用户名: 密码: 验证码:
生物质炭输入对土壤氮素流失及温室气体排放特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质炭是由植物生物质在完全或部分缺氧的情况下经热解炭化产生的一类高度芳香化难熔性固态物质。常见的生物质炭包括木炭、竹炭、秸秆炭、稻壳炭等。生物质炭具有高度稳定性和较强的吸附性能,在全球碳生物地球化学循环、气候变化和环境系统中发挥重要作用。本论文通过对生物质炭特性的系统研究,针对制约我国农业可持续发展的农田土壤养分流失严重和稻田温室气体排放量大等问题,重点开展了生物质炭输入对土壤氮素流失的影响、对稻田土壤温室气体排放的影响以及对水稻生长发育和产量的影响等方面的研究,并就相关机理进行探讨,最后简要提出了今后土壤生态系统生物质炭的研究方向。研究结果为农林废弃生物质炭化资源化和稻田土壤温室气体减排提供了新思路,对实现传统农业向低碳农业发展的结构性跨越,确保我国农业健康可持续发展具有重要现实意义。具体研究结果如下:
     (1)选择典型性、代表性生物质炭为对象,研究不同生物质炭元素组成、形貌特征、表面基团以及吸附特性。生物质炭的性质受到多种因素的影响,主要包括生物质原料类型、热解过程的环境条件(如温度、供氧状况、湿度等)。炭化温度为600℃时,生物质炭具有较好的综合特性。竹炭和秸秆炭都具有发达的孔隙结构,虽然都以芳环骨架为主,但两者的芳香环结构及含有的含氧官能团有所差异。竹炭的BET比表面积和总孔容均大于秸秆炭,石墨化程度比秸秆炭更高,芳香化更强。秸秆炭的pH、电导率、阳离子交换量、表面酸性基团和碱性基团的数量均大于竹炭。秸秆炭对铵根离子的吸附能力强于竹炭。在改良土壤理化性质、提高土壤肥力方面,秸秆炭比竹炭具有更大的优势。
     (2)通过实验室土柱淋溶试验,开展生物质炭输入对土壤氮素淋溶特性的影响研究。结果表明,添加竹炭可使土柱0~20 cm土壤溶液NH4+-N浓度显著降低。与只施加氮肥的处理相比,同时施加氮肥和竹炭可使土柱20 cm层土壤溶液NH4+-N累积淋失量在70 d内降低15.2%。添加竹炭使得0-20 cm土壤溶液电导率显著降低。竹炭对土壤中铵态氮具有良好的持留作用,可以起到减少化肥氮素淋溶损失、实现氮素缓释的效果。
     (3)通过实验室模拟试验,开展了生物质炭输入对淹水稻田土壤温室气体CH4和C02排放的影响研究。研究发现在模拟厌氧条件无外加碳源情况下,稻田土壤CH4排放通量随着生物质炭添加水平的提高而降低,当添加水平为2.5%(w/w)时,竹炭、秸秆炭可使淹水土壤CH4的累积排放量分别降低51.1%、91.2%;而不同添加水平的生物质炭输入对淹水土壤CO2的累积排放量均未产生显著性影响。在以秸秆作外加碳源的情况下,生物质炭输入对淹水土壤CH4和CO2的排放仍然具有一定的抑制作用,但只有在添加水平达2.5%(w/w)时,秸秆炭的抑制作用至培养第49天才呈现出显著性。无论是否外加碳源,秸秆炭对淹水稻田土壤CH4和CO2排放的抑制作用均明显优于竹炭。此外,研究表明竹炭和秸秆炭输入对淹水土壤产甲烷活性起到不同程度的抑制作用,而对土壤甲烷氧化活性均没有产生显著性影响。PCR-DGGE分子指纹图谱分析表明,模拟培养49天后,无论是否添加秸秆,竹炭和秸秆炭输入都未对淹水稻田土壤产甲烷菌和甲烷氧化细菌的种群结构多样性产生显著性影响。
     (4)通过田间试验研究了生物质炭输入对稻田氮素流失及水稻产量的影响。初步研究结果表明,在未施肥的情况下,添加1%(w/w)生物质炭对稻田氮素流失未产生显著性影响;在施加尿素的情况下,添加竹炭或秸秆炭均能够使稻田田面水和侧渗水NH4+-N、NO3--N和TN浓度呈现降低趋势,但差异性不显著,施加竹炭包膜尿素与常规尿素处理之间亦无显著性差异出现。秸秆炭比竹炭更有利于水稻的生长发育。在不施加尿素条件下,添加1%(w/w)秸秆炭可使水稻产量提高19.9%,即使是在施加尿素的条件下仍可使水稻产量提高11.2%;与秸秆炭相比,’竹炭对水稻产量没有显著性促进作用。
Biomass-derived charcoal, also named biochar, refers to the highly aromatic substance remaining after pyrolysis of biomass under complete or partial exclusion of oxygen. It can influence the environment through interactions with climate and geology. Due to its characteristics of high stability against decay and high capability of adsorption, biochar plays a significant role in global climate change, carbon cycle in biogeochemical process and environmental system. Serious nutrient loss from soil and large amount of greenhouse gas emissions from paddy field were two substantial issues which prevent the healthy and sustainable development of agriculture in China. In this thesis, lab and field experiments were carried out to study physi-chemical properties, of biochars. and the effects of different biochars on soil nitrogen loss, methane (CH4) and carbon dioxide (CO2) emissions from paddy soil and rice growth. Furthermore, the mechanisms of effects of biochar on CH4 and CO2 emissions were discussed. In addition, some future research directions about biochar in soil ecosystem were put forward. Results of the study would provide a new approach to the reclamation of biomass residues from agriculture and forestry and a new thought for reducing greenhouse gas emissions from rice paddies. The main results of this thesis are as following:
     (1) Elemental composition, morphological characteristics, surface functional groups and adsorption proporties of bamboo charcoal (BC) and rice straw charcoal (SC) pyrolyzied at 600℃were investigated in this study. Both BC and SC had high porosity. However, there were main differences in their aromatic structure and oxygen-containing functional groups. Specific surface area and total pore volume of BC were higher than those of SC. While the value of pH, electrical conductivity, cation exchange capacity and the numbers of surface acid and basic groups of SC were much higher. Furthermore, SC also had stronger adsorption capacity to ammonium.
