998,56:7-39.
    164. Chichester F W, Legg J O, Stanford G Relative mineralization rates of indigenous and recently incorporated 15N-labeled nitrogen. Soil Sci.,1975,120(6):455-460.
    165. Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. Ⅱ. Nitrogen assimilation in relation to grain yield and protein. Crop Sci.,1985,25:435-440.
    166. De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fert. Res.,1986, (9):171-186.
    167. De Datta S K, Fillery I R P, Obcemea W N, Evangelista R C. Floodwater Properties, Nitrogen utilization, and nitrogen-15 balance in a calcareous loland rice. Soil Sci. Soc. Am.J., 1987,51:1355-1362.
    168. De Datta S K, Buresh R J, Samson M I, Wang K R. Nitrogen use effieiency and nitrogen-15 balances in broadcast-seeded fiooded and transPlanted rice. Soil Sci. Soc. Am.J., 1988,52:849-855.
    169. De Datta S K, Buresh R J. Integrated nitrogen management in irrigated rice. Adv. Soil Sci, 1989,10:143-169.
    170. Deleens E, Morot-Gaudry J F, Martin F, Thoreux A, Gojon A.15 N methodology. In:edited by Jean-Franeois Morot-Gaudry. Nitrogen Assimilation by Plants. Science Publishers, Inc. (USA).2001:301-316.
    171. Dobermann A, Fairhurst T H. Rice:Nutrient Disorders and Nutrient Management. Potash and Phosphate Institute, Singapore, and International Rice Research Institute (IRRI), Los Ban-os, Philippines,2000, pp.191.
    172. Dobermann A, Cassman K G. Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant Soil,2002,247: 153-175.
    173. Ehdaie B, Waines J G Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in dread and durum wheat. Field Crops Res.,2001,73:47-61.
    174. Ericsson T. Growth and shoot: root allocation of seedlings in relation to nutrient availability. Plant Soil,1995,168:205-214.
    175. Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in lowland rice. Commun. Soil Sci. Plant Anal,2003,34: 259-270.
    176. FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations, Rome. http://www.fao.org,2004.
    177. Fillery R P, De Datta S K. Ammonia volatilization from nitrogen volatilization as a N loss mechanism in flooded rice fields. Fert. Res.,1986,9:78-98.
    178. Fillery R P, DeDatta S K. Ammonia volatilization from nitrogen sources applied to rice fields: Ⅰ.Methodology, ammonia fluxes, and nitrogen-15 loss. Soil Sci. Soc. Am.J.,1986,50: 80-86.
    179. Fisher K S. Toward inereasing nutrient-use effieieney in rice cropping systems:the next generation of teehnology. Field Crops Res.,1998,56:1-6.
    180. Freney J R.. Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture. Nutr. Cycling Agroecosyst.,1997,48:155-160.
    181. Galloway J N, Schlesinger W H, Levy I H, Michaels A, Schnoor J L. Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochem. Cycles,1995, 9(2):235-252.
    182. Gebbing T, Schnyder H, Kuhbauch W. The utilization of pre-anthesis reserves in grain filling in wheat. Assessment by steady-state 13C2/12C2 labelling. Plant Cell Environ.,1999,22: 851-858.
    183. Gooding M J, Gregory P J, Ford K E, Ruske R E. Recovery of nitrogen from different sources following applications to winter wheat at and after anthesis. Field Crops Res.,2007, 100:143-154.
    184. Gravois K A, Helms R S. Path analysis of rice yield and yield components as affected by seeding rate. Agron. J.,1992,84:1-4
    185. Heitholt J J, Croy L I, Maness N O, Nguyen H T. Nitrogen partitioning in genotypes of winter wheat differing in grain N concentration. Field Crops Res.,1990,23:133-144.
    186. Hussain F, Bronson K F, Singh Y, Singh B, Peng S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J.,2000,92:875-879.