     (2) Influence of BC on nitrogen retention and leaching characteristic at different soil profile depths were investigated using multi-layer soil columns in laboratory. Results showed that ammonium nitrogen (NH4+-N) concentrations in the leachate of the soil columns under the addition of NH4Cl were significantly different at 0-20 cm layer between the treatments with and without BC amendment. Addition of BC to the surface layer soil can retard the vertical transport of NH4+-N to deeper soil within 70 days, indicated by the observation during the first 7 days at 10 cm and the later experimental period at 20 cm. Application of BC could reduce cumulative losses of NH4+-N via leaching at 20 cm by 15.2% at the end of experiment. Electrical conductivity was significantly reduced in the leachate at 10 cm and 20 cm depth of the soil columns with BC addition. Results indicated that BC amendment could significantly reduce nitrogen losses through leaching and increase the utilization efficiency of nitrogen fertilizer in soil.
     (3) Effect of biochar on CH4 and CO2 emissions from waterlogged paddy soil with and without rice straw added as an additional carbon source were investigated under laboratory condition. Results indicated that adding rice straw significantly increased CH4 and CO2 emissions from the paddy soil. However, CH4 and CO2 emissions could be significantly reduced with the amendment of biochar. CH4 emissions from the paddy soil amended with BC and SC at high level were reduced by 51.1% and 91.2%, respectively, compared with those from the unamended soil. CO2 emission from the waterlogged paddy soil was also reduced with the addition of biochar over a 49 d incubation. SC was more effective than BC in reducing CH4 and CO2 emissions from paddy soils whether with additional carbon source or not. Methanogenic activity in the paddy soil decreased with increasing rates of biochar added; while, the methanogenic archaeal communities in the paddy soil amended with biochar remained unchanged at the final stage of the experiment.
     (4) The effects of biochar input on nitrogen loss from paddy soil and rice yield were studied under field condition. Initial results suggested that nitrogen losses through effluent and lateral seepage were not significantly influenced by the amendment of biochar when no fertilizer was added. However, the concentrations of NH4+-N, NO3--N and TN of surfacewater and lateral seepage water in the rice paddy showed reducing potential with 1% (w/w) biochar amendment when urea was applied, although there were no remarkable differences. On the other hand, however, SC was much effective in improving rice growth than BC. Rice yield was increased by 19.9% with 1% (w/w) SC amendment compared to that without biochar under no fertilizer condition. While that was 11.2% under urea-added condition. Whereas the boosting effect of BC on rice yield showed less.substantial as compared with SC.
引文
Adams. PL, Daniel TC, Edwards DR, et al.1994. Poultry litter and manure contributions to nitrate leaching through the vadose zone. Soil Science Society of America-Journal,58:1206-1211.
    Adriana D., Van Zwieten L., Doughty W., Joseph S.2007. Nutrient retention characteristics of chars and the agronomic implications. International Agrichar Initiative (IAI).2007 Conference. April 27-May 2, p 31.
    Amymarie AD, Gschwend PM.2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental Science and Technology,36:21-29.
    Asai H, Samson KB, Stephan MH, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T.2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research. 111:81-84.
    Asaki T.2006. Utilization of bamboo charcoal in spinach cultivation. Agriculture and Horticulture,81(12):1262-1266.
    Baldock JA, Smernik RJ.2002. Chemical composition and bioavailability of thermally altered Pinus resunosa (Red pine) wood. Organic Geochemistry,34: 1093-1109.
    Baronti S, Alberti G, Genesio L, et al.2008. Effects on soil fertility and on crops production 2nd International Biochar Conference-IBI September 8-10 Newcastle-Gateshead, UK.
    Bechmann M, Eggestad HO, Vagsted N.1998. Nitrogen balances and leaching in four agricultural catchments in southeastern Norway. Environmental Pollution,102: 493-499.
    Berglund LM, DeLuca TH, Zackrisson O.2004. Activated carbon amendments of soil alters nitrification rates in Scots pine forests. Soil Biology and Biochemistry,36: 2067-2073.
    Bergstrom LF, Kirchmann H.1999. Leaching of total nitrogen from nitrogen-15-labeled poultry manure and inorganic nitrogen fertilizer. Journal of Environment Quality,28:1283-1290.
    Boehm HP.1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon,32(5):759-769.
    Bouwman AF.1990. Soils and the Greenhouse Effect. New York:John Wiley and Sons.
    Brodowski S, Amelung W, Haumaier L, et al.2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma,128: 116-129.
    Brodowski S, John B, Flessa H, Amelung W.2006. Aggregate-occluded black carbon in soil. European Journal of Soil Science,57:539-546.
    Bucheli TD, Gustafsson O.2000. Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environmental Science and Technology,34:5144-5151.
    Cai ZC, Xing GX, Yan XY, et al.1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil,196(1):7-14.
    Cassee FR, Boere AJF, Bos J, Fokkens PHB, Dormans JAMA, van Loveren H.2002. Effects of diesel exhaust enriched concentrated PM2.5 in ozone preexposed or monocrotaline-treated rats. Inhalation Toxicology,14:721-743.
    Chan KY, Van Zwieten L, Meszaros I, et al.2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research,45:629-634.
    Chan K Y, Van Zwieten L, Meszaros I, et al.2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research,46:437-444.
    Chang C, Entz T.1996. Nitrate leaching losses under repeated cattle feedlot manure applications in Southern Alberta. Environmental Quality,25:145-153.
    Chen G, Zheng Z, Yang S, Fang C, Zou X, Zhang J.2010. Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces. Fuel Process Technology,91:1416-1421.
    Cheng CH, Lehmann J, Engelhard MH.2008. Natural oxidation of black carbon in soils:Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta,72:1598-1610.
    Cheng CH, Lehmann J, Thies JE, et al.2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry,37:1477-1488.
    Chun Y, Sheng GY, Chiou CT.2004. Evaluation of current techniques for isolation of chars as natural adsorbents. Environmental Science and Technology,38: 4227-4232.
    Cookson WR, Rowarth JS, Cameron KC.2000. The effect of autumn applied 15N-labelled fertilizer on nitrate leaching in a cultivated soil during winter. Nutrient Cycling in Agroecosystems,56:99-107.
    Cornelissen G, Gustafsson 0.2004. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science and Technology,38:148-155.
    Cornelissen G, Gustafsson 0, Bucheli TD, et al.2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science and Technology,39:6881-6895.
    DeLuca TH, MacKenzie MD, Gundale MJ, et al.2006. Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Science Society of America Journal,70:448-453.
    Demirbas A.2001. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Conversion and Management,42:1229-1238.
    Demirbas A.2004. Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis,72: 243-248.
    Dickens AF, Gelinas Y, Masiello CA, et al.2004. Reburial of fossil organic carbon in marine sediments. Nature,427:336-339.
    Forbes MS, Raison RJ, Skjemstad JO.2006. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the Total Environment,370:190-206.
    Fujita I, Tomooka J, Sugimura T.1991. Sorption of anionic surfactants with wood charcoal. Bulletin of the Chemical Society of Japan,64:738-740.
    Gelinas Y, Prentice KM, Baldock JA.2001. An improved thermal oxidation method for the quantification of soot/graphitic black carbon in the sediments and soils. Environmental Science and Technology,35:3519-3525.