    187. IFA. Fertilizer Use by Crop, 5th edn. International fertilizer industry association (IFA), International Fertilizer Development Center (IFDC), International Potash Institute (IPI), Potash and Phosphate Institute (PPI), and Food and Agriculture Organization (FAO), http://www.fertilizer.org/ifa/statistics.asp.2002.
    188. Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotypic Performance under fertilized and non-fertilised conditions in rainfed lowland rice. Field Crops Res.,2000,65:1-14.
    189. Inthapanya. P. Genotype differences in nutrient uptake and utilization for grain yield Production of rain fed lowland rice under fertilized and non fertilized condtiions. Field Crops Res.,2000,65:57-68.
    190. Isfan D. Nitrogen physiological efficiency index in some selected spring barley cultivars. J. Plant Nutr.,1990,13:907-914.
    191. Jiang L G, Dai T B, Jiang D. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res.,2004,88:239-250.
    192. Jin J, Lin B, Zhang W. Improving nutrient management for sustainable development of agriculture in China. In:Smaling E M A, Oenema Q and Fresco L Q ed. Nutrient disequilibria in a groecosystems. CAB International,1999:157-174.
    193. Jing Q, Boumanb B A M., Hengsdijk H, Van Keulen H, Caoa W. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China. Eur. J. Agron.,2007,26:166-177.
    194. Ju X T, Liu X J, Pan J R, Zhang F S. Fate of 15N-Labeled Urea under a winter-summer maize rotation on the north China plain. Pedosphere,2007,17(1):52-61.
    195. Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environment risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci.,2009,106 (9):3041-3046.
    196. Ko M K W, Sze N D, Weinstein D K. Use of satellite data to constrain the model-calaulated atmosphere lifetime for N2O: implications for other trace gases. J.Geophys. Res.,1991,96: 7547-7552.
    197. Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Res.,1998,56:41-71.
    198. Lemaire G, Gastal F.1997. Nitrogen uptake and distribution in plant canopies. In Lemaire, G (ed.) Diagnosis of the Nitrogen Status in Crops. Springer-Verlag, Berlin, pp.3-43.
    199. Lobell D B. The cost of uncertainly for nitrogen fertilizer management: A sensitivity analysis. Field Crops Res.,2007,100:210-217.
    200. Lockyer D R, Whitehead D C. The uptake of gaseous ammonia by the leaves of Italian ryegrass. J. Exp. Bot.,1986,37(180):919-927.
    201. Mae T, Ohira K. The remobilization of nitrogen related to leaf growth and senescence in rice Plants (Oryza Sativa L.). Plant Cell Physiol.,1981,22(6):1067-1074.
    202. Mae T, Makino A, Ohira K. Changes in the amount of ribulose bisphosphate carborylase synthesized and degraded during the life span of rice (Oryza Sativa L.). Plant Cell Physiol., 1983,24(6):1079-1086.
    203. Mae T, Inaba A, Kaneta Y, Masaki S, Sasaki M, Aizawa M, Okawa S, Hasegawa S, Makino A. A large-grain rice cultivar, Akita 63, exhibits high yields with high physiological N-use efficiency. Field Crops Res.,2006,97:227-237.
    204. Makino A, Mae T, Ohira K. Photosynthesis and ribalose 1,5- bisphosphate carborylase in rice leaves. Plant Physiol.,1983,73:1002-1007.
    205. Makino A, Mae T, Ohira K. Relation between nitrogen and 1,5-bisphosphate carborylase in rice leaves from emergence through senescence. Plant Cell Physiol.,1984,25:429-437.
    206. Makowski D, Wallach D. How to improve model-based decision rules for nitrogen fertilization. Eur. J. Agron.,2001,15:197-208.
    207. Mengel K, Hutsch B, Kane Y. Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. Eur. J. Agron.,2006,24:343-348.
    208. Mikkelsen D S, Jayaweera R G, Rolston D E. Nitrogen fertilization practices of lowland rice culture. In:Bacon P E ed. Nit rogen Fertilization in the Envi ronment. Marcel Dekker, Inc.,New York,USA.1995:171-223.