    Glaser B.2005. Manioc peel and charcoal:a potential organic amendment for sustainable soil fertility in the tropics. Biology and Fertility of Soils,41:15-21.
    Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W.2000. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry,31:669-678.
    Glaser B, Guggenberger G, Haumaier L, et al.1999. Black carbon in Terra Preta soils of the Brazilian Amazon region. LPI Contribution, Report, p 100.
    Glaser B, Haumaier L, Guggenberger G, et al.1998. Black carbon in soils:the use of benzenecarboxylic acids as specific markers. Organic Geochemistry,29: 811-819.
    Glaser B, Lehmann J, Zech W.2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal:a review. Biology and Fertility of Soils,35:219-230.
    Golchin A, Oades JM, Skjemstad JO, et al.1994. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Australian Journal of Soil Research,32:285-309.
    Goldberg ED.1985. Black Carbon in the Environment:Properties and Distribution. New York:John Wiley and Sons.
    Gundale MJ, DeLuca TH.2007. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglasfir ecosystem. Biology and Fertility of Soils,43:303-311.
    Hamsen EM, Djurhuus J.1996. Nitrate leaching as affected by long-term N fertilization on a coarse sand. Soil Use and Management,12:199-204.
    Harden JW, Trumbore SE, Stocks BJ, et al.2000. The role of fire in the boreal carbon budget. Global Change Biology,6(Suppl.1):174-184.
    Harder B.2006. Smoldered-Earth Policy:Created by ancient Amazonia natives, fertile, dark soils retain abundant carbon. Science News,169:133.
    Havis RN, Alberts EE.1993. Nutrient leaching from field-decomposed corn and soybean residue under simulated rainfall. Soil Science Society of America Journal,6:211-218.
    Hockaday WC, Grannas AM, Kim S, et al.2006. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass special analysis of dissolved organic matter from a fire-impacted forest soil. Organic Geochemistry,37:501-510.
    Insaf S, Mohamed AA, Mohamed H, et al.2004. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International,29:1009-1017.
    Irigoyen I, Muro JM, Azpilikueta M, et al.2003. Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures. Australian Journal of Soil Research,41(4):1177-1183.
    Isobe K, Fujii H, Tsuboki Y.1996. Effect of charcoal on the yield of sweet potato. Japanese Journal of Crop Science,65(3):453-459.
    Iswaran V, Jauhri KS, Sen A.1980. Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biology and Biochemistry,12:191-192.
    Julie C, Williamson MD, Taylor RS, et al.1998. Reducing nitrogen leaching from dairy farm effluent-irrigated pasture using dicyandiamide:a lysimeter study. Agriculture Ecosystem and Environment,69(1):81-88.
    Kaewpradit W, Toomsan B, Vityakon P, et al.2008. Regulating mineral N release and greenhouse gas. emissions by mixing groundnut residues and rice straw under field conditions. European Journal of Soil Science,59:640-652.
    Kawamoto K, Ishimaru K, Imamura Y.2005. Reactivity of wood charcoal with ozone. Journal of Wood Science,51:66-72.
    Katyal S, Thambimuthu K, Valix M.2003. Carbonisation of bagasse in a fixed bed reactor:Influence of process variables on char yield and characteristics. Renewable Energy,28:713-725.
    Kei M, Toshitatsu M, Yasuo H, et al.2004. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology,95:255-257.
    Kishimoto S, Sugiura G.1985. Charcoal as a soil conditioner. Int Achieve Future,5: 12-23.
    Knoblauch C, Marifaat AA, Haefele MS.2008. Biochar in rice-based system:Impact on carbon mineralization and trace gas emissions. http://www.biocharinternational.org/2008/conference/posters
    Kwon S,Pignatello JJ.2005. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):Pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Environmental Science and Technology,39: 7932-7939.
    Laird DA.2008. The charcoal vision:A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal,100(1):178-181.
    Lal R.2004. Soil carbon sequestration impacts on global climate change and food security. Science,304(11):1623-1627.
    Lehmann J.2002. Bio-char (Black Carbon) stability and stabilization in soil//Soil Science:Confronting New Realities in the 21st Century. Bangkok:7thWorld Congress of Soil Science
    Lehmann J.2006. Black is the new green. Nature,442:624-626.
    Lehmann J.2007a. A handful of carbon. Nature,447:143-144.
    Lehmann J.2007b. Bio-energy in the black. Frontiers in Ecology and the Environment,5:381-387.
    Lehmann J, Gaunt J, Rondon M.2006. Bio-char sequestration in terrestrial ecosystems:a review. Mitigation and Adaptation Strategies for Global Change, 11:403-427.
    Lehmann J, Liang B, Solomon D, et al.2005. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil:application to black carbon particles. Global Biogeochemical Cycles,19:1013-1025.
    Lehmann J, Joseph S.2009. Biochar for Environmental Management:Science and Technology. London; Sterling, VA:Earthscan.
    Lehmann J, Silva J P, Rondon M, et al.2002. Slash-and-char-a feasible alternative for soil fertility management in the central Amazon?//Soil Science:Confronting New Realities in the 21st Century.7th World Congress of Soil Science, Bangkok
    Li RJ, Wen B, Zhang SZ, Pei ZG, Shan XQ.2009. Influence of organic amendments on the sorption of pentachlorophenol on soils. Journal of Environmental Sciences-China,21:474-480.
    Liang B, Lehmann J, Solomon D, et al.2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal,70:1719-1730.
    Lindau CW, Bollich PK.1993. Methane emission from Louisiana first and ratoon crop rice. Soil Science,156(1):42-48.
    Luo Y, Qiao X, Song J, Christi P, Wong M.2003. Use of a multi-layer column device for study on leachability of nitrate in sludge-amended soils. Chemosphere,52: 1483-1488.
    Lyle P, Richard G.1997. Nitrate leaching using two potao-corn N-fertilizer plans on sandy soil. Agriculture Ecosystem and Environment,65:1-13.
    Marris E.2006. Black is the new green. Nature,442:624-626.
    McClellan AT, Deenik J, Uehara G, Antal M.2007. Effects of flash carbonized macadamia nutshell charcoal on plant growth and soil chemical.properties. American Society of Agronomy Abstracts,3-7 November, New Orleans, LA.
    Mizuta K, Matsumoto T, Hatate Y, et al.2004. Removal of nitratenitrogen from drinking water using bamboo powder charcoal. Bioresource Technology,95: 255-257.
    Mohan D, Pittman CUJ, Bricka M, et al.2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid and Interface Science,310:57-73.
    Neue HU, Wassmann R, Lantin RS, et al.1996. Factors affecting methane emission from rice fields. Atmospheric Environment,30:1751-1754.
    Ogawa M.1994. Symbiosis of people and nature in the tropics. Farming Japan,28: 10-34.
    Ohgama T, Imamula Y, Noimoto M, et al.2005. Humidity conditioning by charcoal(木炭的调湿效果).木材学会杂志,51(5):334-339(in Japanese)
    Pessenda LCR, Gouveia SEM, Aravena R.2001. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon,43:595-601.
    Phillip S, Homann P, Caldwell B.1996. Stabilization and destabilization of soil organic matter:Mechanisms and controls. Geoderma,74:65-105.
    Piccolo A, Pietramellara G, Mbagwu JSC.1996. Effects of coalderived humic substances on water retention and structural stability of Mediterranean soils. Soil Use Manage,12:209-213.
    Pietikainen J, Kiikkila O, Fritze H.2000. Charcoal as a habitat for microbes and its effects on the microbial community of the underlying humus. Oikos,89: 231-242.
    Ponnamperuma FN.1984. Effects of Flooding on Soils. In:Kozlowski TT. (Ed). Flooding and Plant Growth. New York:Academic Press, pp 10-45.
    Quenea K, Derenne S, Rumpel C, et al.2006. Black carbon yields and types in forest and cultivated sandy soils (Landes de Gascogne, France) as determined with different methods:Influence of change in land use. Organic Geochemistry,37: 1185-1189.
    Ramanathan V, Carmichael G.2008. Global and regional climate changes due to black carbon. Nature Geoscience,1:221-227.
    Reed MD, Blair LF, Burling K, Daly I, Gigliotti AP, Gudi R, Mercieca MD, McDonald JD, Naas DJ, O'Callaghan JP, Seilkop SK, Ronsko NL, Wagner VO, Kraska RC.2005. Health effects of subchronic exposure to diesel-water emulsion emission. Inhalation Toxicology,14:851-870.
    Rondon MA, Molina D, Hurtado M, Ramirez J, Lehmann J, Major J, Amezquita E. 2006. Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils. In:18th World Congress of Soil Science, July 9-15, Philadelphia, PA, http://crops.confex.com/crops/wc2006/techprogram/P 16849.HTM, accessed June 2008.
    Rondon M, Ramirez JA, Lehmann J.2005. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In:Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry. Baltimore, MD. March 21-24, p 208.