    209. Miller B C, Hill J E, RobertsS R. Plant population effectson growth and yield inwater-seeded rice. Agron. J.,1991,83:291-297
    210. Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J.,1982,74:562-564.
    211. Mosier A R, Chapman S L, Freney J R. Determination of dinitrogen emission and retention in floodwater and porewater of a lowland rice field fertilizer with 15N urea. Fert. Res.,1999, 19:127-136.
    212. Nastri A, Toderi G, Bernti. Ammonia volatilization and yield response from urea applied to wheat with urease (NBPT) and nitrification (DCD) inhibitors. Agrochimica,2000,5(6): 231-238.
    213. Novoa R, Loomis R S. Nitrogen and plant production. Plant Soil,1981,58:177-204.
    214. Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res.,2002,74:93-101.
    215. Ohnihsi M, Horie T, Homma K, Supapoj N, Takano H. Ntrogen management and cultivar effects on Rice yield and nitrogen use efficinecy in Northeast Thailand, Field Corps Res., 1999,64:109-120.
    216. Panda M M, Mosier A R, Mohanty S K, Chakravotri S P, Chalam A B, Reddy M D. Nitrogen utilisation by low-land rice as affected by fertilization with urea and green manure. Fert. Res., 1995,40:215-223.
    217. Papakosta D K, Gagianas A A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron. J.,1991,83:864-870.
    218. Peng S B, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Res., 1996,47:243-252.
    219. Peng S B, Cassman K. G. Upper thresholds of nitrogen uptake rates and associated nitroge fertilizer efficiencies in irrigated rice. Agron. J.,1998,90:178-185.
    220. Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China.Field Crops Res.,2006,96:37-47.
    221. Prasad R, De Datta S K. Increasing fertilizer nitrogen efficiency in wetland rice. Nitrogen and Rice. IRRI, Los Banos, Philippines,1979, pp.465-484.
    222. Rejesus R M, Hornbaker R H. Economic and environmental evaluation of alternative pollution-reducingnitrogen management practices in central Illinois. Agric. Ecosyst. Environ., 1999,75:41-53.
    223. Russell C A, Dunn B W, Batten G D, Williams R L, Angus J F. Soil tests to predict optimum fertilizer nitrogen rate for rice. Field Crops Res.,2006,97:286-301.
    224. Sain G E, Jauregui M A. Deriving fertilizer recommendations with a flexible functional form. Agron. J.,1993,85:934-937.
    225. Schnier H F, De Datta S K, Mengel K. Dynamics of 15N labeled ammonium sulfate in various inorganic and soil fractions of wetland rice soils. Biol. Fertil. Soils,1987,4: 171-177.
    226. Schnier H F, De Datta S K, Mengel K, Marquesses E P, Faronilo J E. Nitrogen use effciency, floodwater properties, and nitrogen-15 balance in transplated lowland rice as affected by liquid urea band placement. Fert. Res.,1988,16:241-255.
    227. Schnie H F, Dingkuhn M, De Datta S K, Marqueses E P, Faronilo J E. Nitrogen-15 balance in transplanted and direct-seeded flooded rice as affected by different methods of urea application. Biol. Fertil. Soils,1990,10:89-96.
    228. Schnier H F, Dingkuhn M, De Datta S K, Mengel K, Faronolo J E. Nitrogen fertilization of direct-seeded flooded vs. transplanted rice:Ⅰ. Nitrogen uptake, photosynthesis, growth and yield. Crop Sci.,1990,30:1276-1284.
    229. Schnier H F. Nitrogen-15 recovery in flooded tropical rice as affected by added nitrogen
    interaction. Eur. J. Agron.,1994,3(2):161-167.
    230. Shreshtha R K, Ladha J K. Rice genotypic variation Promotion of rice dinitrogen fixation as determined by 15N dilution. Soil Sci. Soc. Am. J.,1996,60:1815-1821.