    Rondon M, Lehmann J, Ramirez J, et al.2004. Biologial nitrogen fixation by common beans (Phaseoulus vulgaris) increases with charcoal additions to soils. Integrated Soil Fertility Management in the Tropics,58-60.
    Rondon MA, Lehmann J, Ramirez J, et al.2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils,43:699-708.
    Rumpel C, Alexis M, Chabbi A, et al.2005. Black carbon contribution to soil organic matter decomposition in tropical sloping land under slash-and-burn agriculture. Geoderma,130:35-46.
    Saito M, Marumoto T.2002. Inoculation with arbuscular mycorrhizal fungi:the status quo in Japan and the future prospects. Plant and Soil,244:273-279.
    Schmidt MWI, Noack AG.2000. Black carbon in soils and sediments:analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14:777-794.
    Serna MD, Banuls J, Quifiones A, et al.2000. Evaluation of 3,4-dimentylphyrazole phosphate as a nitrification inhibitor in a Citrus cultivated soil. Biology and Fertility of Soils,31(1):41-46.
    Singh M, Bhattacharya AK, Nair TVR.2002. Nitrogen loss through subsurface drainage effluent in coastal rice field from India. Agricultural Water Management, 52:249-260.
    Smernik RJ, Kookana RS, Skjemstad JO.2006. NMR characterization of 13C-benzene sorbed to natural and prepared charcoals. Environmental Science and Technology,40:1764-1769.
    Sombroek W, Ruivo ML, Fearnside PM, et al.2003. Amazonian Dark Earths as carbon stores and sinks. In:Lehmann J, Kern DC, Glaser B, Woods WI. (Eds). Amazonian Dark Earths:Origin Properties Management. Dordrecht, Netherlands: Kluwer Academic Publishers,125-140.
    Son TK, Lee JE, Kim SK, et al.2003. Effect of a mixture of charcoal and pyroligenous acid applied to the soil at different fertilizer levels on the growth and yield of rice. Japanese Journal of Crop Science,72(3):345-349.
    Spokas K.2010. Observed ethylene production from biochar additions. http://www.biorenew.iastate.edu/fileadmin/www.biorenew.iastate.edu/biochar201 0/Presentations/Spokas.pdf.
    Steiner C, Das KC, Garcia M, Forster B, Zech W.2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia,51:359-366.
    Tang C and Yu Q.1999.Impact of chemical composition of legume residues and initial soil pH on pH changes of a soil after residue incorporation. Plant and Soil, 215:29-38.
    Toles CA, Marshall WE, Johns MM.1999. Surface functional groups on acid-activated nutshell carbons. Carbon,37:1207-1214.
    Torstensson G, Aronsson H.2000. Nitrogen leaching and crop availability in manured catch crop system in Sweden. Nutrient Cycling in Agroecosystems,56:139-152.
    Vlek PLG, Byrens BH.1986. The efficiency and loss of fertilizer N in lowland rice. Fertilizer Research,131-147.
    Wardle DA, Zackrisson O, Nilsson MC.1998. The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia,115:419-426.
    Watanabe T, Asakawa S, Nakamura A, Nagaoka K, Kimura M.2004. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiology Letter,232:153-163.
    Wigmans T.1986. Fundamentals and practical implication of activated carbon production by partial gasification of carbonaceous materials. In:Figueiredo JL, Moulijn JA. (Eds). Carbon and Coal Gasification, NATO Scientific Affairs Division. Dordrecht:Martinus Nijhoff Publishers, p.561.
    Xiao BH, Yu ZQ, Huang WL.2004. Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants. Environmental Science and Technology,38:5842-5852.
    Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M.2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut and soil chemical properties in south Sumatra, Indonesia. Soil Science and Plant Nutrition,52:489-495.
    Yan GZ, Xhima K, Fujiwara S.2004. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition. Journal of the Japanese Society of Revegetation Technology,30(1):33-38.
    Yanai Y, Toyota K, Okazaki M.2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition,53:181-188.
    Yang Y, Sheng GY.2003. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environmental Science and Technology,37: 3635-3639.
    Yazawa Y, Asakawa D, Matsueda D, et al.2006. Effective carbon and nitrogen sequestrations by soil amendments of charcoal. Journal of Arid Land Studies, 15(4):463-467.
    Yin B, Crowley D, Sparovek G, et al.2000. Bacterial functional redundancy along a soil reclamation gradient. Applied and Environmental Microbiology,66: 4361-4365.
    Zerulla W, Barth T, Dressel J, et al.2001.3,4-dimethyphyrazle phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticulture. Biology and Fertility of Soils,34(2):79-84.
    Zhang A, Cui L, Pan G, et al.2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy fromTai Lake plain, China. Agriculture, Ecosystems and Environment,139:469-475.
    Zheng X, Huang Y, Wang Y, et al.2003. Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology,9(2):219-227.
    Zou JW, Huang Y, Qin YM, et al.2009. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Global Change Biology,15:229-242.
    Zwieten VL, Kimber S, Morris S, Chan YK, Downie A, Rust J, Joseph S, Cowie A. 2010. Effect of biochar from slow pyrolysisi of papermill waste on agronomic performance and soil fertility. Plant and Soil,327:235-246.
    蔡祖聪,徐华,马静.2009.稻田生态系统CH4和N2O排放.合肥:中国科学技术大学出版社.
    曹国良,张小曳,王亚强,等.中国区域农田秸秆露天焚烧排放量的估算.科学通报,2007,52(15):1826-1831.
    陈国青,周靖平,高琦,吴小明.2006.超细竹炭对水中Pb2+的吸附效果.解放军预防医学杂志,24(6):405-407.
    陈旭超,胡志彪,陈杰斌,丁荫祥,游富英.2007.竹炭对铜(Ⅱ)离子的吸附性能研究.龙岩学院学报,25(6):78-80.
    渡边孙也,三宅洁,藤野毅,等.2003.废弃物再生炭除去水中磷的研究(日语).日本水环境杂志,26(1):47-52.
    傅金和.2003.竹炭的种类和用途.世界竹藤通讯,1(3):19-20.
    郝蓉,彭少麟,宋艳暾,刘名茗.2010.不同温度对黑碳表面官能团的影响.生态环境学报,19(3):528-531.
    胡福昌,陈顺伟.2001.日本竹材热解研究的现状.林业科技开发,15(3):8-11.
    胡克林,李保国,等.2004.预测农田水分渗漏和氮素淋失的两种模型比较.水科学进展,15(1):87-93.
    黄耀.2006.中国的温室气体排放、减排措施与对策.第四纪研究,26(5):722-732.
    纪雄辉,郑圣先,鲁艳红,廖育林.2006.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律.中国农业科学,39(12):2521-2530.
    巨晓棠,张福锁.2003.氮肥利用率的要义及提高的技术措施.科技导报(农业),(4):51-54.
    李晶,王明星,王跃思,等.2003.农田生态系统温室气体排放研究进展.大气科学,27(4):740-749.
    刘瑾,邬建国.2008.生物燃料的发展现状和前景.生态学报,28:1339-1353.
    刘培斌.2000.暗管排水稻田中氮素淋失动态混合模型及应用.中国环境科学,20(1):13-17.
    鲁春霞,吕耀,谢高地,等.2002.稻田温室气体排放的时空差异性与精准施肥.资源科学,24(6):86-90.
    马静,徐华,蔡祖聪.2007.稻田甲烷氧化研究方法进展.土壤,39(2):153-156.
    梅凡民,傅成诚,杨青莉,周亮.2010.活性炭表面酸性含氧官能团对吸附甲醛的影响.环境污染与防治,32(3):18-22.
    孟冠华,李爱民,张全兴.2007.活性炭的表面含氧官能团及其对吸附影响的研究进展.离子交换与吸附,23(1):88-94.
    潘根兴,李恋卿,郑聚锋,张旭辉,周萍.2008.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题.土壤学报,45(5):901-911.
    齐玉春,董云社,章申.2000.农业微环境对土壤温室气体排放的影响.生态农业研究,8(1):45-48.
    秦晓波,李玉娥,刘克樱,等.2006.不同施肥处理稻田甲烷和氧化亚氮排放特征.农业工程学报,22(7):143-148.
    全为民,严力蛟.2002.农业面源污染对水体富营养化的影响及其防治措施.生态学报,22(3):291-299.
    孙波,王兴祥,张桃林.2003.红壤养分淋失的影响因子.农业环境科学学报,22(3):257-262.
    孙星,刘勤,王德建,张斌.2007.长期秸秆还田对土壤肥力质量的影响.土壤,39:782-786.
    汪长胜,王跃思,郑循华,等.2004.稻田甲烷排放影响因素及其研究进展.土壤通报,35(5):663-669.
    王朝辉,李生秀,王西娜,苏涛.2006.旱地土壤硝态氮残留淋溶及影响因素研究.土壤,38(6):676-681.
    王德建,林静慧,夏立忠.2001.太湖地区稻麦轮作农田氮素淋洗特点.中国生态农业学报,9(1):16-18.
    王桂仙,张启伟.2006.竹炭对溶液中Zn2+的吸附行为研究.生物质化学工程,40(3):17-20.