    231. Sinclair T R, Horie T. Leaf nitrogen, Photosynthesis, and crop radiation use efficiency:a review. Crop Sci.,1989,29:90-98.
    232. Singh U, Ladha J K, Castillo E G, Punzalan G, Tirol P A, Duqueza M. Genotypic variation in nitrogen use efficency in medium- and long-duration rice. Field Crops Res.,1998,58(1): 35-53.
    233. Ten Berge H F M, Thiyagarajan T M, Drenth D P, Jansen MJ W. Numerical optimization of nitrogen application to rice. Part. Ⅰ. Description of MANAGE-N. Field Crops Res.,1997,51: 29-42.
    234. Ten Berge H F M, Shi Q, Zheng Z, Rao K, Riethoven J J M, Zhong X. Numerical optimization of nitrogen application to rice. Part. Ⅱ. Field evaluations. Field Crops Res., 1997,51:43-54.
    235. Tirol P, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res.,1996,46:127-143.
    236. Vlek P L G, Byrnes B H. The efficacy and loss of fertilizer N in lowland rice. Fert. Res., 1986,9:131-147.
    237. Vlek P L G, Fugger W, Biker U. The fate of fertilizer N under Azolla in wetland rice. In: Proceedings of the 2nd ESA Congress. Warwick U K: Warwick University,1992:376-377.
    238. Wade G, Shoji S, Mae T. Relationship between nitrogen absorption and growth and yield of rice plants. Jpn. Agr. Res. Q.,1986,20:135-145.
    239. Wang G H, Dobermann A, Witt C, Sun Q Z, Fu R X. Performance of site-specific nutrient management for irrigated rice in southeast China. Agron. J.,2001,93:869-878.
    240. Williams E J, Hutchinson G L, Fehsenfeld F C. NOx and N2O emission from soil. Global Biogeochem. Cycles,1992,6:351-388.
    241. William R R, Solie J B, Johnson G V, Stone M L, Mullen R W, Freeman K W, Thomason W E, Lukina E V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron J.,2002,94:815-820.
    242. Wu P, Tao Q N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. J. Plant Nutr.,1995,18(3):487-500.
    243. Xing P A, Zhou Y, Huang H, Zheng H. Discussion on the green tax stimulation measure of nitrogen fertilizer non-point source pollution control-taking the Dongting Lake area in China as a case. Agricultural Sciences in China,2007,6(6):732-741.
    244. Yin B, Shen R F, Zhu Z L. Use of new water surface film-forming material to reduce ammonia loss from water solution. Pedosphere,1997,6(4):329-334.
    245. Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. Comparis of high-yield rice in tropical and subtropical environments 1, determinants of grain and dry matter yields. Field Crops Res.,1998, (1):1-14.
    246. Ying J F, Peng S B, Yang G Q, Zhou N, Visperas R M, Cassman K G. Comparsion of high-yield rice in tropical and subtropical environments Ⅱ. Nitrogen accumulation and utilization efficiency. Field Crops Res.,1998,57:85-93.
    247. Yoshida S, Cock J H, Parao F T. Physiological aspects of high yields. Philippines: International Rice Research Institute, Rice Breeding. Los Banos,1972:455-469.
    248. Yoshida S. Fundamentals of Rice Crop Science. International Rice Research Institute, Los Balos, Philippines,1981:1-269.
    249. Zhang Y H, Fan J B, Zhang Y L, Wang D S, Huang Q W, Shen Q R. Nitrogen accumulation and translocation in four japonica rice cultivars at different nitrogen application rates. Pedosphere,2007,17(6):792-800.
    250. Zhu Z L. Fate and management of fertilizer nitrogen in agroecosystems. In:Zhu Z, Wen Q, and Freney J R ed. Nitrogen in Soils of China. Kluwer Academic Publishers, Dordrecht, TheNetherlands.1997:239-279.
    251. Zhuang S Y, Yin B, Zhu Z L. Model estimation of volatilization of ammonia applied with surface film-forming materal. Pedosphere,1999,9(4):299-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700