    王辉,王全九,邵明安.2005.降水条件下黄土坡地氮素淋溶特征的研究.水土保持学报,19(5):61-64.
    王家玉,王胜佳,陈义,郑纪慈,李超英,计小江.1996.稻田土壤中氮素淋失的 研究.土壤学报,33(1):28-36.
    王敬国.2001.农用化学物质的利用与污染控制.北京:北京出版社.
    王明星,李晶,郑循华.1998.稻田甲烷排放及产生、转化、输送机理.大气科学,22(4):600-612.
    王勤花,曲建升,张志强,等.2007.气候变化减缓技术:国际现状与发展趋势.气候变化研究进展,3(6):322-327.
    王荣萍,余炜敏,等.2006.田间条件下氮的矿化及硝态氮淋溶研究.水土保持学报,20(1):80-82.
    王小治,朱建国,宝川靖和,封克.2004.施用尿素稻田表层水氮素的动态变化及模式表征.农业环境科学学报,23(5):852-856.
    吴成,张晓丽,李关宾.2007a.黑碳吸附汞砷铅镉离子的研究.农业环境科学学报,26(2):770-774.
    吴成,张晓丽,李关宾.2007b.黑碳制备的不同热解温度对其吸附菲的影响.中国环境科学,27(1):125-128.
    肖小平,伍芬琳,黄风球,等.2007.不同稻草还田方式对稻田温室气体排放影响研究.农业现代化研究,28(5):629-632.
    徐亦钢,石利利.2002.竹炭对2,4-二氯苯酚的吸附特性及影响因素研究.农村生态环境,18(1):35-37.
    薛峰,颜廷梅,乔俊,杨林章.2009.太湖地区稻田减量施肥的环境效益和经济效益分析.生态与农村环境学报,25(4):26-31.
    余贵芬,毛知耘,石孝均,刘洪斌.1999a.氮素在紫色土中的移动和淋失研究.西南农业大学学报,21(3):228-232.
    余贵芬,吴泓涛,魏永胜,毛炳衡.1999b.氮在紫色土中的移动和水稻氮素利用率的研究.植物营养与肥料学报,5(4):316-320.
    俞巧钢,陈英旭,张秋玲,李华,梁新强,田平.2006DMPP对菜地土壤氮素淋失的影响研究.水土保持学报,20(4):40-43.
    展茗,曹凑贵,江洋,汪金平,乐丽鑫,蔡明历.2010.不同稻作模式下稻田土壤活性有机碳变化动态.应用生态学报,21(8):2010-2016.
    张琳,张凤荣,姜广辉,等.2005.我国中低产田改造的粮食增产潜力与食物安全保障.农业现代化研究,26(1):22-25.
    张绍林,朱兆良,徐银华,等.1988.关于太湖地区稻麦上氮肥的适宜用量.土壤,42(1):5-9.
    张齐生.2001.重视竹材化学利用,开发竹炭应用技术.竹子研究汇刊,20(3):34-35.
    张启伟,王桂仙.2006.竹炭对溶液中汞(Ⅱ)离子的吸附行为研究.林业科学,42(9):102-105.
    张庆利,张民,田维彬.2001.包膜控释和常用氮肥氮素淋溶特征及其对土水质量的影响.土壤与环境,10(2):98-103.
    张文玲,李桂花,高卫东.2009.生物质炭对土壤性状和作物产量的影响.中国农学通报,25(17):153-157.
    张旭东,梁超,诸葛玉平,姜勇,解宏图,何红波,王晶.2003.黑碳在土壤有机碳生物地球化学循环中的作用.土壤通报,34(4):349-355.
    郑安桥,苏亚欣,赵敬德.2007.黑碳气溶胶研究现状.能源环境保护,21(5):4-8.中华人民共和国农业部.2008.全国农业统计提要.
    钟雪梅,朱义年,刘杰,纪锐琳.2006.竹炭包膜氮肥的利用率比较.桂林工学院学报,26(3):404-407.
    朱江涛,黄正宏,康飞宇,傅金和,岳永德.2006.竹炭的性能和应用研究进展.材料导报,20(4):41-43.
    朱兆良,蔡贵信,徐银华,等.1985.一种稻田氮肥氨挥发及其在氮素损失中重要性的研究.土壤学报,22:320-328.
    朱兆良,孙波,杨林章,张林秀.2005.我国农业面源污染的控制政策和措施.科学导报,23(4):47-51.
    朱兆良,文启孝.1992.中国土壤氮素.南京:江苏科技出版社.213-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700